
Scheduling and Thread Management with RTEMS

Gedare Bloom
Dept. of Computer Science

George Washington University
Washington, DC

gedare@gwu.edu

Joel Sherrill
OAR Corporation

Huntsville, AL
joel.sherrill@oarcorp.com

ABSTRACT
The goal of a real-time operating system (RTOS) is to support
real-time and embedded system (RT/ES) application development,
which differ from general-purpose applications because of the size,
weight, and power (SWaP) and timing constraints imposed by em-
bedded applications. Useful RTOS features include real-time thread
scheduling, thread communication, synchronization, interrupt han-
dling, memory management, file systems, device drivers, network-
ing, and debugging support. The Real-Time Executive for Multi-
processor Systems (RTEMS) is a free and open-source RTOS that
supports over a dozen processor architecture families and over 150
embedded system boards. RTEMS is designed to support embed-
ded applications with stringent real-time requirements while being
compatible with open standards such as POSIX. RTEMS includes
optional services such as TCP/IP networking and file systems while
still offering minimum executable sizes under 20 KB in useful con-
figurations.

One of the primary functions of an RTOS is to select threads that
can obtain access to resources such as shared memory and proces-
sor time. RTEMS uses multiple algorithms to manage both waiting
threads and those ready to execute. The thread execution schedulers
include the traditional RTOS round robin and deterministic priority
schedulers, rate monotonic, earliest deadline first (EDF), constant
bandwidth server (CBS), and simple SMP scheduling algorithms.
The RTEMS scheduling framework allows the application devel-
oper to select the thread scheduling algorithm that best meets the
application’s space and time requirements. ÂăWe will present how
this framework can be used by researchers to integrate their own
scheduling algorithm into RTEMS and test it using a scheduling
simulator before deploying it on target hardware.

Categories and Subject Descriptors
Computer Systems Organization [Real-time systems]: Real-time
operating systems

Keywords
Scheduling, RTEMS

EWiLi ’13 August 26–27, 2013, Toulouse, FRANCE
Copyright retained by the authors.

1. INTRODUCTION
An operating system is a collection of software services and ab-
straction layers that enable applications to be concerned with busi-
ness logic rather than the specifics of device control and protocol
stacks. With this abstraction of lower level concerns, the applica-
tion can be portable across hardware platforms. Operating system
standards such as IEEE POSIX define operating systems interfaces
which enable applications to be portable from one operating system
implementation to another.

A real-time operating system (RTOS) is an operating system de-
signed to provide applications services which assist in meeting ap-
plication requirements which including timing. These timing re-
quirements are typically related to interaction with external de-
vices, other computers, or humans. For example, a sensor may
need to be sampled every fifty (50) milliseconds or the data is cor-
rupt. Airline reservation systems have been classified as real-time
systems because their requirements specify that a user request must
be responded to within a specific amount of time. Even though this
response time is specified in seconds rather than milliseconds this
still meets the definition of real-time. These timing requirements
impose deadlines on the behavior of the application.

Real-time applications may further be divided into soft real-time,
hard real-time, and safety critical based upon the negative impact
of missing a deadline. If missing a single deadline can be com-
pensated for and has little impact, the deadline is considered soft.
Missing multiple soft deadlines may or may not have severe conse-
quences. In contrast, a hard deadline is one which must be met or
negative consequences occur. Many hard deadlines may be further
classified as safety critical in case missing the deadline may result
in harm to persons or property. An example of a common safety
critical real-time system is an anti-lock brake system.

Use of an operating system decouples the application from the
hardware platform and provides a core set of resource management
services. Operating systems provide services such as concurrency,
memory management, file systems, and networking. Relying on
operating systems allows applications to be developed quicker and
at lower costs. This provides faster time to market and reduces
the likelihood of reengineering required if the application must be
rehosted on a different hardware platform.

An RTOS provides all of the advantages of a non-real-time oper-
ating system while adding determinism. Determinism ensures that
the operating system is designed to perform actions with bounded
response times for arbitrary inputs. For example, the time required
to block or unblock a single thread is independent of the number of



threads created by the application.

