
Flat but Trustworthy: Security Aspects in Flattened
Hierarchical Scheduling ∗

Adam Lackorzynski, Marcus Völp and Alexander Warg
Technische Universität Dresden

Computer Science, Operating Systems Group
{adam, voelp, warg}@os.inf.tu-dresden.de

ABSTRACT
Virtualization is a well-proven technology for consolidating
desktop and server applications onto the same hardware
platform while maintaining their native environments. How-
ever, although embedded real-time systems start to adopt
this technology, constrained resources and strict timeliness
demands complicate this consolidation task, in particular
if some applications are more critical than others and if the
timeliness of the latter may be sacrificed for the sake of com-
pleting the former. In a previous publication, we have in-
troduced flattening as a means to integrate mixed-criticality
tasks into a single real-time system while maintaining most
of their native environment as it is provided by virtual ma-
chines (VMs) and their monitors. In this paper, we focus on
the security and trustworthiness aspects of flattening and on
the interfaces for isolating mixed-criticality VMs on top of
our microkernel for embedded real-time systems.

1. INTRODUCTION
In Lackorzynski et al. [4], we have shown that classical

hierarchical scheduling, such as running virtual machines
as bandwidth servers [7], cease to work when confronted
with mixed-criticality task sets. As a solution, we presented
flattening, that is, breaking the encapsulation of virtualized
guest operating-systems (OSs) and offering them an inter-
face through which they can inform the underlying host
scheduler about the criticality of the tasks they run. The
guest modifications for using this interface are negligible
(between 10 lines of code (LOC) for para-virtualized FreeR-
TOS and 22 LOC for fully-virtualized Linux), but the addi-
tional information proved valuable in allowing the underly-
ing scheduler to schedule task sets whose timely completion
could otherwise not be guaranteed. Although in [4] we have
already discussed crucial elements of this interface, in par-

∗This work is in part funded by the DFG through the clus-
ter of excellence“Center for Advancing Electronics Dresden”
and by the EU and the state Saxony through the ESF young
researcher group “IMData”.

Copyright is held by the authors.
VtRES 2013, August 21, 2013, Taipei, Taiwan.

ticular as far as timeliness is concerned, there are a number
of trustworthiness and security concerns that must be ad-
dressed for the system to work.

After introducing mixed-criticality scheduling and sum-
marizing the main results of [4], Section 3 gives a brief
overview of Fiasco.OC and the L4 Runtime Environment
(L4Re). Fiasco.OC offers support for para-virtualized and
fully virtualized guest operating systems and deprivileged
virtual machine monitors (VMMs). In Section 4, we discuss
the interplay between guest and underlying host scheduler
for scheduling mixed-criticality tasks in embedded real-time
systems and the trust issues that arise.

2. MIXED-CRITICALITY VM SCHEDUL-
ING

The mechanisms we present can be used more generally
in all setups where a mode change necessitates a reconsid-
eration of the task scheduling parameters and in particular
their priorities. However, to simplify the following discus-
sion, we restrict ourselves to mixed-criticality scheduling in
the interpretation provided by Baruah et al. [1, 2] and to
task sets with implicit deadline-constrained periodic tasks.

Mixed-criticality scheduling seeks to consolidate tasks that
are of different importance for the correct operation of the
real-time system. Each task τi is categorized with a cer-
tain criticality level li out of the finite totally ordered set
of criticality levels L. Tasks are certified at their critical-
ity level li and at all lower criticality levels. A higher level
means that this task is more important and that the timeli-
ness of lower criticality tasks may be sacrificed to guarantee
its completion. The certification at some level l provides
an estimate Ci(l) of the worst-case execution time (WCET)
of τi that is trusted by all tasks with criticality level l. As
usual, we assume that these estimates will be more pes-
simistic for higher criticality levels (i.e., Ci(l) < Ci(h) for
l ≤ h, l, h ∈ L). Moreover, our scheduler enforces WCET
budgets, which allows us to safely assume Ci(h) = Ci(li) for
all li ≤ h. Besides the criticality level li and the vector of
WCET estimates Ci, tasks are characterized by the minimal
inter-release time Ti, which defines the value of the relative
deadline Di = Ti, and by the VM (vmi) to which this task
belongs. We write τA

i to denote that τi is a task belonging
to the VM vmi = A. Hence, τi is characterized by the triple
τA
i = (li, Ti, Ci).
A task set is mixed-criticality schedulable if all jobs of

all tasks τi receive Ci(li) units time before their relative
deadline Di provided that all higher criticality tasks τj with
li < lj complete before Cj(li). We say criticality is inverted



if a lower criticality task is prioritized over a higher criticality
task and we call the point in time where it can be decided
whether a task τi requires part of excess budget Ci(li)−Ci(l)
the criticality decision point of this task for criticality level
l.

