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ABSTRACT
This paper extends previous work on hierarchical schedul-
ing to multi-core systems. We have implemented partitioned
multi-core scheduling of servers in the Linux kernel, using
the scheduling framework ExSched. Neither ExSched nor
the presented scheduler require any modifications to the
Linux kernel. Hence, this makes the installation and kernel-
version updates easier. We also present a user-space sim-
ulator which can be used when developing new multi-core
hierarchical schedulers (plug-ins) for ExSched.
We evaluate the overhead of our new multi-core hierar-

chical scheduler and compare it to a single-core hierarchical
scheduler. Our results can be useful for developers that want
to minimize the scheduler overhead when using partitioned
hierarchical multi-core scheduling.

Keywords
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chical scheduling, implementation

1. INTRODUCTION
Introduction Hierarchical scheduling is a general term

for composing applications as well defined components, pos-
sibly in a hierarchical manner with one or more levels. Soft-
ware which is structured in such a way is more robust than
flat system since defects will only affect a delimited part
of the system. The isolation that comes with hierarchical
scheduling will also make software reuse more simple. This
powerful mechanism has been adopted by the avionics in-
dustry in form of the ARINC653 [3] software specification.
ARINC653 isolates applications in terms of both the CPU
and the memory. Hence, hierarchical scheduling can be used
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in safety-critical systems to make them more safe. However,
hierarchical scheduling can also be used in soft real-time sys-
tems as well. For example, it can be used to guarantee CPU-
cycle reservations for time-sensitive software such as video
or music applications on smartphones and tablets [10].

The advent of multi-core processors will guarantee a steady
improvement of the CPU performance over time. How-
ever, multi-core processors also make application develop-
ment more difficult if the goal is to make use of all the ex-
tra CPU performance that multi-core brings. For example,
shared resources [13] and cache memory [2] are two chal-
lenges that the real-time community are faced with. How-
ever, adapting to multi-core is the only option if the objec-
tive is to maximize the CPU performance of todays proces-
sors.

Problem statement Streaming and decoding are com-
mon CPU-intensive tasks in Linux-based systems such as
Android devices, and they affect the user perception of per-
formance to a high degree. Hierarchical scheduling is useful
for controlling CPU reservations for these kind of applica-
tions and hence helps in improving the user experience. An-
droid devices are usually equipped with multi-core proces-
sors which demand adaptions to hierarchical scheduling.

The solution must be as non-intrusive as possible since our
target product constantly needs software updates. Avoiding
kernel modifications simplifies porting efforts when switch-
ing kernels.

Performance overhead of the solution must of course be as
small as possible since embedded systems such as Android
devices have very limited resources.

Contribution In this paper we present an adaptation of
the hierarchical scheduling technique in Linux to multi-core
processors. The work is based on the scheduler framework
ExSched [5]. We present a new Fixed-Priority Preemptive
Scheduling (FPPS) scheduler plug-in called partitioned-

hsf-fp which is the 6th scheduler plug-in available for ExSched.
It comes with a simulator that can simulate hierarchical
multi-core scheduling. partitioned-hsf-fp can be executed
in both the Linux kernel as well as in our new simulation
tool. We also present an experimental evaluation of the
partitioned-hsf-fp scheduler.

Outline The outline of this paper is as follows: In Sec-
tion 2 we present the preliminaries and Section 3 lists the
related work in this area of research. Further, Section 4
describes the scheduler implementation and the simulation
tool. In Section 5 we evaluate the overhead of our new sched-



uler. Finally, Section 6 concludes our work.

2. PRELIMINARIES

2.1 Hierarchical scheduling
The Hierarchical Scheduling Framework (HSF) is illus-

trated in Figure 1. Observe that there are two types of
schedulers; one global and one or several local schedulers.
The global scheduler is in charge of scheduling servers and
the local scheduler handles the scheduling of tasks. The
scheduling algorithm at any level can be arbitrary. How-
ever, in this paper we assume FPPS at the global level.
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Figure 1: Hierarchical scheduling framework.

The server interface defines the amount of CPU that will
be reserved for the particular server. It is usually a time
window (referred to as budget) that re-occurs at a specific
interval of time called period, i.e., similar to the the periodic
task model [11]. Figure 2 illustrates 3 running servers (A,
B and C) which are scheduled using FPPS (without local
schedulers). The servers are re-started periodically (illus-
trated with the arrows). The budget is illustrated with a
dotted line that surrounds the task. Server A has the high-
est priority, B has the middle priority and C has the lowest
priority. The order of the execution of the servers is affected
by the priorities. Each server could potentially host more
than one task each.
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Figure 2: Example trace of a hierarchically sched-
uled system.