Although there are many RTOSes available and there are great dif-
ferences between them, there are a common set of features found
in most of them. First, they are designed to handle real-time con-
straints correctly and provide services to the application to enable
this. They provide a multi-threaded environment usually including
preemptive, priority-based scheduling often with timeslicing capa-
bility. This is sufficient to implement applications based on the rate
monotonic scheduling algorithm [7], and some RTOSes provide ex-
tra services for periodic threads and statistics gathering to further
assist such applications.

Since RTOSes provide multi-threaded environments, they must also
provide mechanisms for those threads to communicate and syn-
chronize. Although the application programming interface (API)
and specific details may differ, it is common for RTOSes to pro-
vide some combination of message queues, semaphores, mutexes,
events, and condition variables to coordinate threads. Other thread
communication and synchronization mechanisms include barriers,
asynchronous signals, and read/write locks. RTOSes with mutexes
typically offer algorithms to avoid priority inversion, such as the
priority ceiling or priority inheritance protocols [9].

RTOSes may provide various types of memory management ser-
vices. It is common to have the RTOS provide support for the
C program heap used by the malloc family as well as for spe-
cial purpose memory pools. These special purpose memory pools
may be managed using variable or fixed allocation schemes. Some
RTOSes provide memory management unit interfaces which can
be used to denote that certain areas of memory are read-only, exe-
cutable, or not to be cached.

Although modern personal computers tend to have x86-compatible
processors and a common hardware architecture, target hardware
for embedded real-time applications can vary enormously. There
are dozens of microprocessors available for this market and thou-
sands of boards. Many real-time applications also include custom
designed boards. RTOSes need to provide a design framework
to support such wide variety—the board support package (BSP)
framework. A BSP will include hardware initialization, device
drivers, bus adapters, and interrupt controller management. Given
the wide variety of embedded hardware, it is important for individ-
ual device drivers to be shared across boards. Some RTOSes in-
clude many BSPs as part of their standard deliverable, while other
RTOS vendors license individual BSPs.

RTOSes are often very modular so that unused features can easily
be left out of a system. This has the technical benefit of allowing
real-time applications to be fielded in lower end target hardware
and the business benefit of allowing some RTOS vendors to sell
those capabilities as extra-cost items. Some additional features that
are often conditionally available include file systems, networking,
and graphics.

2. RTEMS OVERVIEW
RTEMS [4] is a free, open-source real-time operating system de-
signed to provide deterministic performance on a wide variety of
target hardware with portability as a primary design goal. Cur-
rently RTEMS supports over fifteen (15) processor architectures
and one-hundred sixty (160) BSPs, which includes well-known ar-
chitectures such as x86, PowerPC, ARM, MIPS, and SPARC as
well as those only known within the embedded systems community

Figure 1: Dependency tree for an architectural port in RTEMS.

such as the LM32 and NIOS2. Figure 1 shows the dependencies of
a typical architectural port for RTEMS.

Being a free, open-source project means that all RTEMS source
code is available to the user for inspection, analysis, tailoring, and
redistribution. RTEMS does not include software for the target
hardware with any licenses that impose obligations on the licens-
ing of the user’s application. In the following, we summarize the
primary components of RTEMS before we discuss the RTEMS
scheduling framework in the next section. Extra details are avail-
able in the RTEMS manuals that are included with the RTEMS
source code [5] and are provided online for convenience [3].

2.1 API Layers
From a technical perspective, RTEMS provides a single-address
space, multi-threaded environment for applications. Historically
applications have been statically linked, but now RTEMS supports
dynamic loading of code with the RTEMSDynamic Loader project.
Still, the user’s application, BSP, and RTEMS all reside in the same
address space.

