
Spatial and Temporal Isolation of Virtual CAN Controllers

Christian Herber, Andre Richter, Holm Rauchfuss, Andreas Herkersdorf
Technische Universität München - Institute for Integrated Systems

Munich, Germany
{christian.herber, andre.richter, holm.rauchfuss, herkersdorf}@tum.de

ABSTRACT
Virtualization is a key technology to enable the use of multi-
core processors in automotive embedded systems. For side-
by-side execution of mixed-criticality applications that ac-
cess shared communication infrastructures, a secure and safe
virtualization of I/O devices is required, which features a
complete spatial and temporal isolation of individual virtual
interfaces. We extended existing approaches of hardware-
based CAN virtualization to achieve a full isolation while
maintaining the bounded latencies achieved in previous im-
plementations. It is shown, that even a denial-of-service at-
tack towards one virtual controller does not influence the be-
havior of other virtual controllers. In addition, the schedul-
ing mechanism implemented to guarantee temporal isolation
can be configured to provide differentiated service levels for
real-time and best effort application domains.

1. INTRODUCTION
The automotive IT landscape is a heterogeneous and his-

torically grown network of electronic control units (ECUs)
that are connected via a variety of fieldbuses. Common prac-
tice has been the introduction of an additional ECU for every
new electronic function, leading to more than 100 ECUs in
premium cars. Additionally, new functions like pedestrian
detection, traffic sign recognition or parking assist systems
are increasingly complex and require more computing power.
ECUs are grouped in functional domains like body, pow-

ertrain, chassis and infotainment. The nodes within these
domains are connected through fieldbuses like Controller
Area Network (CAN), FlexRay and Media Oriented Systems
Transport (MOST). The most used bus is CAN, which con-
nects nodes within the body, powertrain and infotainment
domain. It is a message based broadcast bus that uses bit-
wise arbitration as access scheme and reaches a bandwidth
of up to 1 Mbit/s.
Automotive OEMs are planning to redesign this grown

architecture to a domain controlled architecture [15]. A do-
main controller is a centralized processing unit, which con-
solidates a variety of functions that have previously been
partitioned onto a number of distributed ECUs. Decentral-
ized ECUs remain in control of sensors and actuators. A
centralization of functions increases the demand for com-
puting power in single devices.

VtRES’13 Taipei, Taiwan
Copyright is held by the authors.

The introduction of multi-core processors is a promising
trend in automotive electronics that could satisfy the com-
puting needs of future automotive embedded systems [10],
while also providing improved energy efficiency. In addition,
the intrinsic parallelism of multi-core processors can enable
the consolidation of multiple electronic functions onto one
chip.

However, a parallel execution of functions on a multi-core
processor introduces safety and security risks. Specifically,
mixed-criticality scenarios that integrate functions with dif-
ferent trust levels and real-time requirements are of interest.
Virtualization is a validated approach to ensure the isola-
tion of such mixed-criticality applications. It can enable the
side-by-side execution of e.g. best effort and safety critical
real-time applications [6], [14] on a shared processor. Vir-
tualization provides abstract, isolated computing resources
in the form of virtual machines (VMs). In an automotive
head-unit, this could e.g. allow a safety critical real-time
AUTOSAR partition to be integrated side-by-side with a
multimedia partition and an android partition, which runs
untrusted third party applications.

Concurrent access by VMs towards shared I/O devices is
one of the major challenges in virtualization. Hardware and
software-based methods for I/O Virtualization (IOV) exist
for Ethernet. To be used in automotive embedded multi-core
systems, application specific needs have to be addressed. In
contrast to traditional virtualized systems, which mostly re-
quire best effort communication over Ethernet, hard real-
time requirements have to be met in an automotive environ-
ment. While for few, trusted VMs fieldbus access could be
provided through multiple stand-alone controllers, a system
with an increasing number of cores requires an I/O virtual-
ization approach to be resource efficient and scalable.

In this paper, we introduce such an I/O virtualization ap-
proach for CAN controllers, which enables robust real-time
communication for multiple VMs through a shared hardware
device. The performance of each virtual instance is guaran-
teed by a strict spatial and temporal isolation, making sure
that no additional safety or security risks are introduced.