2.2 Multi-core scheduling
Multi-core scheduling can essentially be divided into two

categories: global scheduling and partitioned scheduling.

Global scheduling implies that a scheduling object (task,
server etc.) can be scheduled on any CPU core at any time.
The term migration is used when a scheduling object moves
from one CPU core to another during its execution.

Partitioned scheduling defines that every scheduling ob-
ject is allocated to one specific CPU core and never exe-
cutes on any other core. This type of scheduling resembles
uni-core scheduling the most since it can be seen as multi-
ple instances of uni-core scheduling. It is easier to imple-
ment partitioned scheduling (compared to any other multi-
core scheduling technique) but it is also inferior in perfor-
mance compared to the other multi-core scheduling tech-
niques. Partitioned scheduling cannot utilize all the CPU
cores as effective as for example global scheduling [5, 6]. Our
extension to hierarchical scheduling uses partitioned multi-
core scheduling.

2.3 ExSched
The ExSched [5] framework is based on a user-space li-

brary and a kernel module as illustrated in Figure 3. The
framework does not require any modifications to the ker-
nel. The porting effort to new kernels is (usually) at most a
couple of small source-code modifications in ExSched.
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Figure 3: The ExSched framework.

User space applications (tasks) can be scheduled by the
scheduler plug-ins that are available in ExSched. Scheduler
plug-ins use basic scheduler primitives exported from the
ExSched kernel module (such as timers etc.). The ExSched
kernel module uses native Linux kernel primitives and ex-
ports a simplified interface to scheduler plug-in developers.
The ExSched module implements FPPS and Earliest Dead-
line First (EDF) as base (task) scheduler policies. Plug-ins
can extend these base scheduling policies with new policies
(for example hierarchical or multi-core scheduling) or simply
disable them if they are not useful. ExSched is available for
both Linux and VxWorks and it has 3 multi-core scheduler
plug-ins and 2 hierarchical scheduler plug-ins available (and
the new partitioned-hsf-fp scheduler plug-in presented in
this paper).

Figure 4 illustrates the flow of function calls when ExSched
suspends and releases a task. A task can suspend itself by
calling the ExSched API function rt_wait_for_period()

which executes in the ExSched kernel module via ioctl. Any
active scheduler plug-in will get notified by such an event
through the callback function job_complete_plugin(). The
ExSched module then calls the Linux function mod_timer()

to setup an interrupt that will call an ExSched interrupt han-
dler called job_release() (the time until the interrupt oc-
curs will be equal to the tasks period). After that, ExSched
calls the Linux primitive schedule() which will schedule



another task (if any active task exists). The ExSched in-
terrupt handler job_release() will notify any scheduler
plug-in that a task has been released via the callback func-
tion job_release_plugin(). Finally, ExSched will call the
Linux function wake_up_process() in order to activate the
task. The Linux scheduler will decide if a context switch
should occur or not. This depends on the status of the
Linux task ready-queue.
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Linux Kernel
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job_complete_plugin() schedule()

mod_timer()

switch_to()

timer->func()
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Figure 4: The flow of function calls in ExSched.

3. RELATED WORK
To the best of our knowledge there exists only two papers

that present hierarchical scheduler implementations with multi-
core support ([7] and [8]). Our work differs in that we use
fixed priorities and our solution does not modify the Linux
kernel.
Checconi et al. [7] presented a scheduler (which modi-

fied the Linux kernel) that included Hard Constant Band-
width Servers (H-CBS). These servers are scheduled on each
core and do not migrate. However, the tasks inside a server
can migrate to another server that resides on another core.
Hence, a server has a fraction of each core at its disposal.
The SCHED DEADLINE scheduler project [8] is responsible
of the EDF scheduler implementation in Linux. The sched-
uler modifies the Linux kernel and supports the scheduling of
servers. SCHED DEADLINE has the highest priority among
the scheduling classes in Linux and it supports partitioned
multi-core scheduling (one runqueue per CPU).
LitmusRT [6] is an experimental platform which modifies

the Linux kernel (latest version is 3.0). LitmusRT provides
a simplified scheduling interface for multi-core scheduler de-
velopment.
Recently, Mollison et al. presented a multi-core scheduling

framework (without the support of hierarchical scheduling)
in Linux which only executes in user space [12].
The AQuoSA framework [14] is a hierarchical scheduler

based on CBS [1]. It also supports adaptive resource reserva-
tions. The framework modifies the Linux kernel and exports
scheduling hooks to the user.

