
XtratuM hypervisor redesign for LEON4 multicore
processor∗

E. Carrascosa
Instituto de Automática e

Informática Industrial
Universidad Politécnica de

Valencia
Camino de Vera s/n, 46022

Valencia, Spain
ecarrascosa@ai2.upv.es

J. Coronel
FentISS

CPI, 9B Building, Office 3
Camino de Vera s/n, 46022

Valencia, Spain
jcoronel@fentiss.com

M. Masmano
Instituto de Automática e

Informática Industrial
Universidad Politécnica de

Valencia
Camino de Vera s/n, 46022

Valencia, Spain
mmasmano@ai2.upv.es

P. Balbastre
Instituto de Automática e

Informática Industrial
Universidad Politécnica de

Valencia
Camino de Vera s/n, 46022

Valencia, Spain
patricia@ai2.upv.es

A. Crespo
Instituto de Automática e

Informática Industrial
Universidad Politécnica de

Valencia
Camino de Vera s/n, 46022

Valencia, Spain
acrespo@ai2.upv.es

ABSTRACT
XtratuM is an open source hypervisor that uses para-virtua-
lization techniques designed to comply with safety critical
real-time requirements. Several projects aimed to define
a reference architecture for space on-board systems have
adopted XtratuM as a virtualization layer in order to enforce
the strong spatial and temporal isolation between software
components that is required on real-time airborne systems.

Given the shift in the general trend in processor development
towards multicore processors, the European Space Agency
(ESA) is commissioning a set of studies in order to evalu-
ate their suitability for their use on the space market. This
paper focuses on the porting of XtratuM to the LEON4 mul-
ticore processor, in the frame of a ESA study that pursues
to assess its fitness for its use in future space missions.

Keywords
Hypervisor, para-virtualization, partitioned systems, RTOS,
multicore.

1. INTRODUCTION
∗This work has been partially funded by the Multipartes
project (FP7-287702), HISEM (Prometeo 2009/02) and HI-
PARTES (TIN2011-28567-C03-03).

c©Copyright is held by the authors,
VtRES 2013 Taipei, Taiwan

For the last decade, the European space sector has devel-
oped an interest in partitioned software architectures based
on the Integrated Modular Avionics (IMA) design concept
as a mean to address security and safety issues. Partitioned
architectures isolate software components into independent
partitions whose execution shall not interfere with that of
other partitions, preserving temporal and spatial isolation.
Virtualization has been proven an effective method to ful-
fill those temporal and spatial isolation requirements, which
led the European Space Agency (ESA) to adopt XtratuM [8,
6, 7], a hypervisor for real-time embedded systems specifi-
cally designed to meet safety critical requirements, as the
reference virtualization layer.

At the same time, there has been an increasing trend towards
the use of multicore processors in embedded computing due
to their improved performance and low impact on critical as-
pects of embedded systems, as power consumption or heath
dissipation. These traits, together with a better trade-off
between performance and cost, weight reduction, and the
potential to exploit parallel execution, have arisen an inter-
est in the use of multicore technology in the space sector.

In this context, the ESA launched the IMA-SP [5] initia-
tive, aimed to promote the adaptation of the IMA concept
to the space domain. The project defined a partitioned ref-
erence architecture for space on-board software based on
the ARINC-653 avionics standard [1, 2], with XtratuM as
the virtualization layer. However, the IMA-SP project was
focused on monocore processors, and a series of projects
on multicore assessment for its use on space applications
were subsequently launched. After the development of the
LEON4 multicore processor [4], the project covered by the
present paper [9] promoted the porting of the XtratuM hy-
pervisor to this new target and evaluated its suitability for
partitioned systems.



2. XTRATUM
XtratuM is a bare-metal hypervisor intended for embedded
real-time systems that uses para-virtualization techniques to
mimic hardware behaviour as closely as possible. Attending
to its purpose, it has been designed using the ARINC-653
standard principles as a basis to achieve temporal and spa-
tial partitioning on safety critical applications.

2.1 Interface
In order to offer basic hardware virtualization support as
well as specific high-level services based on ARINC-653 to
the partitions, XtratuM provides a set of hypercalls that
transfer control to the hypervisor. This implies that parti-
tions shall have hypervisor-specific code to access those ser-
vices and may need to be adapted so as to interact with the
hypervisor instead of with the underlying hardware. Some
of the hypercalls are restricted to a special type of partitions
(system partitions) that are allowed to manage and monitor
the state of the system and other partitions.