The remainder of this paper is structured as follows: Sec-
tion 2 presents related work regarding I/O virtualization.
Section 3 gives an overview of the architecture of the self-
virtualized CAN controller. Additional concepts to ensure
the spatial and temporal isolation of virtual CAN controllers
are discussed in Sections 4 and 5 respectively. Section 6 de-
scribes the simulation used and the results obtained, while
Section 7 concludes the paper.

2. RELATED WORK
In a virtualized environment, the virtual machine monitor

(VMM) provides computing resources to virtual machines
(VMs), which are abstracted and isolated instances of the
actual machine. Conflicts can arise when multiple VMs re-
quire access to a shared I/O device. Solutions for this prob-
lem of I/O virtualization (IOV) have been researched for
Ethernet, and are presented and discussed in the following.
State-of-the-Art with respect to software-based IOVmeth-

ods is the paravirtualization approach [11]. VMs communi-
cate through a front-end/back-end driver structure with the
VMM or a dedicated, trusted driver domain. The VMM
or driver domain owns the actual device driver and forwards
requests and data between the physical device and the VMs.
While software-based IOV solutions require no specialized

hardware, they suffer from several shortcomings. The for-
warding of requests and data done by the VMM can lead to
CPU overheads that increase the CPU utilization to 100%
and therefore limit the achievable bandwidth [8]. This over-
head is not only a function of the served bandwidth, but
also increasing with smaller request sizes. For small re-
quests of 1 kB, the achievable net I/O rate decreases to
1 Mbit/s [2][12]. Additionally, paravirtualization introduces
packet delays that can reach 100 ms [16].
These performance decreases can be overcome by offload-

ing the virtualization mechanisms into hardware close the
the actual I/O device [13]. Today, commercial of-the-shelf
solutions, which support Single Root I/O Virtualization (SR-
IOV), are available for Ethernet network interface controllers
(NICs). SR-IOV allows PCIe devices to communicate di-
rectly with a VM via DMA and therefore bypasses the VMM.
Using SR-IOV, 98.24 % of line rate performance could be
achieved for a 10 Gbit/s NIC shared by 60 VMs [4].
Little research has been conducted regarding the virtual-

ization of automotive I/O devices like CAN controllers. A
software-based approach for CAN controller virtualization
for integrated modular electronics has been presented in [7].
However, the paper does not present CPU overheads and
measures message latencies only on an idle system. In [5],
a hardware-based solution is presented that offloads vir-
tualization tasks like a message based arbitration between
virtual CAN controllers and VM based acceptance filter-
ing for received frames into an existing CAN controller. It
was shown that the additional latency suffered from sharing
modules in the virtualized controller is within the order of
10 µs.
While CAN has a comparably small maximum bandwidth

(1 Mbit/s), the small frame sizes (min. 47 bit) can lead to
frame rates of more than 20,000 frames per second. Results
obtained for Ethernet suggest that a paravirtualization at
such request rates will introduce CPU overheads and ad-
ditional latencies, which would not allow real-time capable
communication.
We introduce mechanisms for spatial and temporal isola-

tion of self-virtualized CAN controllers. In Ethernet NICs, it
is sufficient to guarantee bandwidth shares for virtual NICs.
For a real-time capable I/O controller, the performance of
virtual controllers must be isolated from each other to ensure
that no additional security issues are introduced compared
to setups with distinct physical CAN controllers.

VMM VM0 VM1 VM2 VM3

Multi-core Processor

VF0 VF1 VF2 VF3PF

Host-Controller Interface

Protocol Layer

Peripheral Interconnect

Arbitration Filtering

Buffer Control Read-out Protection

Tx Memory Rx Memory
Mgmt

V
ir

tu
a

liz
e

d
 C

A
N

 C
o

n
tr

o
lle

r

CAN Bus

Figure 1: Architectural overview of a multi-core pro-
cessor connected to the virtualized CAN controller.
VMs can acces the CAN bus through virtual func-
tions (VFs) that are managed by the VMM through
the physical function (PF).

3. CONCEPT FOR A SELF-VIRTUALIZED
CAN CONTROLLER

In this Section, we present an overview of the self-virtualized
CAN controller, which is based on [5]. In the subsequent
Sections 4 and 5, architectural aspects are introduced re-
garding the contributions for spatial and temporal isolation
among virtual instances of the controller.

The architecture and concepts presented here are not lim-
ited to a certain processor type or interconnect. However,
it is assumed that the processor supports virtualization and
that (virtual) I/O devices can be directly assigned to a VM.