4. IMPLEMENTATION
This section will give a short description of the partitioned-

hsf-fp scheduler implementation and our new simulation
tool. Both ExSched (together with partitioned-hsf-fp

and the other 5 plug-ins) and the simulator are available
for free as an open source project.

4.1 Partitioned multi-core hierarchical sched-
uler

Figure 5 shows the main functions of the uni-core HSF
scheduler. This scheduler has been extended for multi-core
platforms by implementing partitioned scheduling. This means
that servers (and all of its tasks) run on one specific core and
do not migrate to other cores. The ExSched kernel module
handles task scheduling inside servers.

1: void job release plugin(struct exsched task struct *rt) {
2: .
3: }
4: void job complete plugin(struct exsched task struct *rt) {
5: .
6:}
7: void job init plugin(struct exsched task struct *rt) {
8: .
9:}
10: void server release handler(unsigned long data) {
11: .
12:}
13: void server complete handler(unsigned long data) {
14: .
15:}

Figure 5: Skeleton code of the hsf-fp scheduler.

The job_init_plugin function (Figure 5) executes once
for every task before it starts to execute. The function reg-
isters a task to a specific server (which is chosen at line (3)
in Figure 6) and migrates the task to core number 0. We
extend this function by migrating the task to the same core
that its server is assigned to.

The job_release_plugin and job_complete_plugin func-
tions are callback functions that relate to the ExSched ker-
nel module. These functions are executed whenever a task
gets released (by the ExSched kernel module) or finishes
(by calling rt_wait_for_period at line (7) in Figure 6).
These two functions originally used one server ready-queue.
The job_complete_plugin used the ready-queue mainly for
error checking. The job_release_plugin used the server
ready-queue in order for it to prevent task releases whenever
they occured outside of its server budget (hence the task re-
lease would be postponed until its server started to execute).
However, both job_complete_plugin and job_release_plugin

has been modified since there are multiple server ready-
queues when partitioned scheduling is used.

1: main(timeval C, timeval T, timeval D, int prio, int nr jobs) {
2: .
3: rt set server(1);
4: rt run(0);
5: for (i = 0; i < nr jobs; i++) {
6: / ∗ User′s code. ∗ /
7: rt wait for period();
8: }
9: rt exit();
10:}

Figure 6: Example of a task using the ExSched API.

The server_release_handler and server_complete_handler

functions are interrupt handlers that are responsible for re-
leasing servers (and their tasks), depleting servers (and sus-
pending their tasks) and performing server context switches.
These two server handlers (lines (10) and (13) in Figure 5)



are duplicated to the same amount of CPU cores, i.e., if
the platform has two cores then partitioned-hsf-fp uses
two release and two complete handlers. This means that
server release and ready queues are also duplicated. Hence,
the amount of server related interrupts will increase as the
number of cores increase. However, it is possible to only use
two interrupt handlers (sharing one interrupt signal) but we
defer such an implementation for future work. The imple-
mentation of the two handlers would be more complex but
the overhead would most likely decrease since the interrupt
context-switch and handler overhead would decrease.
The ExSched kernel module does not need any extensions

since it already supports multi-core scheduling. However,
our hierarchical scheduler recorder [4] was modified in order
to support tasks running on different cores.

4.2 Multi-core scheduler simulator
Our simulator is useful when developing new hierarchical

multi-core scheduler plug-ins for ExSched. The simulator
executes as a Linux process and supports both uni-core and
multi-core since we map each interrupt signal to one process
signal, i.e., similar to how WindRiver (VxWorks) simulators
work. The current version of our simulator can simulate
server-scheduling related interrupts and hence it can also
record the execution of servers running in parallel. Such a
recording can later be viewed graphically using tools such
as Grasp [9] for example. Having the possibility to view
an execution trace makes scheduler debugging easier. The
partitioned-hsf-fp scheduler was developed rapidly using
the simulator. The simulator can be downloaded together
with the ExSched package.

5. EVALUATION
This section presents our experiments with the partitioned-

hsf-fp implementation. We will present the overhead mea-
surements of the partitioned-hsf-fp and the hsf-fp sched-
uler and compare them. We also elaborate on the factors
that affect the scheduling overhead in partitioned multi-
core scheduling. Further, we also provide execution traces of
tasks and servers scheduled by the partitioned-hsf-fp and
hsf-fp schedulers and we visualize them using the Grasp
tool [9].