// Hardware services
void XM_sparc_set_psr (xm_u32_t psr);
void XM_sparc_flush_cache (void);
void XM_sparc_flush_regwin (void);
// High -level services
xm_s32_t XM_create_queuing_port (

char *portName , xm_u32_t maxNoMsgs ,
xm_u32_t maxMsgSize , xm_u32_t direction );

xm_s32_t XM_hm_status (xm_HmStatus_t
*hmStatusPtr );

xm_s32_t XM_trace_event (xm_u32_t bitmask ,
xmTraceEvent_t *event);

Listing 1: Example of XtratuM service interface.

2.2 Static Resource Allocation
The allocation of the available hardware resources to par-
titions takes place statically via a configuration file. This
allocation shall be performed according to the needs of each
partition regarding memory areas, scheduling, communica-
tion ports, etc. The configuration file also specifies the board
resources, the configuration of the virtualized devices, the
set of memory regions allocated to the hypervisor and the
scheduling plan.

<SystemDescription version="1.0.0">
[...]
<ProcessorTable >

<Processor id="0" frequency="80Mhz">
<CyclicPlanTable >

<Plan id="0" majorFrame="2000ms">
<Slot id="0" start="0ms"
duration="1000ms" partitionId="0"/>

<Slot id="1" start="1000ms"
duration="1000ms" partitionId="1"/>

</Plan >
</CyclicPlanTable >

</Processor >
</ProcessorTable >
[...]
<PartitionTable >

<Partition id="0" name="Partition1"
flags="system" console="Uart">
<PhysicalMemoryAreas >

<Area start="0x40180000" size="256KB"
mappedAt="0x40000000"/>

</PhysicalMemoryAreas >
</Partition >
<Partition id="1" name="Partition2"
flags="system" console="Uart">
<PhysicalMemoryAreas >

<Area start="0x401c0000" size="256KB"/>

</PhysicalMemoryAreas >
</Partition >

</PartitionTable >
</SystemDescription >

Listing 2: XML configuration file example.

2.3 Cyclic Scheduler
In order to ensure a strong temporal isolation, XtratuM
scheduler implements a cyclic scheduling policy according
to the ARINC-653 specification. This policy assumes pre-
vious knowledge of the time allocation to each partition,
which is specified on a cyclic plan that is statically defined
during the design phase. A cyclic plan consists in a major
time frame (MAF) which is periodically repeated. Inside
the MAF, time is divided in slots with a established start-
ing time and duration that are allocated to a given parti-
tion. XtratuM assigns the processor to the corresponding
partition within each time slot, ensuring that the partition
gets only the specified amount of processor time. In the
case of partitions where several tasks execute concurrently,
the partition is in charge of internally implementing its own
scheduling algorithm in a transparent way to the hypervi-
sor (hierarchical scheduling). This policy provides a deter-
ministic behaviour while minimizing scheduling overhead at
run-time.

2.4 Trap and interrupt management
A processor trap implements an asynchronous transfer of
control to the system as a mechanism to handle hardware
interrupts, software traps and processor exceptions. Xtra-
tuM extends the concept of processor traps with a new range
of additional interrupts (extended interrupts) to indicate to
partitions the ocurrence of XtratuM specific events.

Regarding interrupts, XtratuM leaves to the partitions the
management of non-critical devices and manages only those
hardware interrupts belonging to those hardware devices
able to jeopardize the isolation. Hardware interrupts can be
allocated only to one partition, that then has the capacity
to mask or unmask the interrupt line via specific hypercalls.

2.5 Communication Mechanisms
XtratuM provides robust message passing based mechanisms
for inter-partition communication (between two partitions or
between a partition and the hypervisor). For this purpose,
the hypervisor makes available to the partitions a series of
services based on ARINC-653 defined queuing and sampling
ports. On its side, the hypervisor implements channels that
act as a logical path between source and destination ports,
and it is also responsible for encapsulating and transporting
the messages.