The goal of our work is to provide real-time capable CAN
bus access for a number of VMs, enabled by a resource effi-
cient and well scaling architecture. Therefore the controller
should provide a number of virtual functions (VFs) or vir-
tual controllers, which allow data path operations (Tx/Rx)
to be executed through abstract interfaces. While VFs can
provide status information like counters to the VMs, it is not
possible for VMs to manipulate memory contents or settings
directly.

Therefore a privileged interface is necessary, which we call
physical function (PF). The PF configures the VFs (e.g. by
assigning an amount of message memory to a VF) and the
protocol specific settings like the CAN bus frequency. The
PF driver will be operated by the VMM or a privileged VM
as depicted in Fig. 1.

A key aspect in the virtualization of CAN controllers is
how the access towards the CAN bus is divided among the
virtual controllers. Normally, physical controllers compete
on the CAN bus in a bitwise arbitration scheme, which is
based on the message ID of the frame (with the lowest ID
having the highest priority). Emulating this behavior in the
arbitration module creates a setup, in which virtual con-
trollers compete with other CAN nodes on the CAN bus.

This is realized by providing priority queues within the
Tx memory for each virtual controller, which are freely al-

ID based filter

received payload (Bytes 0-7)

active IE read-out pending

Figure 2: Rx message object memory layout: Mes-
sage objects used for reception are composed of an
ID based acceptance filter, several flags belonging to
respective virtual controllers and the payload of the
message received last.

located in a RAM module. During an interframe spacing
on the CAN bus, the arbiter module finds the highest pri-
ority message and forwards it to the CAN bus. Using other
data structures like FIFOs would results in priority inver-
sions, causing increases in worst-case latencies that make
real-time operation impossible.
Received messages (Rx) are sorted towards virtual con-

trollers based on a predefined set of filters. Each message
will be stored only once, even if accepted by multiple virtual
controllers. The read-out of messages can be done based on
interrupts or by polling.

4. SPATIAL ISOLATION
Spatial isolation is important in the context of virtual-

ization to ensure that VMs only have access to hardware
resources (e.g. registers and RAM), which were assigned to
them. If this isolation is missing or incomplete, VMs might
be able to manipulate or read data belonging to other VMs.
We assume that the virtual controllers have a unique ad-

dress space at system-level, which is ensured by a mem-
ory protection unit (MPU) or memory management unit
(MMU). This allows unique association of requests with
VMs or virtual controllers within the virtualized controller.
Remaining challenges will be discussed for the Tx and Rx
memory respectively.
Within the Tx memory, two kinds of data are stored: 1.

The values of the registers (called context in the sequel)
within the buffer control state machines for each virtual con-
troller and 2. the buffered frames. When serving a request
for a certain virtual controller, its context will be loaded first
if necessary. Because virtual controllers do not have direct
RAM access, the context of other virtual instances cannot
be seen.
The distribution of Tx memory resources is crucial with

respect to the real-time capability of a virtual controller.
While from a memory utilization perspective, it would be de-
sirable to share the memory among all virtual controllers dy-
namically, a minimum amount of memory is necessary to en-
sure real-time capability. If not all messages that are ready
for transmission in a worst-case scenario can be buffered,
priority inversions might arise. Therefore, the PF will setup
virtual controllers with a fixed amount of memory allocated.
For best effort controllers, it is sufficient to provide memory
for a single frame.
The challenge in the Rx memory is to provide a resource

efficient, but secure way of sharing message objects among
multiple virtual controllers. The Rx memory consists of a
list of message objects, which contain a unique ID based
filter (see Fig. 2). Stored alongside are a number of flags
for each virtual controller, which indicate whether the asso-
ciated message can be accessed by a certain VM (’active’),

physical filters virtual filters

v=0 v=1 v=2 v=3

0

1

2

N

Figure 3: Virtual filters as seen by the respective
VMs. Colored virtual filters can be accessed by the
associated VM.

whether interrupts are enabled (IE) and whether a new mes-
sage has arrived since the last read-out (’read-out pending’).
Based on this list of filters, the filtering module accepts and
stores received messages.

This scheme improves the systems scalability, because only
one consolidated list has to be checked when receiving a
frame, and neither filters or data are redundant within the
local memory. The memory layout as shown in Fig. 2 limits
the number of virtual controllers to 9, but can be extended
by e.g. using an additional RAM line to support 32 virtual
controllers.