To limit the complexity of applications, RTEMS uses a layered
software architecture with the Classic, POSIX, and SAPI inter-
faces; the ITRON interface has been dropped during the 4.11 re-
lease series. The Classic API was based upon the RTEID and
ORKID RTOSAPI standards, which were proposed but never stan-
dardized by the VMEBus Industry Trade Association. RTEMS sup-
ports a large subset of POSIX 1003.1b through the POSIX API,
which is POSIX-compliant for the features of POSIX that are nec-
essary for single-user, single process applications. SAPI (“sappy”)
exposes features such as initialization, configuration, user exten-
sions, and device driver management—these features are not stan-
dardized across operating systems. In addition to these three inter-
faces, RTEMS also supports the C library using newlib [1].

2.2 SuperCore: the RTEMS Kernel
Traditional RTOS kernel functionality is implemented in the Su-
perCore, located at cpukit/score. The SuperCore provides a
common foundation for RTEMS’ API layers with services such as
task scheduling, interrupt handling, synchronization, inter-thread
communication, and memory management implemented with mul-
tilib C source code. A multilib is a collection of libraries that are
compiled with different CPU-specific flags. Thus, the SuperCore



can be compiled and used for a given architecture regardless of the
CPU variant of the application. Another aspect of the SuperCore
that propagates to other RTEMS components are the implementa-
tions of data structures, in particular the chains (doubly-linked lists)
and red-black tree.

2.3 CPU and BSP Libraries
CPU-specific and board-specific support is implemented under the
c/src/lib/libcpu and c/src/lib/libbspdirectories, re-
spectively. This support includes clocks and timers, console I/O, in-
terrupt handlers or ISRs, cache and memory management unit han-
dling, and bootstrapping into a C environment from which RTEMS
can initialize. A minimal libcpu for a particular CPU will contain
the cache management support; additional support may be included
that is shared across all BSPs. A minimal BSP, called the “basic
BSP”, includes a clock driver, console driver, bootstrap code, and a
linker script, which is usually called linkcmds.

2.4 Application Configuration
RTEMS is configured statically using configure (autoconf) op-
tions, and dynamically using configuration tables that are inter-
preted by the confdefs.h file in the SAPI.

configure is useful for coarse-grained configuration options that
can provide conditional compilation, which can reduce the size of
the compiled binary image by removing large subsystems that a
user does not need. Static configuration can reduce runtime over-
heads because configuration options are not checked during the
runtime. However, configure options are hard to maintain, pollute
source code with #ifdef statements, and cannot be changed with-
out recompiling RTEMS.

Configuration tables in confdefs.h are the main way in which users
are able to configure certain aspects of RTEMS at runtime. These
tables are flexibile because a user can change them and reset the ap-
plication (board) in order to change a system’s configuration with-
out having to upload a new binary image. The main disadvantages
of configuration tables are the lack of conditional compiilation and
runtime overhead for configuration points, though the latter can of-
ten be accounted for during application initialization. Most of the
overhead from configuration tables comes from stubs that are in-
serted for unused services.

2.5 Filesystems, Networking, and Languages
In addition to the core services, RTEMS implements a number of
optional features that may be useful for real-time and embedded
system applications. Some of these features include file I/O, net-
working, and language runtime support. For file I/O, RTEMS has a
block device interface and buffer cache that is optimized for perfor-
mance, along with implementations of commonly used filesystems
such as NFS, and FAT, and filesystems that are especially useful
for real-time systems such as the in-memory filesystem (IMFS)
and RTEMS filesystem (RFS). RTEMS networking support uses
a port of the FreeBSD networking stack that is designed to di-
verge minimally from the upstream so that updating can be pain-
less. Some of the languages that RTEMS support for user applica-
tions are C, C++, Ada, Java, Go, and Lua; also, RTEMS can run
Parrot [2], which provides support for many dynamic languages
including Ruby, PHP, Python, Perl, and .NET.