5.1 Hardware and software setup
We conducted the experiments on an Intel Pentium Dual-

Core (E5300 2,6GHz) platform. The platform was equipped
with a Linux kernel (version 2.6.31.9) configured with load balancing
disabled (since we use partitioned multi-core scheduling).
We assume Rate Monotonic (RM) priority assignment in all
of the experiments.

5.2 Overhead measurements
In the first experiment we executed the partitioned-

hsf-fp and hsf-fp scheduler with 2-10 servers (one task
per server). The total server CPU utilization in all server
configurations was below 50% in order for it to be schedu-
lable with the hsf-fp scheduler (which had 100% CPU uti-
lization while partitioned-hsf-fp had 200%). We did an
equal allocation (50/50) of servers to core 0 and 1 in the
case of partitioned-hsf-fp. The server-to-CPU alloca-
tion strategy was random, i.e., we did not follow best-fit,
worse-fit etc. Figure 7 shows the measured overhead re-
sults. The overhead only includes the execution time of

the server interrupt-handlers (lines (10) and (13) in Fig-
ure 5) and the task callback functions (lines (1) and (4)
in Figure 5). Hence, we do not include the overhead of
the ExSched kernel module nor Linux-related system over-
heads such as interrupt context-switch overhead etc. Each
presented measurement value is the average of 10 sampled
measurement values. We ran the server systems for 500
jiffies (in our platform this corresponds to 2 seconds). We
can observe that the partitioned-hsf-fp scheduler gener-
ates more overhead than hsf-fp in most server configura-
tions (except for 3 and 5 servers). We would expect that
the overhead of partitioned-hsf-fp and hsf-fp should be
equal since we do not include interrupt context-switch over-
head in our measurements.

Figure 7: Average overhead measurements of the
partitioned-hsf-fp and hsf-fp schedulers.

The conclusion is that the overhead is not the same in all
server configurations, hence, the next question arises: how
come that the overhead differentiates between partitioned-

hsf-fp and hsf-fp? In order to answer this question we
ran a set of tests and the results are presented in Table 1.
The two most interesting tests included a server release and
preemption test. Each presented measurement value is the
average of 10 sampled measurement values.

We ran 10 servers for 4 seconds, configured with the same
period (Release test, Table 1). The partitioned-hsf-

fp scheduler had a simple 50/50 allocation strategy. The
results show a difference of 78 us. The reason is because two
separate interrupt handlers execute at every server release in
case of partitioned-hsf-fp. Using hsf-fp results in half as
many executions of the server interrupt handler. However,
the amount of executed instructions in the server interrupt
handler should almost be the same in both partitioned-

hsf-fp and hsf-fp. This is an extreme case but we want to
demonstrate that scheduling overhead can be reduced when
scheduling events coincide together in a single execution of
an interrupt handler.

In the second test (Preemption test, Table 1) we ran two
servers (for 4 seconds) with one task each. The servers had
a large difference in period and budget values in order to in-
crease the amount of server context-switches when scheduled
with hsf-fp. The difference in overhead was 169 us. This
extreme case also shows that the difference in the amount
of server context-switches affects the difference in overhead.
The execution trace of the two servers is shown in Figure 8
and 9. Figure 8 shows that server S1 gets preempted fre-
quently by server S0 (since server S0 has a higher priority



than server S1) while the 2 core setup (Figure 9) avoids this
since the two servers are allocated onto different cores. Task
S0 task was allocated to server S0 and task S1 task was
allocated to server S1. Each core had one idle task and one
idle server running in the background (they had the lowest
priority).

Experiment type partitioned-hsf-fp (us) hsf-fp (us)
Release test 839 761

Preemption test 1134 1303

Table 1: Overhead comparisons.

The conclusion is that the user has the possibility to min-
imize the scheduler overhead by selecting an optimal server
allocation when using partitioned hierarchical scheduling.
The two strategies that we can recommend is to coincide
scheduling events (server releases and depletions) and min-
imize server context-switches. The latter can be done by
categorizing the servers by periods and then group together
servers with equal or almost equal period values on each
core. It is most likely that these kind of events affect the
overhead differences the most between partitioned-hsf-fp

and hsf-fp scheduling as shown in Figure 7. The overhead
of hsf-fp is probably lower due to the coinciding scheduling
events. However, Figure 7 shows that partitioned-hsf-fp
has lower overhead in case of 3 and 5 servers. It is most
likely due to a lower amount of server context-switches, i.e.,
similar to the scenario presented in Figure 8 and 9.
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Figure 8: Execution trace of the hsf-fp scheduler.

