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ABSTRACT
Nowadays, virtualization is a popular technology to provide
an abstract hardware emulation due to the increasing hard-
ware speed and capabilities such as multi-core CPUs, large-
size main memory, and high-bandwidth networking. Vir-
tualization technology enables multiple virtual machines to
run on a physical machine, where each virtual machine can
run independently and own its operating system. In partic-
ular, I/O performance will be an important factor of virtual-
ization technology. Current popular storage devices contain
traditional hard-disk drives (HDDs) and solid-state drives
(SSDs). Although HDDs can provide a more economical so-
lution than SSDs, SSDs can provide high I/O performance
and power saving, especially for random I/O accesses. In
the paper, we will build a virtual storage environment for
SSDs and HDDs in Xen hypervisor. With the proposed vir-
tual storage environment in Xen hypervisor, we can receive
and analyze I/O requests from multiple virtual machines,
and perform I/O requests to any physical storage devices.
According to the experimental results, the proposed method
can include both SSDs (i.e., fast access) and HDDs (i.e, low
cost) in virtualization environment. Overall, the proposed
method can provide an adjustment mechanism in I/O per-
formance for those (soft real-time) applications that require
high I/O performance in virtualization environment.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]:
Real-time and embedded systems; D.4.2 [Operating Sys-
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tems]: Storage Management: Secondary storage; B.3.2 [Memory
Structures]: Mass storage

General Terms
Design, Performance, Algorithm
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1. INTRODUCTION
Virtualization technology can allow multiple independent
virtual machines to run their own operation systems in a
single physical machine. With the virtualization technology,
a software layer (called hypervisor) is used to manage hard-
ware resources into virtual resources for virtual machines,
and can allocate appropriate virtual resources according to
each virtual machine’s demand. For example, a hypervi-
sor in Xen must handle physical CPU scheduling and main
memory allocation, and enforce isolation for each virtual
machine. In particular, I/O performance will become an im-
portant factor for the hypervisor in terms of resource adjust-
ment. Current popular storage devices contain traditional
hard-disk drives (HDDs) and solid-state drives (SSDs). Al-
though HDDs can provide a more economical solution than
SSDs, SSDs can provide high I/O performance and power
saving, especially for random I/O accesses.

In the paper, we will build a virtual storage environment
for SSDs and HDDs in Xen hypervisor. A revised Xen hy-
pervisor will play an important role of receiving and ana-
lyzing I/O requests from virtual machines, and performing
I/O requests to SSDs and HDDs. Therefore, we will create
a monitor mechanism in Xen hypervisor to receive and an-
alyze I/O requests from multiple virtual machines. Based
on the monitor, we can determine which I/O requests will
be transferred to SSDs or HDDs. We will also create a con-
tent mapping table to record which data are located in SSDs
or HDDs. Therefore, the monitor and the content mapping
table can help the Xen Hypervisor to receive and analyze
I/O requests from multiple virtual machines, and perform
I/O requests to any physical storage devices. We believe
that the proposed virtual storage environment can provide
users a platform to include various storages such as SSDs
(i.e., fast access) and HDDs (i.e., low cost). According to
the experimental results, we can find out that the proposed



virtual storage environment using SSDs and HDDs can not
only provide better performance than only HDDs but also
provide a more economical solution than only SSDs. Over-
all, the proposed virtual storage environment can provide an
adjustment mechanism in I/O performance for those (soft
real-time) applications that require high I/O performance
in virtualization environment.

The rest of the paper is organized as follows: Section 2 pro-
vides an overview of background knowledge. Section 3 is the
motivation. Section 4 is the related work. Section 5 presents
a virtual storage environment for SSDs and HDDs in Xen
hypervisor. Section 6 provides the experimental evaluation.
Finally, Section 7 is the conclusion.

2. BACKGROUND KNOWLEDGE
Virtualization technology provides the hardware simulation
which other softwares (e.g. operating systems) can run on.
In other words, virtualization technology enables multiple
virtual machines to run on a physical machine, where each
virtual machine can run independently and own its operat-
ing system in a logically distinct environment. Virtualiza-
tion is not a new concept and has been in use for decades.
However, virtualization is more popular now than ever be-
cause it is convenient and flexible for IT administrators. To-
day, many hypervisors or virtual machine monitors (such
as VMware[1], VirtualBox[2], Windows Hyper-V[3], Xen[4],
and KVM[5]) can run on top of physical machines and sched-
ule the execution of virtual machines. Multiple instances of
a lot of operating systems may share the virtualized hard-
ware resources.