3. RTEMS MODULAR SCHEDULER

Due to the variety of application scheduling needs, and especially
with the rise of multicore platforms in embedded systems, an RTOS
needs a task scheduler that permits users to choose the schedul-
ing algorithm that best fits their application. Up to and includ-
ing RTEMS version 4.10, the scheduler only had limited flexi-
bility with support for round-robin and fixed priority scheduling.
Starting with the 4.11 release series, RTEMS has a new, modu-
lar scheduler that uses a virtual function table of function point-
ers to hook scheduler-specific code throughout the existing thread
management. A specific scheduling algorithm is implemented by
instantiating a table of functions. Each application development
team now can select a scheduling algorithm that best fits their ap-
plication’s needs, and RTEMS ships with a set of useful scheduler
algorithms including a refactored version of the pre-existing sched-
uler and a handful of new scheduling algorithms. In the next sec-
tion, we discuss the scheduler framework and supported scheduling
algorithms.

3.1 Design
The scheduler is located in the SuperCore (cpukit/score) and de-
fines the virtual base class from which all scheduling algorithms
are derived. The primary definitions of the scheduler are in the files

• cpukit/score/include/rtems/score/scheduler.h

• cpukit/score/inline/rtems/score/scheduler.inl

• cpukit/score/src/scheduler.c

The scheduler is responsible for managing the set of threads in
the ready state and determining which thread will execute next.
When a thread exits or enters the ready state, scheduler hooks are
invoked. The scheduler implementation determines if this thread
state change necessitates changing the running thread by a thread
dispatch.

Scheduler decisions are communicated with other parts of RTEMS
via fields in the _Per_CPU_Information structure, a set of variables
that are defined for each core. _Per_CPU_Information in a single
core system is a single instance of the structure Per_CPU_Control,
which is defined in the cpukit/score/include/rtems/score/percpu.h
file. In a multicore system, _Per_CPU_Information is an array
of Per_CPU_Control structures indexed by the CPU core number.
The following fields in this structure are managed by a scheduler
implementation:

• executing: pointer to the running thread (on this core)

• heir: pointer to the next runnable thread (on this core)

• dispatch_necessary: boolean variable indicate a thread dis-
patch is needed (on this core)

In a fully-preemptive application, the executing and heir point to
the same thread because the most important thread is the one that is
executing. If non-preemptible code runs, then the heir may point to
a different thread than executing, for example if the running thread
unblocks a higher priority task but remains non-preemptible.



3.2 Plugin Data Structure
The scheduler hooks are defined by a single data structure and
one pointer in each thread control block (TCB, defined by struct
Thread_Control). The data structure is named Scheduler_Control
and is defined in cpukit/score/include/rtems/score/scheduler.h as

typedef struct {

void *information;

Scheduler_Operations Operations;

} Scheduler_Control;

Scheduler_Control contains a pointer named information that points
to the data used by the scheduler to manage the entire set of ready
threads, e.g. the ready queue. The Operations field is the virtual
function table provided by the scheduler, defined as:

typedef struct {

void (*initialize)(void);

void (*schedule)(void);

void (*yield)(void);

void (*block)(Thread_Control *);

void (*unblock)(Thread_Control *);

void *(*allocate)(Thread_Control *);

void (*free)(Thread_Control *);

void (*update)(Thread_Control *);

void (*enqueue)(Thread_Control *);

void (*enqueue_first)(Thread_Control *);

void (*extract)(Thread_Control *);

void (*tick)(void);

} Scheduler_Operations;

A scheduler implementation provides pointers to functions for the
Scheduler_Operations. The Deterministic Priority Scheduler, for
example, defines in score/include/rtems/score/schedulerpriority.h an
initializer for the virtual function table as

#define SCHEDULER_PRIORITY_ENTRY_POINTS \

{ \

_Scheduler_priority_Initialize, \

_Scheduler_priority_Schedule, \

_Scheduler_priority_Yield, \

_Scheduler_priority_Block, \

_Scheduler_priority_Unblock, \

_Scheduler_priority_Allocate, \

_Scheduler_priority_Free, \

_Scheduler_priority_Update, \

_Scheduler_priority_Enqueue, \

_Scheduler_priority_Enqueue_first, \

_Scheduler_priority_Extract, \

_Scheduler_priority_Tick \

}

This initializer macro is used during application configuration to
instantiate a scheduling algorithm. In the following, we describe
the purpose each function in Scheduler_Operations.