We ran 16 servers (S0-S15, Table 2) in our last experiment
using the partitioned-hsf-fp scheduler and two different
CPU allocation strategies. Each server had one task each
and we ran the experiments for 4 seconds. A lower priority
value implies a higher priority. The motivation with this
experiment was to show how much the overhead differed
depending on how the servers were allocated to the CPUs.
The first allocation strategy (Categorized by period, Ta-
ble 3) partitioned servers S0-S7 on core 0 and the rest on
core 1. The second allocation method (Mixed, Table 3)
simply mixed servers S0, S2, S4, S6, S8, S10, S12 and S14
together and allocated them on core 0, and the rest (S1, S3,
S5, S7, S9, S11, S13 and S15) on core 1.
Table 3 shows that the Mixed allocation generated about

40% more overhead using the partitioned-hsf-fp sched-
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Figure 9: Execution trace of the partitioned-hsf-fp

scheduler.

Server Period (jiffies) Budget (jiffies) Priority
S0 6 1 0
S1 7 1 1
S2 8 1 2
S3 9 1 3
S4 10 1 4
S5 11 1 5
S6 14 1 6
S7 18 1 7
S8 125 15 8
S9 125 15 9
S10 125 15 10
S11 125 15 11
S12 125 15 12
S13 125 15 13
S14 125 15 14
S15 125 15 15

Table 2: Server parameters.

uler compared to the other strategy (Categorized by pe-
riod) which allocated the servers based on period values
(small period values on core 0 and large period values on
core 1). This example shows how much the overhead can
differ depending on how the servers are allocated onto the
CPU cores. Note also that we do not include Linux system
overhead (task context switches etc.) in our measurements.
Hence, the actual overhead might be significantly larger than
the presented results.

6. CONCLUSION
We have presented an implementation of a multi-core sched-

uler in Linux called partitioned-hsf-fp and a user-space
simulator which can be used for developing multi-core sched-
ulers. partitioned-hsf-fp is based on an already existing
hierarchical fixed-priority preemptive scheduler (hsf-fp) in
the scheduler framework ExSched. partitioned-hsf-fp is
a hierarchical scheduler which can run multiple servers in



Allocation type Overhead (us)
Categorized by period 1502

Mixed 2129

Table 3: Measured overhead using different CPU
allocation methods.

parallel using partitioned multi-core scheduling. The servers
and their corresponding tasks run on one core only and do
not migrate to other cores. We have shown with experiments
that the overhead of partitioned-hsf-fp is slightly higher
than hsf-fp. We have identified the main sources of over-
head (server releases and context-switches) through experi-
ments and presented recommendations on how to decrease
the overhead when using partitioned hierarchical multi-core
scheduling. We have also shown example execution traces
when running the partitioned-hsf-fp scheduler in a Linux
kernel. Our last experiment showed that the scheduler over-
head of partitioned-hsf-fp differed approximately 40%
when we used different CPU-core allocation methods for
servers.
The overhead of partitioned-hsf-fp is similar to the

single core version (with the assumption that the interrupt
context-switches do not affect the multi-core version signifi-
cantly). We believe that allocation strategies could decrease
the scheduler overhead. However, core allocation is also af-
fected by other factors like shared resources between tasks.
Hence, there are many different factors to consider when al-
locating tasks and servers to cores. Another way to decrease
the overhead is to implement partitioned-hsf-fp with one
interrupt signal instead of using one per core. We defer such
implementation to future work. We will also look into using
global, clustered and semi-partitioned scheduling combined
with hierarchical scheduling.
ExSched and the partitioned-hsf-fp scheduler has a

high potential when it comes to resource reservation prob-
lems when running for example media applications in An-
droid systems (smartphones and tablets). The user experi-
ence of media streaming could be improved by using partitioned-
hsf-fp. Especially since todays media devices are equipped
with more than one core. The advantage with using ExSched
is that there is no need to modify the Linux kernel in An-
droid systems. Hence, it is easy to keep up with the newest
kernel release without having to do tedious modifications to
the kernel every time it is updated. Keeping up with the
newest kernel release is important since new Linux kernel
versions are released several times per year.
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