Xen [4] is developed by the University of Cambridge Com-
puter Laboratory and uses para-virtualization in its vir-
tual machines because of the performance and administra-
tive advantages. Since para-virtualization needs to modify
guest OS kernel, Xen adopts Hypercalls as system calls for
guest OSs to avoid simulating complex instruction sets. In
the aspect of I/O virtualization, Xen uses front-end driver
and back-end driver to improve I/O performance by sharing
pages in main memory. When processor technology (such
as Intel Virtualization Technology and AMD Secure Virtual
Machine) for virtualization is added, Xen starts to support
full virtualization after version of 3.0. Xen’s virtualization
architecture is divided into three parts: Xen hypervisor, Do-
main 0, and Domain U.

2.1 Xen Hypervisor
Xen hypervisor is an abstraction layer between the guest
domains and the physical hardware and is responsible for
allocating and controlling resources (such as CPU schedul-
ing and main memory allocating), and enforcing protection
and isolation. Xen hypervisor defines the communication
interface for virtual machines but it does not contain the
drivers of hardware devices (such as network card and graph-
ics card). Xen hypervisor could not cause too much over-
head, because it can directly access hardware resources and
avoid simulating complex instruction sets.

2.2 Domain 0
Domain 0 is a modified Linux kernel and is only one priv-
ileged virtual machine. Domain 0 can directly access the

hardware resources, and contain drivers for the hardware
resources. Domain 0 also provides back-end driver that is
responsible for receiving and handling all I/O requests of
virtual machines. In fact, Domain 0 is the only one that
can issue control commands to hardware, and other virtual
machines need Domain 0 to access the hardware resources.

2.3 Domain U
Domain U is a general virtual machine. Since Domain U
is a unprivileged virtual machine, it can not directly access
the hardware resources. Domain U can send I/O requests
through front-end driver, and back-end driver in Domain 0
will handle and perform the I/O requests.

3. MOTIVATION
We use a SSD (Intel 320 series 160GB) and a HDD (Hitachi
HDS721010CLA332 7200RPM 1TB) as the storage devices
and use Iometer [6] to test I/O performance under various
sizes of request accesses (i.e., random accesses and sequential
accesses). Overall, the performance of Intel SSD is better
than Hitachi HDD. Intel SSD for random accesses has bet-
ter performance than Hitachi HDD because random accesses
could cause long mechanical latency time for Hitachi HDD.
However, sequential accesses could favor Hitachi HDD, espe-
cially when the request size of sequential writes is increased.
This is because large write requests could cause unexpected
activities of garbage collection in Intel SSD and reduce its
performance. Intel SSD for sequential reads and writes is
about 4 times faster than Hitachi HDD with 4KB request
size. When request size is increased to 512KB, Intel SSD
is about 2 times faster than Hitachi HDD in sequential ac-
cesses. However, we observe that Intel SSD for random ac-
cesses has better performance than Hitachi HDD when re-
quest size is small. Intel SSD for random reads and writes
is about 35 times and 40 times faster than Hitachi HDD
with 4KB request size, respectively. When request size is
increased to 512KB, Intel SSD is about 4 times faster than
Hitachi HDD in random accesses. Moreover, when request
size is above 64KB, the performance of Intel SSD increases
slowly. According to the above experimental results, when
some (soft real-time) applications in virtual machines require
high I/O performance, SSDs (solid-state drives) can be used
because of its better performance than traditional HDDs
(hard-disk drives) in terms of read and write accesses. Al-
though HDDs can provide a more economical solution than
SSDs, SSDs can provide better performance than HDDs, es-
pecially for (soft real-time) applications with a lot of random
accesses. Therefore, we will build a virtual storage environ-
ment for SSDs and HDDs in Xen hypervisor. We believe
that the proposed method can provide users a platform to
include various storages such as SSDs (i.e., fast access) and
HDDs (i.e., low cost).