3.2.1 Initialize
The initializemethod allocates and sets default values for scheduler-
specific global variables. This scheduler specific method is invoked

during RTEMS initialization by rtems_initialize_data_structures be-
fore any idle threads or other tasks are started. This method can
allocate memory from the RTEMS Workspace using the method
_Workspace_Allocate_or_fatal_error. RTEMS considers failure to
allocate memory during system initialization to be a fatal error.

3.2.2 Schedule
The schedule method updates the heir pointer when the priority of
a thread changes if it was the executing or heir thread. This method
is invoked from _Thread_Change_priority, which is invoked by
rtems_task_set_priority, pthread_setschedparam, and when a pri-
ority is altered as part of acquiring or releasing a mutex with the
priority inheritance and ceiling protocols.

3.2.3 Yield
The yield method determines if another thread should execute when
the running thread voluntarily yields the processor. In addition to
operations that explicitly yield the processor, methods that sleep
or delay for 0 time call yield. This method is invoked in multiple
places in RTEMS:

• cpukit/posix/src/nanosleep.c: nanosleep method when the re-
quested delay is zero

• cpukit/posix/src/sched_yield.c: sched_yield method

• cpukit/rtems/src/taskwakeafter.c: if rtems_task_wake_after is
passed zero ticks

• cpukit/score/src/threadtickletimeslice.c: when the executing
thread’s timeslice has expired in _Thread_Tickle_timeslice

3.2.4 Block
The block method removes the specified thread from the set of
ready threads and, if necessary, updates the heir thread or dispatches
a new executing thread. _Thread_Set_state invokes block when the
specified thread is in the ready state.

3.2.5 Unblock
The unblock method adds the specified thread to the set of ready
threads that it manages and, if necessary, updates the heir thread
or dispatches a new executing thread. This method is invoked in
_Thread_Clear_state when a change in a thread’s current state re-
sults in all blocking states being removed so that the thread must be
added to the set of ready threads.

3.2.6 Allocate
A scheduler implementation has two classes of data. The data it
uses to manage the collection of threads, e.g. the ready queue, and
the data it maintains on a per-thread basis. The allocate method is
responsible for allocating any memory required for the per-thread
data by the scheduler, returning a pointer to the allocated informa-
tion structure that the scheduler stores in the TCB. This method is
invoked as a side-effect of the _Thread_Initialize method, which is
itself invoked by services that create and allocate threads, such as
rtems_task_create and pthread_create.

3.2.7 Free
The free method is responsible for de-allocating any memory re-
quired on a per-thread basis by the scheduler. This method is in-
voked as a side-effect of _Thread_Close, which is called by ser-
vices that delete threads like rtems_task_delete and pthread_exit.



3.2.8 Update
The update method modifies per-thread information when a thread’s
priority changes, which can occur during dynamic priority changes
or as part of thread initialization. This method performs no schedul-
ing actions and just updates the per-thread information structure to
reflect the new priority.

3.2.9 Enqueue
The enqueue method is responsible for adding a thread to the set
of ready tasks, and is invoked by _Thread_Change_priority, which
is invoked by rtems_task_set_priority, pthread_setschedparam, and
when a thread’s priority is altered as part of acquiring or releasing a
mutex with the priority inheritance and ceiling protocols. Enqueue
performs no scheduling operations except to ensure the thread is
placed in a scheduler-specific location in the set of ready threads.

3.2.10 Enqueue First
The enqueue first method places the specified thread into the set
of ready tasks with a preference to break ties (e.g., when multiple
ready threads have the same priority) in favor of the thread. This
method is invoked when changing a thread’s priority due to priority
inheritance or ceiling protocols. Enqueue first does not call other
scheduling operations, it just ensures the thread is placed in the
appropriate, scheduler-specific location in the set of ready threads.