By making use of the ’active’ flag the read-out protection
module can provide a separation between virtual controllers.
No look-up tables are required to decide if a read operation
is allowed, which further improves resource efficiency and
scalability. The memory map seen within a VM contains
all possible Rx message objects, but reads towards messages
not configured for their virtual controller will fail. With
the configuration shown in Fig. 3, messages accepted e.g.
by filter 1 can only be read-out through virtual controller
v = 2.

5. TEMPORAL ISOLATION
The virtual CAN controllers share common hardware mod-

ules to enable a resource efficient architecture. This concept
introduces safety and security issues, because it could en-
able a corrupted VM to influence the temporal behavior of
virtual CAN controllers attached to other VMs.

In this section, we present mechanisms intended to resolve
temporal conflicts between different VMs trying to access
their respective virtual CAN controller at the same time.
It is assumed that a fair temporal distribution of resources
is present in other involved components like the peripheral
interconnect.

5.1 Motivation
Denial-of-service (DoS) attacks are a prime example for

attacks capable of exploiting such vulnerabilities. In a DoS
scenario, a VM would be sending requests to its own vir-
tual CAN controller at a rate much higher than intended,
thus potentially decreasing the performance of other virtual
controllers, and eventually making real-time communication
impossible.

The security and safety measures introduced here aim at
resolving such issues, which are introduced due to I/O virtu-
alization. Threats present in a setup with multiple physical,
directly assigned I/O devices are not within the scope of this
paper. This means that attacks aimed at other hardware en-
tities like the CAN bus will not be prevented.

In this context, it is important to note that the source
of an unexpected behavior cannot be determined within the
virtualized CAN controller. A functional failure and a secu-

0 1 2 3

v

Requests to virtual controllers t

Requests from VMs

Scheduling
0

3

1

2

0 01 2 3 1 2
ScheduleF

IF
O

 B
u

ff
e

rs

Figure 4: Scheduling of virtual interfaces: Requests
from VMs are buffered within the host-controller
interface and issued to the respective virtual con-
trollers based on a scheduling algorithm.

rity attack can show the same symptoms when arriving at
the CAN controller. Therefore, both cases can be treated
using the same mechanisms.

5.2 Virtual I/O Interface Scheduling
All services realized within each virtual CAN controller

are provided to their respective VM via a virtual interface
implemented in the host-controller interface. While these
interfaces appear to be independent, they use common hard-
ware resources like FSMs so that only one interface can be
active at a time. Here, we introduce mechanisms to achieve
a temporal separation of the interface access. They enable
highly predictable access to virtual interfaces while minimiz-
ing additional latencies in a CAN specific worst-case sce-
nario.
Requests from the VMs may arrive at the host-controller

interface at peak rates that cannot be served immediately.
Therefore requests have to buffered in FIFOs. To enable a
separation of virtual interfaces, a distinct buffer is provided
for each virtual controller v. A scheduling algorithm has to
ensure that all buffers are served as shown in Fig. 4.
To select a scheduling mechanism, we determine a number

of criteria that should be used to evaluate its feasibility. Ide-
ally, a scheduling mechanism for virtual interfaces satisfies
the following properties:

1. Predictable: The scheduling mechanism is assumed to
be deterministic. Its behavior should be easy to predict
to allow a real-time analysis to be developed.

2. Interface utilization: The resources of the virtualized
controller should be idle for as little time as possible
and context switches should be minimized.

3. HW Overhead: A feasible solution should be achieved
in a resource efficient way.

4. Added latencies: The scheduling algorithm should add
minimal latencies to the response time of CAN mes-
sages during a worst-case scenario.

5.3 Exploration of Scheduling Mechanisms
Round-robin (RR) scheduling intrinsically satisfies many

of the requirements stated above. Its simplicity allows it to
be easily predictable and implemented at low hardware cost.
A number of RR variations are used by the PCIe standards
for virtual channel and port arbitration [1]. To optimize the
scheduling mechanism for the virtualized CAN controller the
following variations of RR scheduling will be considered:

• Simple RR: Requests are issued in turns from different
buffers. This scheme is repeated in a cyclic manner. If
a buffer holds no requests, it is skipped.

