
Porting an AUTOSAR-Compliant Operating System to a
High Performance Embedded Platform

Shuzhou Zhang
School of Innovation, Design

and Engineering
Mälardalen University

szg11002@student.mdh.se

Avenir Kobetski
Software and Systems
Engineering Laboratory
SICS Swedish ICT AB

avenir@sics.se

Eilert Johansson
Software and Systems
Engineering Laboratory
SICS Swedish ICT AB

eilert@sics.se

Jakob Axelsson
School of Innovation, Design

and Engineering
Mälardalen University

jakob.axelsson@mdh.se

Huifeng Wang
School of Information Science

and Engineering
East China University of
Science and Technology

whuifeng@ecust.edu.cn

ABSTRACT
Automotive embedded systems are going through a major
change, both in terms of how they are used and in terms
of software and hardware architecture. Much more power-
ful and rapidly evolvable hardware is expected, paralleled
by an accelerating development rate of the control software.
To meet these challenges, a software standard, AUTOSAR,
is gaining ground in the automotive field. In this work, ex-
periences from porting AUTOSAR to a high performance
embedded system, Raspberry Pi, are collected. The goal
is both to present experience on the process of AUTOSAR
porting and to create an AUTOSAR implementation on a
cheap and widely accessible hardware platform, making AU-
TOSAR available for researchers and students.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Microprocessor/microcomputer applications, Real-time and
embedded systems; D.4.4 [Operating systems]: Commu-
nications Management—input/output, network communica-
tion

General Terms
Design, Experimentation, Standardization.

Keywords
AUTOSAR, Raspberry Pi, Embedded Operating Systems

1. INTRODUCTION

EWiLi’13 , August 26-27, 2013, Toulouse, FRANCE
Copyright retained by the authors.

Traditionally, automotive electronic control units (ECUs)
have been quite resource constrained due to cost limitations.
However, the development rate and the complexity of auto-
motive software is starting to exceed the capacity of existent
ECU hardware. Partly for this reason and partly motivated
by falling hardware prices, high performance hardware solu-
tions, similar to those used in applications such as mobiles,
media and networking, will have to be considered. Also,
following the trend of shorter development and product life
times, new hardware solutions will be introduced more fre-
quently in the near future.

For these reasons, there is a need for a realistic test and
evaluation platform for the research and development of fu-
ture automotive ECU architectures. At the very least, such
platform should consist of a network of embedded systems,
representative for the future types of automotive ECUs. It
should conform to existing standards, be easily extendable,
and preferably open-source.

In this work, first steps towards such a platform are taken.
Briefly put, this paper presents the experiences during port-
ing of an operating system (OS), commonly used in automo-
tive applications, to Raspberry Pi, a cheap and widely avai-
lable high performance embedded platform. For the sake of
compliance with existing standards, the OS of choice relies
on AUTOSAR, the prevailing software architecture standard
in the automotive industry.

The results address several concerns. Firstly, experiences
from the porting work, including typical pitfalls and oppor-
tunities, are presented, to serve as a basis for future porting
work of AUTOSAR to new hardware. And secondly, an
embryo of an open automotive hardware platform is demon-
strated through an experimental setup, consisting of inter-
connected AUTOSAR-compliant Raspberry Pis, communi-
cating through a Controller Area Network (CAN) bus, typi-
cally used in automotive applications.

The paper is organized as follows. In Section 2, some ne-
cessary background is presented. In Section 3, experiences
of the porting process are detailed. Section 4 presents the
experimental setup, while Section 5 shortly surveys the state
of the practice, related to this work. Finally, Section 6 con-
cludes the paper.



2. BACKGROUND
In this section, basic information related to the AUTOSAR

standard and the specifics of the hardware architecture be-
hind Raspberry Pi is presented.

2.1 AUTOSAR
For the last decade, the automotive industry has been de-

veloping a software architecture standard, currently prevail-
ing in this business segment, called the Automotive Open
System Architecture (AUTOSAR) [2, 11].

AUTOSAR is a layered software architecture that decou-
ples application software (ASW) from lower level basic soft-
ware (BSW) by means of a standardized middleware called
runtime environment (RTE). This allows running the same
application software seamlessly on different hardware plat-
forms, as long as the underlying hardware is linked with the
RTE through appropriate BSW. The BSW consists of an op-
erating system that has evolved from the OSEK standard;
system services for e.g., memory management; communi-
cation concepts; ECU and microcontroller abstraction lay-
ers (ECUAL and µCAL respectively); and complex device
drivers for direct access to hardware, see Figure 1.