2.6 Health Monitor
XtratuM provides a Health Monitor as a mechanism to de-
tect and manage unexpected events. The Health Monitor
aims to identify those faults that can not be handled at the
scope where they take place, and properly manage those
events in order to minimize the consequences for the whole
system. A set of predefined actions is provided to deal with
an error according to its nature as soon as it is detected,



being its behaviour statically configured through the con-
figuration file. After the execution of the handling action,
a Health Monitor notification message can be issued and
logged to be accessed by a system partition, which later can
perform a more detailed error handling.

3. PORTING TO LEON4
3.1 Target Hardware
Aeroflex Gaisler has developed, in conjunction with the ESA,
the Next Generation Microprocessor (NGMP) prototype, a
multicore processor to be evaluated for its use in the future
space missions of the agency that is the target of this study.
The NMPG is a quad-core 32-bit LEON4 (Sparc V8 cores)
running at 50 MhHz with 4x4Kb instruction and data Level-
1 caches, a shared 256 KB Level-2 cache, MMU, IOMMU
and two shared FPUs.

3.2 Software Architecture
The porting of XtratuM to a multicore processor has been
performed following a Symmetric Multi Processing (SMP)
software architecture approach, where a single OS manages
all the hardware resources. Nevertheless, this approach is
not suitable for its straight adoption, since it poses the un-
desired restriction of the use of a single OS for all the appli-
cations. The use of XtratuM offers a more complete solution
consisting on a SMP hypervisor layer that enforces the time
and space partitioning of the hardware resources, and pro-
vides virtualization services to the guest applications that
are able, when needed, to run their own OS on a virtual
processor.

3.3 XtratuM on Multicore Systems
XtratuM was originally developed for x86 monocore sys-
tems, and later ported to LEON2 and LEON3 processors.
Therefore, the adaptation of XtratuM to a multicore LEON4
processor has required a more extensive redesign in order to
add the necessary capabilities to manage several processors,
as well as the other hardware resources. A SMP approach
creates the need for each processor to be able to use XtratuM
in a concurrent way. Consequently, this requirement has led
to implement a fine-grained synchronization mechanism that
grants exclusive access to the critical sections of XtratuM,
such as spin-locks protecting shared internal data structures
against race conditions. Additionally, the partition model
has been adjusted in order to allow the use of multicore par-
titions, through the incorporation of the concept of virtual
CPU. The more relevant aspects of the adaptation of Xtra-
tuM to LEON4 are detailed next.

3.3.1 VCPUs
A virtual CPU is an abstraction of a hardware CPU that
models its behaviour. However, a virtual CPU can be equally
allocated to any of the existing cores. XtratuM provides as
many virtual CPUs as hardware CPUs are on the system.
Virtual CPUs management is analogous to the real hard-
ware behaviour: at the instant when the partition starts its
execution a single vCPU is active, and it is responsibility of
the partition to initialize the remaining virtual CPUs. To
this end, XtratuM has been extended with new hypercalls
that allow the partitions to handle virtual CPUs operation.

Figure 1: Hypervisor SMP software architecture

Figure 1 depicts a possible vCPU to real processor binding
scenario.

3.3.2 IOMMU
A specific feature of the LEON4 processor is the IOMMU.
Its inclusion in the LEON4 design was imposed by the ESA
as a way to guarantee spatial isolation for I/O devices ac-
cess. In absence of this mechanism, the DMA device may be
used to bypass memory isolation between partitions. There-
fore, one of the project requirements was the assessment of
this component and its inclusion in the XtratuM redesign in
order to provide IOMMU support.

The IOMMU tables are statically defined through the con-
figuration file.

3.3.3 Scheduling policies
In the present multicore approach, each CPU holds its own
cyclic scheduler, defining individual scheduling plans for each
core. Although the use of a cyclic scheduling policy for par-
titioned systems is optimal from the temporal isolation point
of view, it also represents a technical hurdle for asynchronous
interrupt handling, given that an interrupt allocated to one
partition may stay pending until the partition is scheduled
again. In order to overcome this issue, XtratuM has also in-
cluded a fixed priority scheduling policy that can be adopted
instead, enabling the coexistence of both scheduling policies.
However, there can be an only scheduling policy assigned to
a given physical CPU. In the case of multicore partitions,
threads can be executed under different scheduling policies
on different processors, allowing to perform faster I/O com-
munications. Since a plan switch must occur at the end of
a MAF, an imposed restriction is that there is an identi-
cal MAF for all the cores running under a cyclic scheduling
policy.