I 2:2 II 2:2 III 3:1 IV 3:1

Figure 1: Critical instant schedule of the two
virtual machines A and B. Filled bars show LO
WCETs (Ci(LO)), dashed bars show the excess bud-
get Ci(HI)− Ci(LO).

Fig. 1 (see [4]) shows for the task set

T = { τA
1 = (HI, 8, (1, 4)T ), τA

2 = (LO, 4, (1, 1)T ),
τA
3 = (LO, 16, (4, 4)T ), τB

4 = (HI, 16, (2, 6)T ),
τB
5 = (LO, 4, (1, 1)T )}

why fixed budgets for scheduling VMs breaks mixed-criticality
schedulability while flattening produces a feasible hierarchi-
cal schedule. From classical scheduling theory, we know that
task response times are maximal when one job of each task
is released simultaneously. Fig. 1 shows a schedule for such a
simultaneous release divided into four phases of 4 time units
each. The ratios on top of each phase denote the budgets
that are assigned to the VMs A and B. To decide whether
the VMs have to schedule LO-criticality jobs or whether it
is safe to sacrifice these tasks for the completion of the high
criticality tasks τA

1 and τB
4 , VM A has to execute τA

1 for
one unit time and VM B τB

4 for C4(LO) = 2 units. Reach-
ing both criticality decision points while guaranteeing the
completion of τA

2 and τB
5 is not possible. In Fig. 1 we have

therefore granted VM B only a budget of 2 and deferred
the decision whether τB

4 completes before C4(LO). Follow-
ing the same line of argumentation, it is easy to see that
all other assignments of a fixed budget per phase leads to a
similar violation of the mixed-criticality guarantees. Now,
if τA

1 did not complete in Phase I, VM A needs at least a
budget of 2 to guarantee the completion of this HI task.
Utilizing this budget for τA

2 and τB
5 if τA

1 completes latest
after C1(LO) leaves a LO demand of 6 units time, which to
complete τB

5 has to be split in two budgets of 3 units for
Phase III and IV. However, this leaves only 4 of the 5 units
to VM B that is required to guarantee the completion of
τB
5 . On the other hand, if in Phase IV, VM A would be
able to access only a budget of 1 at a higher priority than
VM B and an additional 2 unit budget at a lower priority
than VM B, the completion of τB

4 could be guaranteed by
granting VM B a budget of 2 in Phase IV. Flattening allows
the underlying scheduler to grant these distinctly prioritized
budgets to VMs and offers an interface for switching budgets
and thereby informing the underlying scheduler in the host
about the completion of the HI-criticality tasks.

L4 / Fiasco.OC

Guest OS

AppsApps

L4RE

VMM

Shared server 
(e.g., network)

Guest OS

AppsApps

capability object
IPC Gate

kernel object

kernel

user

Fully virtualized VM Paravirtualized VM

Kernel /
Hypervisor

Figure 2: Architecture of our microkernel-based
virtualization environment for embedded mixed-
criticality systems.

3. CAPABILITY-BASED OPERATING SYS-
TEM

Our virtualization system consists of the microkernel Fi-
asco.OC and its user-level infrastructure L4 Runtime Envi-
ronment (L4Re). Fiasco.OC provides both interfaces to run
native L4 applications and para-virtualized or fully virtu-
alized guest operating systems and their applications. For
the latter, the kernel abstracts from the virtualization sup-
port of the underlying hardware platform and reflects this
abstracted interface to de-privileged virtual machine mon-
itors. By providing both native and virtualized execution
environments it is possible to co-host lightweight tasks im-
plementing the most security and real-time critical function-
ality with a minimal per application trusted computing base
next to full featured real-time or non real-time operating sys-
tems and their applications. The trusted computing base of
an application is the set of servers that must necessarily be
trusted to rely on the functionality provided by this appli-
cation.