Figure 1: AUTOSAR layer structure

There exist several implementations of the AUTOSAR
standard. However, most of those are commercial products
which often makes them unsuitable for research purposes. In
this work, ArcticCore [1] – one of the very few open-source
AUTOSAR implementations – was chosen. ArcticCore con-
tains among other a real-time OS, memory management,
and ECUAL software. For some hardware architectures,
mostly those that are currently popular in the automotive
industry, such as Freescale MPC5xxx, also the µCAL soft-
ware is implemented.

This work is based on AUTOSAR 3.2, with the focus
on extending existing ArcticCore source code to make it
runnable on Raspberry Pis. First, the ArcticCore OS kernel
needs to be amended to allow the system to start up. Once
this is done, the existing ECUAL code needs to be connected
to the underlying hardware in the µCAL layer through ap-
propriate driver development. The details and experiences
of the porting work are further described in Section 3.

2.2 Raspberry Pi
Traditionally, automotive ECUs are equipped with micro-

controllers that include flash memory and static RAM on the
same chip. Code is executed by direct readings, instruction
by instruction, from the flash memory. The advantages are
that the ECU design becomes simple and that the memory

on-chip solution is robust and compact. The main disad-
vantage of this solution is again its simplicity, making it im-
possible to utilize the latest memory chip technologies due
to different CMOS manufacturing technologies for SDRAM,
Flash and CPUs.

In contrast, Raspberry Pis are based on microcontrollers
with external flash memories for code storage and execution
from RAM, which makes them suitable for high performance
applications, such as video streaming. This is an important
consideration in future automotive applications since perfor-
mance and memory constraints are expected to grow con-
siderably in a near future, when vehicles start to cooperate
exchanging information with each other and surrounding in-
frastructure, see e.g. [13]. Other advantages of Raspberry
Pis are their low cost and wide availability, which was the
final rationale behind using them in our work.

A Raspberry Pi has a Broadcom BCM2835 system on chip
(SoC) [10], which includes an ARM1176JZF-S 700 MHz pro-
cessor, VideoCore IV GPU, and 512 megabytes of RAM.
The microcontroller has a standard RJ45 based Ethernet
port and some external GPIOs for adding sensors and ac-
tuators as well as other peripherals through SPI, IIC or
UART ports. The performance is expected to be several
magnitudes higher than a traditional microcontroller based
automotive ECU.

On the downside, the Raspberry Pi architecture requires
more complex and time consuming start up procedures, copy-
ing and in some cases unpacking of code from flash to RAM.
The runtime environment may also give other considerations
such as memory protection against software failure and in-
creased risk of single event upsets. Cache memory, pipe-
lining and multi-core will add complexity to the software
and system design from a real-time perspective due to vari-
ations in execution time.

3. THE PORTING PROCESS
This section discusses our experiences from the AUTOSAR

porting process on Raspberry Pi. The first part introduces
the four core steps that were taken to set up the AUTOSAR
OS kernel and prepare it for running on a Raspberry Pi.
This kernel development process includes initialization, mem-
ory modelling, exception handling and context switch.

Initialization is the first code that is executed when the
operating system starts up. Data structures, global vari-
ables, and hardware are set up in this stage in order to
prepare necessary configuration for the operating system.
Memory handling builds the system and task stacks so as
to determine how much memory is available for either the
tasks or the system. The method for handling interrupts
and exceptions is a critical part of the architecture design of
the operating system. Finally, a context switch is needed to
handle scheduled tasks.

The second part focuses on the development process of
a Serial Peripheral Interface (SPI) driver according to AU-
TOSAR standard requirements. This is just an example to
show a general method for developing a hardware driver on
Raspberry Pi that complies with the AUTOSAR standard.

3.1 Kernel development process
A Raspberry Pi’s boot process starts with a small ROM

based primary boot loader copying a file containing a sec-
ondary boot loader from SDHC card into the L2 cache of
the microcontroller. The secondary boot loader initializes



SDRAM and loads a third boot loader into SDRAM which
starts up the operating system. The bootloader of Rasp-
berry Pi can be obtained from the Raspberry official forum,
including bootcode.bin, loader.bin and start.elf. It boots
ARM from the 0x00008000 in the ARM address space, and
that is the ARM entry point and location for the first ARM
instruction that we can control.