4. PERFORMANCE EVALUATION
The performance testing has been conceived aiming to ad-
dress three different aspects of the implementation: the ef-
fect of the hypervisor layer, the impact of the partition con-
text switch (PCS) and the influence of the multicore shared
hardware resources (memory and FPU) on the execution.
Thus, the performance of XtratuM porting to the LEON4
multicore processor will be assessed through a series of tests
designed to capture the overheads introduced by the hyper-
visor under different loads.



Table 1: Native vs. Partition performance
Benchmark Iterations Native (μ-sec) Partitioned (μ-sec) Performance loss
Dhrystone 100000 2006149 2006315 0,008%
CoreMark 1200 15436453 15604193 1,087%

Table 2: CoreMark execution with different slot durations
Slot duration No Slots Time (s) Perf. loss CoreMark/MHz
30 sec 1 15,604194 1,538048
1000 ms 16 15,606468 0,0146% 1,537808
500 ms 32 15,608796 0,0295% 1,537497
100 ms 157 15,627475 0,1492% 1,535085
10 ms 1592 15,839812 1,5100% 1,507709

Two well-known standard benchmarks have been used to
perform the evaluation: Dhrystone [10] and CoreMark R© [3].
Dhrystone is a synthetic benchmark intended to be repre-
sentative of system programming. It is mainly addressed to
evaluate integer operations. One of the drawbacks of this
benchmark is that the operations are focused on the basic
CPU working and do not perform an intensive use of the
stack. CoreMark is a simple benchmark that is specifically
designed to test the functionality of a core. It uses basic
data structures and algorithms common to practically any
application. One of the advantages of this benchmark with
respect to Dhrystone is the overflow of the processor stack
(register window), allowing to analyze more accurately the
impact of the hypervisor layer.

These benchmarks will be run both as bare-metal applica-
tions and as partitions running on top of XtratuM, and the
frequency of context switches and the number of partitions
executing concurrently will be increased progressively in or-
der to measure the performance of the hypervisor at several
different load points. The number of iterations selected for
each benchmark is a test-dependant parameter slightly su-
perior to the minimum number of iterations needed in order
for the test to be valid. A minimal porting regarding clock
access and output has been needed in order to execute these
benchmarks as XtratuM partitions.

4.1 Native versus partition based applications
This test aims to evaluate the performance loss due to pres-
ence of the hypervisor. The goal is to compare both bench-
marks running on the native hardware using a bare imple-
mentation against the same benchmarks running as a par-
tition on top of the virtualisation layer. The partitioned
benchmarks are executed under the hypervisor cyclic schedul-
ing. The slot duration is larger than 30 seconds in order to
complete the execution in one slot and avoid the effect of
the partition context switch in the measurement. Table 1
shows the results obtained for both benchmarks.

These results show very low performance loss in the case
of the Dhrystone benchmark. This is due to the fact that
its operation does not require hypervisor services. On the
other hand, the CoreMark benchmark has an effect on the
stack management. XtratuM provides a plain stack to the
partitions and is in charge of the window management. In
that case, this test raises 2235 window overflow and un-
derflow traps that are handled by XtratuM. Each time a
trap is raised, XtratuM is executed and saves or restores the

register window. The support needed for these operations
corresponds with about a 1% of the CPU.

4.2 Partition context switch impact
To evaluate the impact of the partition context switch on
the partition performance, a CoreMark benchmark parti-
tion has been executed on top of the virtualization layer
with different execution slot durations. Table 2 shows the
different scenarios considered and the achieved results. The
first row defines a slot duration of 30 seconds, which is large
enough to complete the benchmark in one slot. This value
is used as reference value in the comparison with the subse-
quent scenarios. The second row defines a slot duration of 1
second, which means that the benchmark will be completed
in 16 slots. The time required to complete the execution is
then compared with the reference value. The observed per-
formance loss is attributed to the partition context switch
at the end of each slot. The following rows detail the results
for 500, 100 and 10 milliseconds each.

These results allow to estimate the cost of the PCS. Taking
into account that the difference perceived is due to the num-
ber of context switches, the PCS can be estimated to be in
the range of 149 to 151 microseconds.