The isolation necessary for such a split application ap-
proach is provided by an object-oriented design of both the
kernel and the user-level environment with capabilities-based
access control. Capabilities in the kernel are tuples consist-
ing of a pointer to a kernel-implemented object and access
rights to limit which operations can be invoked on the refer-
enced object. User-level capabilities provide the same func-
tionality by referring to a special kernel object called IPC
gate, which in turn stores a label through which servers can
identify the invoked object and the authority of the invoking
client on this object. For security reasons, the values stored
in this tuple can only be read by the kernel. Instead, capa-
bilities are addressed through identifiers that are local to the
capability owning application or server. Figure 2 illustrates
this setup.

The invocation of a capability will trigger a message trans-
fer from the invoking client to the server or kernel which im-
plements the object behind the capability. Because capabili-
ties are only addressed through their local names, the invok-
ing client cannot obtain any information about the physical
identity of the server that implements the object. Likewise,
upon receiving a request, the object-implementing server re-
ceives only the label stored in the IPC-gate but no informa-
tion about the physical identity of the client. Instead, an
implicit capability is provided to the server to reply to the
client.

In a nutshell, Fiasco.OC provides the following kernel ob-
jects: A Task is an isolation boundary that foremost con-
tains an address space and a capability space. Threads ex-
ecute code and run within a task. IRQs provide the possi-



bility to trigger asynchronous notifications and are used for
both hardware device interrupts and software-based notifi-
cations. The kernel also contains a rudimentary Scheduler
to schedule threads according to the scheduling parameters
and with the processor affinity specified by user-level sched-
ulers. A Factory creates new objects, such as tasks, threads
and IPC gates and manages kernel memory in the form of
quotas embedded into these factories.

There are three ways for threads in different tasks to
communicate: via synchronous inter-process communication
(IPC) messages sent through IPC gates, via shared memory,
which has been previously established in the form of spe-
cial IPC messages and via asynchronous notifications send
through IRQ objects. Because all invocations (including
those of kernel-implemented objects) are via messages, it
is possible to transparently intercept invocations. This en-
ables policies, filters or parameter refinement via proxies.
For example, a scheduler proxy can restrict a subsystem to
a defined range of scheduling priorities.

The interface provided for para-virtualization and faithful
virtualization is realized as special versions of the kernel ob-
jects thread and task. Fiasco.OC implements a special form
of thread — the vCPU — as an abstraction for the execu-
tion of a guest CPU. Essentially, a vCPU provides additional
storage for the state of the guest OS and an asynchronous
entry point [3]. Virtualization events triggered by a vCPU
such as guest-to-host physical translation faults, hypervisor
calls or trapped privileged instructions are exiting the VM
and are forwarded to a user-level virtual machine monitor
(VMM). For faithful virtualization, the guest physical ad-
dress space is provided in the form of a specialized task —
the virtual machine or VM. Again, VMs essentially only pro-
vide the additional state required for nested paging in guest
OSs. To foster strong isolation and minimization of trusted
computing bases, a common setup in our system are dedi-
cated VMMs per VM where all security critical functional-
ity (such as device multiplexing) is implemented by trusted
servers and the VMM is only responsible of forwarding VM
accesses to these native L4 servers. L4Re provides function-
ality to ease implementing these native servers.

4. TRUST ISSUES IN SCHEDULING MIXED-
CRITICALITY VMS

Several schedulers are involved in determining when and
where applications and servers should run. At the very bot-
tom of the hierarchy that these schedulers span is the rudi-
mentary scheduler of Fiasco.OC, which follows only the set-
tings of higher-level schedulers when deciding whether to
switch to another thread or vCPU. From here on, we adopt
the scheduling terminology and call a task an activity that
is scheduled on a CPU and that is possibly comprised of a
sequence of jobs. The kernel-level scheduler is a partitioned
scheduler in the sense that it will never migrate a task on
its own. However, higher level schedulers may of course do
so by changing the processor affinity of a task. At the next
level, there is one or more system schedulers in L4Re with
complete control over all CPUs. These schedulers in turn
break down this universal guarantee and pass part of it to
the schedulers in the VMMs. Finally, there is the scheduler
in the guest OS that decides which of its applications to run
when and on which CPU.

As we have seen in Section 2, it must be possible to assign

different sets of scheduling parameters to the same thread or
vCPU. In our example, the task set T became feasible after
we have assigned the vCPU of VM A both a higher priori-
tized budget than VM B with 1 unit time and an additional
2 unit budget at a lower priority. Of course one possible
way to implement this functionality would be to invoke the
VMM scheduler and in turn all lower level schedulers down
to the system level to change the budget of VM A once
it has executed for one unit time. However, the overhead
of these upcalls would be significant in particular since we
have to reflect asynchronous notifications of a VM such as
injected interrupts at a high priority budget since we do not
know the internal structure of the guest and in particular
which of its tasks is released or unblocks upon reception of
this interrupt. Our solution is therefore to split scheduling
parameters from the other state that is kept in the thread
control block (TCB) of a thread or vCPU. Instead, we keep
these parameters in a kernel object called scheduling context
(SC) [5] and allow multiple of these contexts to be associated
with a TCB.