3.2.11 Extract
The extract method removes the specified thread from the set of
ready tasks as a side-effect of setting a transient state for deletion
or changing priority. This method updates the data structures for
the management of the set of ready threads, but does not update the
heir or executing threads.

3.2.12 Tick
The tick method implements the functionality a scheduler needs
during a clock tick, for example tick-driven scheduling and times-
lice management. This method is invoked as part of processing a
clock tick by rtems_clock_tick.

3.3 Scheduling Algorithms
At the time of this writing, RTEMS ships with 5 scheduling algo-
rithms: the Deterministic Priority Scheduler, EDF, CBS, Simple
Priority, and Simple SMP Priority. All of these algorithms support
preemptive scheduling with round-robin scheduling and timeslices
for aperiodic tasks. The Deterministic Priority and Simple algo-
rithms offer fixed priority scheduling, while EDF and CBS offer
dynamic task priority, fixed job priority scheduling for periodic
tasks. EDF schedules aperiodic tasks in the background, and CBS
schedules them with a server algorithm.

RTEMS does not provide periodic tasks within the core scheduling
subsystem. Instead, periodic tasks are implemented using a timer to
track each periodic task’s period. A regular task becomes periodic
by creating a periodic timer and executing a loop that starts by set-
tings its timer to the current tick plus its period. If the task finishes
the loop body, it will sleep until its period elapses, at which point
the timer will fire and wake the task. If the timer fires before the
task finishes the loop body, a deadline overrun may have occurred
and can be detected.

The Deterministic Priority Scheduler is highly optimized with one
FIFO per priority and a two-level bitmap to ensure that both inser-
tions and heir determination occur in constant execution time. This

is the default scheduling algorithm in uniprocessor systems. Rate
monotonic scheduling is supported on top of the Deterministic Pri-
ority Scheduler.

The EDF scheduler is an implementation of the well-known algo-
rithm [8]. Since task priorities change each time a new job releases,
the EDF scheduler needs to use a ready queue that can handle dy-
namic task priorities. The ready queue for the EDF scheduler uses
a red-black tree that is capable of storing duplicate priorities (dead-
lines) in FIFO order.

The CBS scheduler is a resource-reservation scheduler built on top
of the EDF scheduler with the addition of timer servers [6].

The Simple Priority Scheduler is a simple implementation of a fixed
priority scheduling algorithm. It uses a single list to manage all
ready threads and performs a linear search to perform insertion
when a thread is unblocked (e.g. O(number of ready threads). This
scheduling algorithm is inefficient from an execution perspective
but uses little memory and may be appropriate for use in systems
with few threads.

The Simple SMP Scheduler is the first SMP-aware scheduler im-
plemented for RTEMS. It was designed to implement the same be-
havior as the Deterministic and Simple Priority Schedulers but ex-
tended to multiple processors.

3.4 Configuring a Scheduler
RTEMS can be configured to use either a built-in scheduler or
a user provided scheduler. The Deterministic Priority Scheduler
is the default scheduler and can be explicitly configured with the
parameter CONFIGURE_SCHEDULER_PRIORITY. Alternate sched-
ulers can be configured by defining one of the following parame-
ters:

• CONFIGURE_SCHEDULER_EDF

• CONFIGURE_SCHEDULER_CBS

• CONFIGURE_SCHEDULER_SIMPLE

• CONFIGURE_SCHEDULER_SIMPLE_SMP

The scheduler also allows users to provide their own scheduling
algorithm by defining configuration macros that will instantiate the
scheduler.

• CONFIGURE_SCHEDULER_USER to indicate the application
provides its own scheduling algorithm

• CONFIGURE_SCHEDULER_USER_ENTRY_POINTS must be
defined with the set of methods which implement this sched-
uler, i.e. an initializer for the Scheduler_Operations virtual
function table.

• CONFIGURE_MEMORY_FOR_SCHEDULER must be defined
with the maximum amount of the RTEMS Workspace the
scheduler allocates not including per-thread data, which is
accounted for separately. Usually, this workspace memory is
the storage required for the management of ready tasks, i.e.
the ready queue.