3.1.1 Initialization
Normally, there are three main stages of initializing an

operating system on ARM architecture – startup, execut-
ing process control block (PCB) setup code, and executing
the C initialization code [4]. During the startup stage, an
exception vector table should be built. Table 1 shows such
a vector for the ARM architecture. The vector table con-
tains the addresses that the ARM processor branches to if
an exception is raised.

Program execution starts with a reset exception, which
triggers the reset handler. In the reset handler, the exception
vector table needs to be copied to the address 0x00000000,
because initially it is at the address 0x00008000 due to the
boot process of the Raspberry Pi. After that the Undefined,
Abort, FIQ, SVC, IRQ and System base stack registers are
set up. Once the stacks are set up, the processor is switched
back into the SVC mode, which allows the rest of the ini-
tialization process to continue.

In the PCB setup stage, there are four major parts of the
PCB that have to be initialized: the program counter, the
link register, the user mode stack, and the saved processor
status register (which in the ARM case means registers r13,
r14, r15, and spsr) for each task.

A timer is an important part of a real-time OS, providing
a system tick for OS. In the ArcticCore OS, the system tick
is defined to 1 millisecond. Hence, a timer should be enabled
in the C initialization stage. When the timer is activated,
a counter will start to decrement the value, which in our
case is 1000, in the specified timer register. Once the value
reaches zero, an interrupt is raised. In the timer interrupt
service routine, the AUTOSAR OS will check the scheduler
table and alarm to decide which task should be run next.

3.1.2 Memory Model
We implemented a simple memory model for the AU-

TOSAR OS, as shown in the Figure 2. ARM physical ad-
dresses start at 0x00000000 for the RAM. An interrupt table
is built from 0x00000000 to 0x000000020. Then the code
section, heap and stack are arranged. A good stack design
tries to avoid stack overflow because it may cause instability
in embedded systems [4, 14]. Hence, we put the interrupt
stack at the top of the memory above the user stack. In
this way the vector table will not be corrupted when a stack
overflow occurs, and so the system has a chance to correct
itself when an overflow has been identified. The address
range from 0x20000000 to 0x20FFFFFF is used for micro-
controller registers. The hardware interfaces can then be
controlled by accessing corresponding address in this area.

3.1.3 Interrupts and Exceptions Handling
Two types of exceptions were implemented in this port-

ing work, the reset exception as mentioned before and the
IRQ exception. In our case, a non nested interrupt han-
dler structure was chosen since it is suitable for an initial
porting stage when there are not many interrupt sources.

Figure 2: System memory layout

When more sources are added, a nested interrupt handler
will be needed to make execution of the AUTOSAR OS on
a Raspberry Pi more efficient. This will be implemented at
a later stage. Figure 3 describes the process about how a
non-nested interrupt handler is implemented.

Figure 3: Nonnested interrupt handler

When an interrupt occurs (e.g. timer interrupt or SPI
transmit/receive interrupt), an IRQ exception is triggered
and the ARM processor disables further IRQ exceptions
from occurring. Upon entry to the interrupt handler, the
handler code saves the current context of non-banked reg-
isters. The handler then identifies the interrupt source ac-
cording to the interrupt’s number and executes the appro-
priate interrupt service routine (ISR). For example, SPI ISR
is called when an SPI transmit interrupt occurs. In AU-
TOSAR OS, all ISRs have already been registered in an
interrupt vector during the OS initialization stage, based on
the priority of source interrupts. Upon return from the ISR,
the handler restores the context. Finally, interrupts are en-
abled again and the task which was interrupted can continue
its execution.

3.1.4 Context Switch
When a new task has been scheduled for execution, the

new and old tasks have to be swapped with a context switch.
To achieve this, the ARM context switch splits the activity
into two stages [5, 6]. In the first stage, the state of the cur-
rent task must be saved somehow, so that, when the sched-
uler gets back to the execution of this task, it can restore its
state and continue. The state of the current task includes
all the registers that the task may be using, especially the
program counter, together with any other OS specific data
that may be necessary. This data is usually stored in a data
structure called PCB. In the second stage, the registers with
data from the new task’s PCB should be loaded. In doing so,



Table 1: ARM processor exception vector
Exception Mode Main purpose Address

Reset SVC Initializes the system 0x00000000
Undefined Instruction UND Software emullayeration of hardware coprocessors 0x00000004

Software Interrupt SVC Protected mode for operating systems 0x00000008
Prefetch Abort Abort Memory protection handling 0x0000000C

Data Abort Abort Memory protection handling 0x00000010
Interrupt Request IRQ Interrupt request handling 0x00000018

Fast Interrupt Request FIQ Fast interrupt request handling 0x0000001C

the program counter from the PCB is loaded, and thus ex-
ecution can continue in a new task. The new task is chosen
from a task queue according to its priority.