• Weighted RR (WRR): During one cycle each buffer is
capable of issuing a configurable amount of requests.
It allows accounting for the different communication
needs of different VMs.

• Time-based RR (TBRR): Time slots of configurable
length are assigned to each virtual interface. The in-
terfaces are iterated cyclic. If no request is available
during a time slot, the interface still does not lose its
slot.

• Weighted time-based RR (WTBRR): The length of
the time slot is configurable for each interface. The
scheduling depicted in Fig. 4 represents a WTBRR
scheme.

Weighted variations are useful when applications have di-
verse communication needs. Fitting the weights to the ac-
tual bandwidth requirements in a WRR scheme allows to
increase the utilization of the interfaces, because it enables
the virtualized CAN controller to conclude a couple of re-
quests from the same VM in succession without the need of
a context switch.

For a time-based version, using different weights is ben-
eficial, because interface bandwidth reserved for one VM
cannot be used by another one, even if it is not in use. Re-
ducing the time windows of interfaces with low utilization
can increase the actual utilization in a burst scenario and
decrease the time that other interfaces have to wait to issue
their requests.

The downside of adding a weight to RR scheduling is an
increased complexity regarding the HW implementation, as
an additional configurability of the weights by the PF is
needed. Otherwise, weighted RR versions are assumed to
be superior or equal in all other cases, because they can be
configured to show the same behavior as their non-weighted
counterparts.

Time-based versions have the advantage of being highly
predictable. At any time, it can be determined when the
next turn for a specific virtual controller starts or ends. This
is true independent of its own behavior and the behavior of
other VMs. It therefore leads to a strong isolation, through
which timing properties hold true even e.g. under DoS at-
tacks.

When not using time-based schemes, the scheduling is
harder to predict, because the actual utilization of the vir-
tual interfaces influences the time windows in which requests
are served by a specific virtual CAN controller. Because of
the inferior predictability of these schemes, it is more diffi-
cult to determine the added latencies suffered here.

We determine a WTBRR scheduling scheme to deliver the
best trade-off with regards to the criteria introduced above.
Its high predictability allows for good isolation. The option
to configure time window lengths increases the complexity,
but also enables the scheme to be fitted to the actual appli-
cation requirements in order to optimize the added latency
and interface utilization. An appropriate window size for
individual virtual controllers has to be determined by mini-
mizing the added latencies in a worst-case scenario.

5.4 Added Latencies for Weighted
Time-based Round-Robin

Because the physical interface to the virtualized CAN con-
troller is shared by multiple virtual controllers and the re-
quests take a finite time to conclude, an added latency is
experienced compared to the case, where a physical inter-
face is exclusively reserved for one application.
In [3], an analytic real-time analysis for ideal CAN nodes is

presented. In the worst-case scenario for a certain message,
it is assumed that all higher priority messages are ready for
transmission at the same time and a lower priority message
has just started transmitting.
This analysis was extended in [5] to be applied to non-

ideal, virtualized CAN controllers. The worst-case scenario
was modified, because here, low priority messages can also
contribute to an additional blocking of high priority mes-
sages. The additional blocking introduced due to virtualiza-
tion is assumed to be

Bvirt,m =

V −1∑
v=0

Mlp(m),v−1∑
k=0

tinsrt(k), (1)

where V is the number of virtual controllers, Mlp(m),v is
the number of lower priority messages in virtual controller v
and tinsrt(k) is the worst-case time it takes to insert a mes-
sage into a queue that already contains k messages. Here,
it is implicitly assumed that a context switch happens after
each insertion and the time for it is included in the insertion
time.
Because context switches can be reduced by choosing a

feasible configuration, these times will be considered explic-
itly in the following analysis. The insertion time remains
tinsrt(k) and the time for a context switch tswitch is intro-
duced. Based on the actual architecture, these times can be
determined as

tinsrt(k) = (4 + k) · Tclk (2)

tswitch(k) = 2 · Tclk (3)

To minimize unnecessary context switches, each VM should
have a window long enough to conclude all requests during
a worst-case scenario. It is assumed that all messages from
all VMs are to be inserted nearly at the same time. In
this case, the minimal number of context switches can be
achieved, when all requests from VM can be served during
a single time window in close succession. This leads to V
context switches during a worst-case scenario. The window
size of virtual controller v containing Mv messages would be
configured as

twindow,v = tswitch +

Mv−1∑
k=0

tinsrt(k). (4)