4.3 Multicore shared resources impact
In a first evaluation, the CoreMark benchmark has been
executed at the same time in several cores. Table 3 shows
the results when the benchmark is executed in 1, 2 and 3
cores simultaneously. The slot duration is 1 second for all
cases.

The results show the direct influence of the number of cores
in the performance loss. This impact is almost negligible,
and could be explained by the presence of a 128-bit system
bus, which allows concurrent access by the cores.

5. CONCLUSIONS
The NGMP prototype is the resulting product of ESA re-
search concerning future multicore processor utilization in
space missions. The analysis of the feasibility of its use
to that end comes, thus, as a necessary step. As a refer-
ence high-criticality systems virtualization layer, XtratuM
has been a natural choice to assess this point. XtratuM
porting to the LEON4 processor has provided insight on the
challenges of multicore use on partitioned architectures.

In this process, XtratuM has been adapted to support SMP



Table 3: CoreMark execution with different slot du-
rations

Core id Time (s) Perf. loss

Core 0 15,606468

Core 0 15,609504 0,0195%
Core 1 15,609513 0,0195%

Core 0 15,611749 0,0338%
Core 1 15,611685 0,0334%
Core 2 15,611690 0,0335%

hardware architectures. This has implied changes in the
XtratuM design internals concerning multiple CPUs man-
agement, code critical sections protection through spin-locks,
timers and intra-/inter-processor interrupt handling. Addi-
tionally, attending to the LEON4 specific features XtratuM
has been provided with IOMMU support.

The monocore partition model has been revisited as well
in order to support SMP partitions by the inclusion of the
concept of virtual CPU, with the consequent API modifica-
tions. The scheduler has been extended with fixed priority
scheduling policy support to take advantage of the availabil-
ity of additional processors.

Regarding the board evaluation, it has been observed that
LEON4 design overcomes some of the limitations of classi-
cal SMP hardware architectures, such as the memory access
bottleneck, by implementing a 128-bit bus width enabling si-
multaneous access by all the cores to the L2 cache. Although
not intrinsic to SMP, LEON4 implements an IOMMU device
in order to address I/O devices spatial isolation concerns.

As further work, a more extensive evaluation of LEON4 per-
formance remains to be carried out. Research on the use
of different software architecture approaches (Asymmetric
Multi Processing) could provide useful information about
comparative advantages towards the use of a SMP model.

6. REFERENCES
[1] Airlines Electronic Eng. Committee (AEEC). Avionics

application software standard interface (ARINC-653).
Part 1 - Required services. 2006.

[2] Airlines Electronic Eng. Committee (AEEC). Avionics
application software standard interface (ARINC-653).
Part 1 - Required services. 2006.

[3] Embedded Microprocessor Benchmark Consortium
(EEMBC). CoreMark Benchmark.
http://www.coremark.org.

[4] European Space Agency (ESA). The ESA Next
Generation Microprocessor (NGMP).
http://microelectronics.esa.int/ngmp.

[5] European Space Agency Project. Integrated Modular
Avionics for Space (IMA-SP), 2010-2012.

[6] M. Masmano, I. Ripoll, A. Crespo, and J. Metge.
XtratuM: a hypervisor for safety critical embedded
systems. In 11th Real-Time Linux Workshop, Dresden
(Germany), 2009.

[7] M. Masmano, I. Ripoll, A. Crespo, J. Metge, and
P. Arberet. XtratuM: An open source hypervisor for
TSP embedded systems in aerospace. In DASIA 2009.
DAta Systems In Aerospace., Istanbul (Turkey), 2009.

[8] M. Masmano, I. Ripoll, S. Peiró, and A. Crespo.
XtratuM for LEON3: An open source hypervisor for
high integrity systems. In ERTS2 2010. European
Conference on Embedded Real Time Software and
Systems., Toulouse (France), 2010.

[9] M. Patte, V. Lefftz, M. Zulianello, A. Crespo,
M. Masmano, and J. Coronel. System impact of
distributed multicore systems. In DASIA 2012. DAta
Systems In Aerospace., Dubrovnik (Croatia), May
2012.

[10] R. Weicker. DHRYSTONE: A synthetic systems
programming benchmark. Commun. ACM,
27(10):1013–1030, 1984.