The usage model of SCs is that guest schedulers can select
among their available SCs and thus define how their vCPUs
are scheduled on the host. The selection typically happens
in the context switching path of the guest OS that is called
right after a scheduling decision is made. At this point the
new task to be run has already been chosen and the OS can
determine its “importance” by selecting a corresponding SC.
A practical option to select this SC can be an OS-internal
priority. This way, the guest does not need to know about
other VMs and their internal structure nor must it rely on
their correctness to guarantee the completion of higher crit-
icality tasks. Notice though that for lower criticality tasks,
the trust dependency on the correct execution of higher crit-
icality tasks remains in the sense that if one of these tasks
exceeds their lower criticality execution budget, the comple-
tion of these low criticality tasks is no longer guaranteed.

As already mentioned, the described mechanisms of vol-
untarily changing SCs works only when switching from a
higher priority SC to a lower priority one but not in the op-
posite direction when some event releases a task eligible of
running at a higher priority. The reason for this is that the
underlying schedulers do not know about this task unless of
course we would completely expose all internal scheduling
decisions which at the same time negates all arguments for
a scheduler hierarchy in the first place. As a consequence,
they may prioritize other SCs thereby inverting priorities
because the VMs guest scheduler would not receive time to
make its scheduling decision. Our solution to this problem
is to allow SCs to be bound also to IRQ objects with the se-
mantics that if such an interrupt or notification is posted to
the vCPU, the bound-to SC is activated automatically. The
system-call to switch SCs is realized as a normal system-
call for paravirtualized guests and as a hypervisor-call for
fully virtualized guests. The latter is restricted to the guest
kernel.

4.1 Managing Scheduling Contexts
Additional scheduling contexts must be created and de-

stroyed, equipped with scheduling parameters and finally
selected. Throughout our system different user-level entities
are responsible for each of the steps. The schedulers must
be able to set and in particular reset these parameters at
any time. The range of parameters that they are allowed



L4 Fiasco.OC

Guest OS

AppsApps

VM

Admission

VMM

scheduling context thread / vCPU

A

L4 Fiasco.OC

Guest OS

AppsApps

VM

Admission

VMM

B

factory

L4 Fiasco.OC

Guest OS

AppsApps

VM

Admission

VMM

kernel-level scheduler

C

Figure 3: Alternatives for creating and delegating
scheduling contexts.

to set is thereby the more restrictive the higher in the hier-
archy such a scheduler is located. Unless all schedulers are
fair share, approaches such as lottery scheduling [6] that are
based on splitting the guarantees that a scheduler receives
from its underlying layer are not as easily realizable. In lot-
tery scheduling, a fixed amount of tickets is passed to higher
level schedulers, which in turn may split these tickets before
passing them along. Tasks receive a fraction of the CPU
time that is proportional to their share of tickets. With pri-
orities and enforced budgets in the form of Ci units time
every Ti and up to an explicitly or implicitly given relative
deadlineDi, such a split is not as easily done. In particular it
is not possible to deduce how much time can be guaranteed
when reducing the priority of such an SC or when increas-
ing the period Ti without knowing the decisions made by
other schedulers. For this reason, we have constructed our
interface such that scheduling parameters have to be vali-
dated by all lower level schedulers before they are enforced
in the kernel. Because all system-calls have message seman-
tics, invocations of the scheduling system-calls can easily be
intercepted by the lower-level schedulers and their function-
ality can easily be virtualized by invoking the same system-
call after validating or changing the passed down parameters
using the scheduler’s own scheduling-object capability.