On the other hand, such relatively long windows increase
the time interval during which requests from other VMs can-
not be served. However, in a worst-case scenario for a mes-
sage m, this message is assumed to be inserted last into its
respective virtual controller and that the corresponding time
window has just passed. In this scenario, shorter time win-
dows do not reduce the latency experienced in a worst-case
scenario.

v=0 v=1 v=2 v=3

twindow, v=0

tswitch tinsrt(5)
m: message

 at stake
lp(m)

Figure 5: Added latencies experienced by message
m in virtual controller v=3: It is comprised of block-
ing by time windows assigned to other virtual con-
trollers and lower priority messages issued to the
same virtual controller.

We therefore propose a configuration of time windows that
uses a window length as indicated in (4). Under these cir-
cumstances, the additional blocking for message m in virtual
controller v is

Bvirt,m =
∑

w∈V\v

twindow,v + tswitch +

Mlp(m),v−1∑
k=0

tinsrt(k)

(5)
where V = {v : v ∈ N; 0 ≤ v < V } describes the set of

virtual controllers. This equation consists of the window
lengths of the other virtual controllers, a context switch time
and the blocking, that is contributed from lower priority
messages within the own virtual controller. Higher priority
messages do not contribute to an additional blocking, be-
cause they will overtake the message independent of where
they are inserted.

Assuming that the window sizes are determined at design-
time based on (4), then (5) does not depend on the traffic
pattern actually issued to other virtual controllers. This
implies that a DoS attack would not influence the blocking
experienced at the interface of a virtual controller. In this
case, a temporal isolation of virtual controllers is guaranteed.

The components adding up to the overall blocking intro-
duced by virtualization are visualized in Fig. 5. The results
can serve as input to a complete real-time analysis as shown
in [5]. When (1) is replaced with (5), the existing analysis
is still applicable.

In contrast to [5], no information is needed about lower
priority messages outside of the virtual controller v at stake
(isolated temporal behavior). Higher priority messages from
other (virtual) CAN nodes influence the worst-case response
time of messagem, because they win arbitration on the CAN
bus, but not because of effects introduced due to virtualiza-
tion.

The configuration of scheduling windows presented above
is intended to minimize the worst-case latencies experienced
by messages with hard real-time requirements. However,
increasing a window for one virtual controller causes other
virtual controllers to experience a decreased performance at
their respective interface.

In mixed-criticality scenarios, different applications ac-
cessing a common communication infrastructure might have
different requirements regarding quality of service (QoS).
Therefore, a configuration of temporal resources that allows
real-time capability might not be needed for every virtual
controller. For best effort interfaces, it is sufficient to pro-
vide small time windows capable of serving the longest pos-
sible request. This guarantees minimal temporal effect on
the additional latencies experienced by real-time interfaces.

10 20 50 100
0

20

40

60

Cycle Time T (ms)

N
u
m

b
e
r

o
f

M
e

s
s
a

g
e
s v=0

v=1

v=2

v=3

Figure 6: Distribution of messages with respect to
their cycle time and their partitioning into a virtual
CAN controller v

6. EXPERIMENTS AND RESULTS
To verify the results presented in the previous sections,

we simulated a virtualized CAN controller under a DoS at-
tack. First, the approach, scenario and measurements used
are introduced. The results of this simulation are presented
afterwards.

6.1 Simulation
We implemented a virtualized CAN controller as presented

in the previous Sections in Verilog. It is embedded in a Mod-
elSim SystemC/Verilog co-simulation, which is used to gen-
erate requests like message insertions towards the virtualized
controller. The controller features full spatial, and temporal
isolation throughWTBRR scheduling as an optional feature.
An operating frequency of 100 Mhz is assumed.
We further assume a bandwidth of 500 kbit/s on the CAN

bus, which is the fastest version that is currently employed
in cars. We generated a traffic pattern based on a typical
cycle time distribution in a modern premium car [9]. Under
the assumption of a bus utilization of 90% and a constant
payload size of 8 bytes, 127 messages are generated as shown
in Fig. 6. It is assumed that messages with lower cycle times
have higher priority and that their deadlines are equal to
their cycle time.
In our test case, these messages are sent by four differ-