4. RELATED WORK
Many previous studies about hybrid storage systems often
use SSDs as a secondary-level cache [12, 13, 14, 15]. [12]
considers that SSDs are suitable to be placed between main
memory and HDDs as a second-level cache rather than to
store data. [13] also uses SSDs as a second-level cache to
buffer data which stored in HDDs, but thinks not all data
should be buffered in SSDs. Therefore, [13] sets a threshold
value to filter out inappropriate data and only buffers data



with smaller request size. [14] uses a LRU (Least Recently
Used) method to filter out data which are least recently
used, and removes data according to the access characteris-
tics of flash memory. [15] tracks the count of block accesses,
and identifies frequently used parts, and then caches the fre-
quently used data in SSDs. When the capacity of SSDs grow
larger and cheaper, SSDs are suitable to be a storage device
rather than cache and some research [16, 17, 18, 19, 20, 21]
tries to integrate SSDs and HDDs into one storage system.
Different from the previous work, the objective of the paper
will focus on the implementation and discussion on how to
revise Xen hypervisor to provide a platform using SSDs and
HDDs in virtualization environment. Note that our current
work [22] is also based on the virtual storage environment
to implement a hybrid storage access framework and evalu-
ate its performance for virtual machines. To strengthen the
paper’s contributions, we write the virtual storage environ-
ment in the paper.

5. A VIRTUAL STORAGE ENVIRONMENT
FOR SSDS AND HDDS

5.1 Overview
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Figure 1: System Architecture

Figure 1 is the system architecture, and we build a virtual
storage environment for SSDs and HDDs in Xen hypervisor
by modifying the Blktap driver. With the virtual storage
environment, even if multiple virtual machines run differ-
ent guest operating systems, we do not need to modify the
guest operating systems for the management of SSDs and
HDDs. Some previous method is using upper-level appli-
cations to figure out which data should be transferred to
SSDs or HDDs. For example, multimedia files (e.g., video
and pictures) could result in more sequential accesses and
can be transferred to HDDs. Some files are randomly ac-
cessed and can be transferred to SSDs. However, any virtual
machine could run any operating system and applications,
and specific upper-level applications are not suitable for the
management of SSDs and HDDs. In order to avoid modify-
ing (guest) operating systems, we propose a virtual storage
environment in Xen hypervisor by revising related compo-
nents (e.g., tap-disk and block-aio). With the virtual storage
environment, we can receive and analyze I/O requests from
multiple virtual machines and determine which I/O requests
should be transferred to SSDs or HDDs without any modi-
fications of (guest) operating systems.

5.2 I/O Requests from Multiple Virtual Ma-
chines
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Figure 2: I/O Requests from Virtual Machines to
Physical Storage Devices

For handling I/O requests from multiple virtual machines,
we modify the Blktap driver in Xen hypervisor. The Blktap
driver consists of two parts: one is located at kernel space of
Domain 0 that acts similarly to the existing Xen/Linux blk-
back driver, and another one is at user space of Domain 0.
Blktap [23] in the user space can provide Xen hypervisor an
interface to access storage devices. Blktap can also mount
virtual device images. As shown in Figure 1, the Blktap
in the kernel space does not directly access physical storage
devices, but it receives all I/O requests of Domain U and
transfers the I/O requests to the Blktap in the user space of
Domain 0 to perform I/O requests to physical storage de-
vices. This kind of design is beneficial to develop convenient
functions in the user space.

As shown in Figure 2, the revised Blktap driver in Domain 0
can receive all I/O requests from multiple virtual machines
(i.e, Domain U) and then perform I/O requests to any phys-
ical storage devices (i.e., SSDs and HDDs). Therefore, we
create a monitor mechanism in Xen hypervisor to analyze
I/O requests by read/write operations, access times, prior-
ities, and request size, etc. Based on the monitor, we can
determine which I/O requests will be transferred to SSDs or
HDDs. For those (soft real-time) applications in virtual ma-
chines, the monitor can be used to adjust and increase I/O
performance for the applications in the virtual machines.
We think that the monitor can play an important role for
dynamic adjustment in I/O performance1. We also create
a content mapping table to record which data are trans-
ferred to SSDs or HDDs. According to the content mapping
table in Figure 2, we can know which data (e.g., virtual
machine images) are located in SSDs or HDDs. Therefore,

1Note that a policy in the monitor to determine which data
should be placed in SSDs or HDDs for dynamic adjustment
in I/O performance can be found in [22]. The paper just
focuses on the implementation and discussion on how to re-
vise Xen hypervisor to include SSDs and HDDs for virtual
machines.