Creation and deletion of SCs is by itself not security crit-
ical because non-configured SCs (with no parameters set)
convey no time on any CPU. However, the questions arise
on which quota to account the memory for created SCs and
whether SCs should be first class objects with capabilities
referring to them. Figure 3 illustrates the difficulties and so-
lutions that may arise. In configuration A, the VMM creates
vCPUs on behalf of the guest together with first or second
class scheduling contexts. At this point, the vCPU cannot
run because unconfigured SCs convey no time on physical
CPUs. Therefore, the VMM invokes the scheduling interface
of the admission component passing it the thread capability
or the SC capability if SCs are first class. Admission in turn
invokes the kernel-level scheduler to configure the parame-
ters of the SC (i.e., to set its priority, execution budget and
period). At this point the thread may run and scenarios
like the one in Section 2 be implemented, provided the ad-
mission component must never change the parameters it has
assigned to the vCPU (e.g., to lower its priority). The reason
for this inverted trust relationship is that the vCPU or SC
capability may later on be revoked by the VMM leaving Ad-
mission no mean to change the parameters it has assigned.

There is no capability or other identifier left in Admission to
address the vCPU / SC. Therefore time once granted may
never be reclaimed unless all VMMs turn out to be trust-
worthy at the highest criticality level, or are destroyed.

Scenario B presents a first solution to this problem. Rather
than creating vCPUs in the VMM, the creation is done by
Admission using a factory and the therein embedded quota
that is part of the trusted computing base of this necessarily
trustworthy server. The thread capability is then passed to
the VMM which may create and attach the SCs. Because
the Admission has created the vCPU, it has a non-revocable
identifier — the vCPU capability — for as long as the vCPU
lives. In this setting it is unproblematic that the VMM cre-
ates or destroys SCs because there is always a way for Ad-
mission to set and reset their parameters by addressing SCs
indirectly through the vCPU.

In Scenario B, the entire memory for vCPUs has to origin
from trusted factories and their quotas. In particular for
heavily multi-threaded servers and guests with large num-
bers of CPUs, this allocation may place burden on Admis-
sion to properly manage the kernel resources they require.
Scenario C offers an alternative where Admission in only re-
sponsible for scheduling-related object, that is, the schedul-
ing contexts but not the much larger TCBs of threads and
vCPUs. Like in Scenario A, vCPUs are created by the VMM
and passed down in a revocable fashion to Admission. How-
ever, instead of creating a second class SC, which can only
implicitly be addressed through threads, Admission now cre-
ates a first class SC with its own capability. Therefore, even
if the VMM later on revokes the thread/vCPU capability,
an identifier to the created SCs remain within Admission to
change or reset scheduling parameters.

For the above reasons, we target first class scheduling con-
texts to facilitate trustworthy scheduler hierarchies for flat-
tened mixed-criticality VM scheduling.

5. CONCLUSIONS
In this paper we have discussed trust and security concerns

in the design of a scheduling interface for mixed-criticality
virtual machines in embedded real-time systems. By sepa-
rating first class scheduling contexts from the actually ex-
ecuting entities (threads and vCPUs), user-level schedulers
maintain control over all scheduling related concerns with-
out having to manage the execution resources they schedule.

Fiasco.OC and L4Re are available from
http://os.inf.tu-dresden.de/L4Re/.

6. REFERENCES
[1] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li,

A. Marchetti-Spaccamela, N. Megow, and L. Stougie.
Scheduling real-time mixed-criticality jobs. In
Mathematical Foundations of Computer Science 2010,
volume 6281 of LNCS, pages 90–101. Springer Berlin /
Heidelberg, 2010.

[2] S. Baruah, H. Li, and L. Stougie. Towards the design of
certifiable mixed-criticality systems. Real-Time and
Embedded Technology and Applications Symposium,
IEEE, 0:13–22, 2010.

[3] A. Lackorzynski, A. Warg, and M. Peter. Generic
Virtualization with Virtual Processors. In Proceedings
of Twelfth Real-Time Linux Workshop, Nairobi, Kenya,
October 2010.



[4] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig.
Flattening Hierarchical Scheduling. In Proceedings of
the tenth ACM international conference on Embedded
software, EMSOFT ’12, pages 93–102, Tampere,
Finland, 2012.

[5] U. Steinberg, J. Wolter, and H. Härtig. Fast
Component Interaction for Real-Time Systems. In
Proceedings of the 17th Euromicro Conference on
Real-Time Systems (ECRTS’05), Palma de Mallorca,
Balearic Islands, Spain, July 2005. IEEE.

[6] C. A. Waldspurger and W. E. Weihl. Lottery
scheduling: Flexible proportional-share resource
management. In First USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 1–11, Monterey, CA, USA, November 1994.

[7] S. Xi, J. Wilson, C. Lu, and C. Gill. RT-Xen: Towards
Real-time Hierarchical Scheduling in Xen. In
Proceedings of the 11th International Conference on
Embedded Software, EMSOFT, Oct. 2011.