In the porting work, two types of context switch needed to
be implemented. One is the interrupt context switch that
was already described in Section 3.1.3. And another one
is the task context switch, shown in Figure 4. A task is
assumed to run in ARM mode and uses the SYS registers.
Firstly, the context of the current task should be saved onto
its own stack. Secondly, the stack pointer of the old task
being switched out is saved into the the current task PCB.
Thirdly, the stack pointer is loaded from the OS PCB of the
new task. Lastly, the context of the new task is pulled off
the stack. Then the microcontroller resumes the new task.

Figure 4: Task context switch

3.2 Driver development process
In this subsection the process of developing µCAL soft-

ware that follows existing AUTOSAR specifications is ex-
emplified through the development of a Serial Peripheral
Interface (SPI) driver. Firstly, some SPI related concepts
and terms used in the AUTOSAR standard are presented.
Secondly, data structures and functions that are used for
communication are described.

3.2.1 Background
The SPI (Serial Peripheral Interface) is a 4-wire synchronous

serial interface. Data communication is enabled by a Chip

Select wire (CS) and transmitted via a 3-wire interface con-
sisting of serial data output (MOSI), serial data input (MISO),
and a serial clock (CLOCK).

The AUTOSAR standard defines a hierarchical structure
of sequences, jobs and channels [7] to describe data trans-
mission process on a SPI bus. A sequence contains one or
several jobs, which are in turn composed of channels with
the same CS signal. A channel is the actual place holder for
the transmitted data.

In Figure 5, an example of SPI communication, packaged
in the AUTOSAR way, is shown. Transmission of a sequence
is initiated via an API call, such as Spi SyncTransmit. The
sequence consists of two jobs, job n and m. At first, job
n arbitrates the bus. After the data transfer of channel x
is finished, the next channel of job n gets started without
releasing the bus. When the transmission of both channels
is finished, the bus is released by job n and job m starts to
transmit data until the sequence a is finished.

Figure 5: SPI transmission structure

3.2.2 Types definition
To configure sequences, jobs and channels mentioned above,

their supporting data structures should be implemented.
Here, five data structures will be introduced based on some
basic types from the AUTOSAR standard definition.

The Spi ConfigType is the main data structure that con-
tains the others and includes configurations for channels,
jobs, sequences, and external device structures (Spi Channel-
Config, Spi JobConfig, Spi SequenceConfig, and Spi Exter-
nalDevice respectively). In this way, all the necessary infor-
mation can be passed in one block to the Spi Init function
for the initialization of the SPI handler/driver.

The data stucture of Spi SequenceConfig should contain a
flag used to specify whether this sequence can be interrupted
by another sequence, a variable to specify the sequence’s
name, and an array of pointers to jobs in this sequence.



The data structure of Spi JobConfig should contain the
job’s name, a parameter to specify the priority of the job,
an array of pointers to channels in this job, and a parameter
that identifies the SPI hardware allocated to this job.

The data structure of Spi ChannelConfig should include
parameters to describe the channel’s name, the buffer type
to be used for this channel (either an external or internal
buffer), the width of a transmitted data unit (8 bits or 16
bits), the maximum size of data buffers in case of exter-
nal/internal channels, and a flag to define the first starting
bit (LSB or MSB) for the transmission.

At last, a data structure to describe an external device
is needed. The Spi ExternalDevice structure should contain
parameters to define the communication baudrate, the ac-
tive polarity of Chip Select (standard high or standard low),
the SPI data shift edge, and the SPI shift clock idle level.

3.2.3 Function
There are 14 standard functions defined in the SPI han-

dler/driver specification of AUTOSAR standard and the
porting job included implementation of these functions. Due
to space limitations, only 3 main functions, needed to set up
the communication between the microcontroller and an ex-
ternal device, will be described here.

The function Spi Init provides the service for SPI initial-
ization. The flow chart of this function is shown in Figure
6(a). First, all data structures stored in SPI ConfigType
are initialized, including sequence, job, and channel struc-
tures. The SPI controller of BCM2835 is also initialized
here. At the end of the Spi Init function, the state of the
SPI handler/driver is set to SPI IDLE, while the result of
SPI transmission is set to a default value (SPI SEQ OK and
SPI JOB OK).