ent VMs, each assigned to a virtual controller within the
same virtualized CAN controller, which corresponds to the
architecture shown in Fig. 1. The messages are distributed
amongst the VMs in equal shares. The priority of mes-
sages is increasing from VM0 to VM3. The messages send
through virtual controller 3 therefore are the most critical
with respect to real-time capability, because they have the
shortest cycle times and deadlines. The window sizes asso-
ciated with the WTBRR scheme are chosen as described in
(4) and therefore guarantee real-time capability. The win-
dow size for each virtual controller is around 6 µs, which
makes the additional blocking due to virtualization around
20 µs according to (5). This time is equivalent to the trans-
mission time of 10 bit on the CAN bus and three orders of
magnitude lower than the deadlines in our scenario.
In order to investigate the effect of the architecture and

different scenarios on the timely transmission of messages,
the maximum response time Rm of each message m will be
measured. It is defined as the time from the initiation of the
request until the successful transmission of the message on
the CAN bus [3].
In a real-time environment, the worst-case delay is the

most important figure. The simulation tries to match this
case as closely as possible. All messages are assumed to
be scheduled at the beginning of the simulation, with VMs
first requesting the transmission of their low priority mes-
sages and the requests from VMs with low priority messages
arriving first.

Additionally, the simulation allows to spam arbitrary re-
quests (e.g. write towards a register) from VM0 to its re-
spective virtual controller. In our model, these requests can
be completed within four clock cycles. This scenario cor-
responds to a DoS attack and can be modified by a factor
aDoS . For every message issued by VM0, aDoS requests will
be issued additionally. These requests are issued just before
the message insertions.

6.2 Results
The results are shown in Fig. 7, which illustrates, how

the maximum response time of messages changes when the
virtualized CAN controller is subject to a DoS attack.

When no temporal isolation is implemented, requests are
forwarded within the host-controller interface with a first-
come-first-served (FCFS) policy. This means that the re-
quests issued by the DoS attack block the insertion requests.
Fig. 7a shows that in this case, a general increase in response
time for all messages can be witnessed, which is proportional
to the amount of requests issued by VM0.

Despite being forwarded using a FCFS scheme, high pri-
ority messages still overtake lower priority messages inside
the message buffers of the virtual CAN controllers, result-
ing in an increase in response time with decreasing message
priority.

We observe that the response times are increasing with
respect to aDoS . While this increase might be acceptable
for aDoS = 100, the deadlines of all high priority messages
with cycle times of 10 ms are violated for aDoS = 10000.
Real-time applications in VM3 would fail to fulfill their task
due to the corruption of VM0.

The increase in transmission time is grounded in the addi-
tional blocking suffered at the host-controller interface. At
the beginning of the simulation, the requests issued by the
DoS attack have to be served first. Afterwards, messages
from all VMs are being inserted and will be transmitted on
the bus. Because the whole transmission process is delayed,
lower priority messages can suffer additional blocking due
to second or further instances of high priority messages that
get reissued. Therefore, medium and low priority messages
can experience a higher increase in response time than high
priority messages.

The effect of temporal isolation in such a scenario is demon-
strated in Fig. 7b. Here, requests towards the virtualized
CAN controllers are stored in V queues. These queues are
then scheduled in in a WTBRR scheme.

Generally, no increase in response time can be seen for
messages outside of VM0. We therefore conclude that a
complete isolation of virtual controllers has been achieved
and applications in trusted VMs are guaranteed to experi-
ence a consistent level of QoS.

On the other hand, the response time of messages issued
by VM0 only increases when the blocking caused by the DoS
attack is within the order of their response time. Otherwise,
the insertion is delayed, but no change can be seen on the
bus, because these messages would have to wait for trans-
mission anyway.

(a) No temporal isolation (b) Temporal isolation through WTBRR

Figure 7: Simulation results obtained during a DoS attack towards virtual CAN controller v=0: The graphs
show the response time for all messages in the network, starting with the highest priority message.