Figure 2: Management of thread sets in RTEMS.

• CONFIGURE_MEMORY_PER_TASK_FOR_SCHEDULERmust
be defined as the amount of memory required for all of the
scheduler’s per-task data, which is usually a formula multi-
plying the number of tasks (_tasks) configured by the maxi-
mum amount for each task.

3.5 Scheduler Simulator
In parallel to the refactoring of the scheduler, the Scheduler Simu-
lator was designed and implemented to enable testing new schedul-
ing algorithm implementations in a simple environment on the host.
This testing can be done before writing test cases in C and attempt-
ing to execute them in the more complex environment of the actual
RTEMS run-time on real hardware or a CPU simulator. The Sched-
uler Simulator script language enables creation of reproducible se-
quences which may not be easy to do with the scheduler on real
hardware. The Scheduler Simulator consists of a subset of the
RTEMS SuperCore, Classic API, shell, and a set of custom com-
mands to access a critical subset of threading, semaphore, mutex,
and time services. These are provided in the form of a library which
can be utilized to instance scheduler simulator variants for custom
algorithms.

The following is a simple scenario that initializes RTEMS, creates
one user thread, has that thread sleep for three clock ticks, and then
advances time by 5 clock ticks. This scenario includes the user
thread blocking and the preemption of the IDLE thread from the
clock tick ISR.

rtems_init

task_create USER

task_wake_after 3

clock_tick 5

exit

More complex scenarios can be constructed for example to create
priority inversions and deterministic parallelism for testing SMP
schedulers.

4. CONCLUSION AND FUTUREWORK
An RTOS enables developers to separate the effort of individual ap-
plication development from the design, implementation, and main-
tenance of general-purpose services that spans multiple applica-
tions. In this paper, we have described some of these services
and how RTEMS is designed to support their use. We have also
discussed the details of RTEMS’ modular scheduling framework,
which supports the use of different schedulers across applications.
We anticipate that such modularity will be important for future ap-
plications as the prominence of multicore systems increases in the
real-time and embedded communities.

A modular scheduler has enabled new directions for RTEMS to
grow. One direction is to return to the concept that the core of a
real-time executive is the management of a set of threads, as shown
in Figure 2. RTEMS uses thread sets to manage threads that are
ready to execute, threads that are executing, and threads blocked
waiting on a resource. The management of theses thread sets and
associated data structures can be refactored into a set of helper
classes that are, in an object-oriented sense, derived from the same
virtual class. Such refactoring will allow the same source code to
be used across schedulers and other thread-related services such
as synchronization primitives. Another direction that RTEMS is
rapidly moving toward is more and better support for SMP systems.
The addition of more SMP-aware scheduling algorithms is viewed
as an important evolution for RTEMS. Such algorithms can include
features like processor affinity, better efficiency, and the ability to
support powering down unused cores. The Scheduler Simulator
was designed to support rapid design space explorations for such
new scheduling algorithms.

Acknowledgments
Gedare Bloom is supported by NSF Grant CNS-0934725.

5. REFERENCES
[1] The newlib homepage. http://sourceware.org/newlib/, 2013.
[2] Parrot VM. http://www.parrot.org/, 2013.
[3] RTEMS on-line library.

http://rtems.org/onlinedocs/doc-current/share/rtems/html/,
2013.

[4] RTEMS: Real-Time executive for multiprocessor systems.
http://www.rtems.com/, 2013.

[5] rtems.git. http://git.rtems.org/rtems/, 2013.
[6] P. Benes. Porting of resource reservation framework to

RTEMS executive. Master’s thesis, Czech Technical
University, Prague, Czech Republic, 2011.

[7] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and average case
behavior. In Real Time Systems Symposium, 1989.,
Proceedings., pages 166–171, 1989.

[8] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM,
20(1):46–61, 1973.

[9] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance
protocols: an approach to real-time synchronization. IEEE
Transactions on Computers, 39(9):1175–1185, 1990.