The function Spi SetupEB provides the service to setup
external buffers and data length for a given channel. It takes
4 input parameters, which are the specified channel, pointers
to the source and destination data buffers, and the length
(in bytes) of the data to be transmitted and/or received.
Figure 6(b) shows the flow chart for this function.

(a) Spi Init (b) Spi SetupEB (c) Spi SyncTransmit

Figure 6: Flow charts of three SPI functions.

The function Spi SyncTransmit provides the service to
transmit data on the SPI bus. Wheownsn this function
is called, a sequence is said to be in transmission which
means that all the jobs and channels that belong to this
sequence are being processed. The data in each channel will
be transmitted or received by calling the SPI driver interface
in the microcontroller layer. The flow chart of this function
is shown in Figure 6(c).

4. EXPERIMENTAL SETUP
Nowadays, Controller Area Network (CAN) is one of the

main communication methods in vehicles. In order to demon-
strate our porting work, we set up a CAN bus communica-
tion system by using 2 Raspberry Pis, as shown in Figure 7.
Since Raspberry Pi lacks CAN interface itself, an external
CAN bus board that contains a CAN controller (MCP2515
chip) and a CAN transceiver (MCP2551 chip) was used and
controlled by a Raspberry Pi through the SPI interface, de-
scribed above.

Figure 7: CAN bus communication system

Before a CAN message can be transmitted, CAN con-
trollers must be initialized. This includes resetting MCP2515
chips, configuring the speed of CAN bus, etc. All this con-
figuration data is transmitted from the Raspberry Pis to the
CAN controllers. Once the setup is configured, the sched-
uler switches from initialization to communication tasks and
data can be sent using the AUTOSAR compliant SPI func-
tions, see Section 3.2.

An example of how the SPI functions were used is shown
in Figure 8. Here, a CAN controller reset command (0xC0)
sequence is to be transmitted on the SPI bus. It is assumed
that Spi Init has already been called during the initializa-
tion stage. First, an external buffer needs to be set for the
command channel, with the command data in the source
data buffer. The destination buffer is set to NULL because
no data needs to be read back from the SPI bus. Finally,
the command sequence is transmitted.

uint8 cmdbuf[] = {0xC0};

Spi_SetupEB(SPI_CH_CMD, cmdbuf, NULL,

sizeof(cmdbuf)/sizeof(cmdbuf));

Spi_SyncTransmit(SPI_SEQ_CMD);

Figure 8: An example of SPI transmission.

5. STATE OF THE PRACTICE
While the AUTOSAR standard is open, most of its im-

plementations are commercial products, promoted by large
companies, such as Bosch, Dassault Systemes, Vector Infor-
matik GmbH, and dSPACE, to mention just a few. To the
best of our knowledge, ArcticStudio OS is one of a few, if
not even the only, widely-used AUTOSAR implementations
under a GPL license, which is one of the reasons for choosing
it in our work.

As a point of reference for this work, ChibiOS [3], an
open-source real-time OS (RTOS) for embedded devices,
was used. Chibi-OS has been ported to a number of hard-
ware platforms, including Raspberry Pi. However, its higher



level structure differs substantially from AUTOSAR, mak-
ing it only useful for our purposes as a source of inspiration.

Another open-source RTOS, Trampoline [9], is an ad-
vanced OSEK-compliant academic project that among other
things considers multicore issues, an important part of AU-
TOSAR 4.x. The reason for using ArcticCore here was its
broader scope, including such AUTOSAR concepts as com-
munication interfaces, high level ECU abstractions, etc.

In a recent MSc project [12], existing FlexRay communi-
cation drivers (on the µCAL level) were merged with Arc-
ticCore’s corresponding ECUAL modules. Our work differs
in two ways from that project. Firstly, both the FlexRay
drivers and the underlying hardware were developed and
owned by a company called QRTECH, which goes against
the open-source vision of an automotive evaluation platform.
And secondly, the experiences of the presented work goes
deeper and describes the whole chain of challenges when im-
plementing AUTOSAR µCAL drivers on a new hardware.

Finally, Raspberry Pis were chosen due to their technical
characteristics being in line with what is believed to be typ-
ical future automotive ECU architecture. In addition, their
low cost and wide availability were important choice factors.

In conclusion, while quite some work has been done on
AUTOSAR in industry, the academic world is trailing be-
hind in this respect. A literature review that we did in
preparation for this work revealed a lack of publications on
the subject of AUTOSAR implementation, especially when
it comes to its lower layers. The purpose of this paper is
to fill this gap and present AUTOSAR porting experiences,
together with a real application example that resulted from
the porting work.