7. CONCLUSION
In this paper, we presented concepts for a self-virtualized

CAN controller and extensions that guarantee a spatial and
temporal isolation of virtual controllers. Our contributions
allow virtual machines to access the CAN bus concurrently
through shared hardware resources without additional secu-
rity issues, while not suffering from the increased latencies
and CPU loads that come along with a paravirtualization.
Spatial isolation is ensured through context switching and

memory protection mechanisms. Registers and RAM can
only be accessed if they have been assigned to a specific vir-
tual controller. The temporal isolation is accomplished by
a weighted time-based round robin scheduling of requests.
The scheduling was optimized to introduce minimal block-
ing at the interface (∼20 µs, less than the transmission of
10 bit on the bus) during worst-case scenarios. Additionally,
this scheme decouples the temporal behavior of one virtual
controller from the actual requests issued towards other vir-
tual CAN controllers.
We demonstrated the robustness of the method by apply-

ing a denial-of-service attack scenario to a virtualized CAN
controller with and without temporal isolation. Here, one
VM is assumed to be corrupted and issues high amounts of
requests to its virtual CAN controller. It is shown that the
isolation mechanisms ensure that the virtual controllers at-
tached to non-corrupted VMs are not influenced, allowing a
secure execution of mixed-criticality applications that access
a common virtualized CAN controller.

Acknowledgments
This work was funded within the project ARAMiS by the
German Federal Ministry for Education and Research with
the funding IDs 01|S11035. The responsibility for the con-
tent remains with the authors.

8. REFERENCES
[1] R. Budruk, D. Anderson, and T. Shanley. PCI express

system architecture. Addison-Wesley Professional,
2004.

[2] L. Cherkasova and R. Gardner. Measuring cpu
overhead for i/o processing in the xen virtual machine
monitor. In Proceedings of the USENIX annual
technical conference, pages 387–390, 2005.

[3] R. Davis, A. Burns, R. Bril, and J. Lukkien.
Controller area network (can) schedulability analysis:
Refuted, revisited and revised. Real-Time Systems,
35(3):239–272, 2007.

[4] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and
H. Guan. High performance network virtualization
with sr-iov. Journal of Parallel and Distributed
Computing, 2012.

[5] C. Herber, A. Richter, H. Rauchfuss, and
A. Herkersdorf. Self-virtualized can controller for
multi-core processors in real-time applications. In
International Conference on Architecture of
Computing Systems (ARCS), pages 244–255, 2013.

[6] A. Herkersdorf, H.-U. Michel, H. Rauchfuss, and
T. Wild. Multicore enablement for automotive cyber
physical systems. it-Information Technology,
54(6):280–287, 2012.

[7] J. Kim, S. Lee, and H. Jin. Fieldbus virtualization for
integrated modular avionics. In Emerging Technologies
& Factory Automation (ETFA), 2011 IEEE 16th
Conference on, pages 1–4. IEEE, 2011.

[8] A. Menon, J. Santos, Y. Turner, G. Janakiraman, and
W. Zwaenepoel. Diagnosing performance overheads in
the xen virtual machine environment. In Proceedings
of the 1st ACM/USENIX international conference on
Virtual execution environments, pages 13–23. ACM,
2005.

[9] B. Müller-Rathgeber, M. Eichhorn, and H.-U. Michel.
A unified car-it communication-architecture: Design
guidelines and prototypical implementation. In
Intelligent Vehicles Symposium, 2008 IEEE, pages
709–714. IEEE, 2008.

[10] N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion.
Multi-source and multicore automotive ecus-os
protection mechanisms and scheduling. In
International Symposium on Industrial
Electronics-ISIE 2010, 2010.

[11] I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield,
D. Magenheimer, J. Nakajima, and A. Mallick. Xen
3.0 and the art of virtualization. In Linux Symposium,
pages 65–77, 2005.

[12] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and

C. Pu. Understanding performance interference of i/o
workload in virtualized cloud environments. In Cloud
Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 51–58. IEEE, 2010.

[13] H. Raj and K. Schwan. High performance and scalable
i/o virtualization via self-virtualized devices. In High
Performance Distributed Computing: Proceedings of
the 16 th international symposium on High
performance distributed computing, volume 25, pages
179–188, 2007.

[14] D. Reinhardt, D. Kaule, and M. Kucera. Achieving a
scalable e/e-architecture using autosar and
virtualization. In SAE World Congress, 2013.

[15] D. Reinhardt and M. Kucera. Domain controlled
architecture: A new approach for large scale software
integrated automotive systems. In Pervasive and
Embedded Computing and Communication Systems,
2013.

[16] J. Whiteaker, F. Schneider, and R. Teixeira.
Explaining packet delays under virtualization. ACM
SIGCOMM Computer Communication Review,
41(1):38–44, 2011.