6. CONCLUSIONS AND FUTURE WORK
In this paper, an approach for porting AUTOSAR to an

ARM based platform, Raspberry Pi, was presented. Based
on ARM architecture specifications, four main kernel deve-
lopment processes were performed, including initialization,
memory modelling, exception handling and context switch-
ing, which allowed an AUTOSAR compliant OS to start up
on a Raspberry Pi. Subsequently, the development process
of a SPI driver/handler was documented to demonstrate the
steps that are needed to develop a driver for a specific hard-
ware that meets the AUTOSAR standard.

In addition, in order to demonstrate the practical value of
our work, a CAN bus communication system was built, al-
lowing two Raspberry Pis to successfully communicate with
each other through a CAN bus. The actual connection be-
tween the Raspberry Pis and the CAN system was done
through the above mentioned SPI interface.

As a consequence, we believe that this work is of value for
researchers and developers that need to port AUTOSAR to
different embedded platforms, providing them with a base of
experiences to speed up their development. Also, this work
marks the initiation of an open hardware platform for re-
search and experimentation on advanced automotive ECUs.

In the future, we plan to extend this work by adding other
common I/O and communication functionality, including
support for the serial port, PWM, and Ethernet commu-
nication, which is expected to be the next communication
standard in automotive applications and is included in AU-
TOSAR 4.0.

Once fully AUTOSAR compliant Raspberry Pis are up
and running, they will be interconnected to simulate a net-

work of vehicle ECUs. This will allow to run high level au-
tomotive application software in a realistic lab environment,
providing opportunities to test completely new concepts.

One of such concepts that we believe has an important
potential is related to the federations of embedded systems
(FES) [13], and the means of easily installing new software
in the AUTOSAR framework on running vehicles [8], simi-
larly to how it is done with apps in smartphones. With the
experimental platform in place, it will be possible to take
the step from theoretical visions of FESs to actual demon-
strations and evaluations of the concepts.

7. ACKNOWLEDGMENTS
This project is supported by Vinnova (grant no. 2012-

02004), Volvo Cars, and the Volvo Group.

8. REFERENCES
[1] ArcticCore product page.

http://www.arccore.com/products/arctic-core/.

[2] Autosar consortium web. http://www.autosar.org.

[3] ChibiOS/RT homepage. http://www.chibios.org/.

[4] D. S. Andrew N.Sloss and C. Wright. ARM System
Developer’s Guide. Morgan Kaufmann Publishers, 500
Sansome Street, Suite 400, San Francisco, CA 94111,
2004.

[5] ARM. ARM1176JZF-S Technical Reference Manual.
ARM, 2004.

[6] ARM. ARM Compiler toolchain-Developing Software
for ARM Processors. ARM, 2011.

[7] AUTOSAR. Specification of SPI Handler/Driver for
AUTOSAR. AUTOSAR Official, Version 3.2.0, 2011.

[8] J. Axelsson and A. Kobetski. On the conceptual design
of a dynamic component model for reconfigurable
autosar systems. In 5th Workshop on Adaptive and
Reconfigurable Embedded Systems, Philadelphia, 2013.

[9] J.-L. Béchennec, M. Briday, S. Faucou, and
Y. Trinquet. Trampoline - an open source
implementation of the osek/vdx rtos specification. In
11th Int. Conf. on Emerging Technologies and Factory
Automation (ETFA’06), Prague, 2006.

[10] B. Corporation. BCM2835 ARM Peripherals.
Broadcom Corporationl, Broadcom Europe Ltd. 406
Science Park Milton Road Cambridge CB4 0WW,
2012.

[11] S. Fürst, J. Mössinger, S. Bunzel, T. Weber,
F. Kirschke-Biller, P. Heitkämper, G. Kinkelin,
K. Nishikawa, and K. Lange. Autosar–a worldwide
standard is on the road. In 14th International VDI
Congress Electronic Systems for Vehicles,
Baden-Baden, 2009.

[12] J. Jansson and J. Elgered. Autosar communication
stack implementation with flexray. Technical report,
Chalmers University of Technology, 2011.

[13] A. Kobetski and J. Axelsson. Federated robust
embedded systems: Concepts and challenges.
Technical report, Swedish Institute of Computer
Science, 2012.

[14] A. S. Tanenbaum. Modern Operating Systems.
Prentice Hall, UPPER SADDLE RIVER, NEW
JERSEY 07458, 2007.