Table 1: Related files and functions that we revised
Component File Function Functionality

Tap-disk Tapdisk-vbd.c

tapdisk vbd create()
tapdisk vbd issue request()
counter content mapping table()
monitor()

1. Create and maintain a content mapping table
2. Create a monitor mechanism
3. Analyze I/O requests
4. Deliver I/O requests and its locations to Block-aio
component

Block-aio Block-aio.c

tdaio open()
tdaio complete()
tdaio queue read()
tdaio queue write()

1. Maintain virtual machine images in SSDs and HDDs
2. Perform I/O requests to SSDs and HDDs
3. Migrate data between SSDs and HDDs

the monitor and the content mapping table can help Xen
Hypervisor to receive and analyze I/O requests from multi-
ple virtual machines and perform I/O requests to physical
storage devices. The management and design of the content
mapping table should consider not only search efficiency but
also main memory usage. It is like the design of page table
but could face different constraints and situations, especially
when multiple virtual machines are executed simultaneously.

5.3 Implementation

Figure 3: Execution Process of I/O requests

Figure 1 is the system architecture, and we build a virtual
storage environment for SSDs and HDDs in Xen Hypervisor
by modifying the Blktap driver. We mainly modify two
components: Tap-disk and Block-aio in the Blktap driver
which abstracts each virtual machine storage into a virtual
block device. Figure 3 shows the execution process of I/O
requests, where Blktap is in Domain 0 and Blkfront is in
Domain U. When Domain U issues system calls (i.e., I/O
requests), the calls would go from Blkfront to Blktap by
device channel which is a connection between Domain U and
Domain 0. Blktap will notify Tap-disk and wake up Tap-
disk to receive and analyze I/O requests. Note that Table
1 shows related files and functions in Xen hypervisor that
we revised. Related functionalities are also added to the
Tap-disk and Block-aio components for the virtual storage
environment. For example, in the Tap-disk component, it
can deliver I/O requests and its locations to the Block-aio
component. In the Block-aio component, it can perform the
delivered I/O requests to SSDs and HDDs, and can migrate
data between SSDs and HDDs.

5.3.1 Receive and analyze I/O requests

Tap-disk is a process which can handle I/O requests and
provide an interface for virtual machine management. Be-
cause Tap-disk can receive every I/O request from each vir-
tual machine and put the requests in I/O queue, we can
modify Tap-disk to analyze the I/O requests and then de-
termine their storage destinations (i.e., the monitor mecha-
nism). Furthermore, we use a td vbd t structure to record
related information of a virtual block device. td vbd t can
contain the image name, the image location, and an access
interface for a corresponding virtual block device. According
to the analysis of I/O requests, we can transfer appropriate
I/O requests to SSDs or HDDs. A content mapping table is
used to record the address mapping for I/O requests.

5.3.2 Perform I/O requests to Physical Storage De-
vices

Because we adopt different physical storage devices such as
SSDs and HDDs, we can perform I/O requests to any phys-
ical storage devices and maintain related virtual machine
images. The Block-aio component is a process to handle
each virtual machine image such as image open/close and
I/O requests to the image. It is a bottom layer of Xen hy-
pervisor to access physical storage devices. Therefore, we
can modify Block-aio to perform I/O requests to the final
storage devices (e.g., SSDs or HDDs). First, we classify I/O
requests according to the content mapping table in Tap-disk.
Then, Block-aio can issue system calls to perform I/O re-
quests to physical storage devices.

6. EXPERIMENTAL EVALUATION
Table 2: Environment Configuration

Hardware

CPU Intel(R) Core(TM) i7
950 @ 3.07GHz

Hard Disk Hitachi 1TB
Solid-State Drive Kingston HyperX 120GB

Memory 8 GB

System
Virtualization Xen-4.1.2

Software
Linux Kernel Linux 2.6.32

Domain 0
Operating system Ubuntu 11.10

Memory 2 GB

Domain U

Operating system Ubuntu 11.10
Memory 128 MB
Storage 32 GB
vCPU 1

In the hardware environment, CPU was Intel(R) Core(TM)
i7 950 @ 3.07GHz, memory was 8GB, a HDD was Hitachi



HDS721010CLA332 1TB, and a SSD was Intel 320 series
160GB. We adopted Xen-4.1.2 as the hypervisor and linux
kernel 2.6.32. Domain 0 deployed 2GB memory and Ubuntu
11.10 OS. Domain U deployed 128 MB memory, 32GB stor-
age space, and Ubuntu 11.10 OS, as shown in Table 2.

In order to confirm that the virtual storage environment
is workable and efficient, we used the logs of I/O requests,
which are provided by Storage Performance Council (SPC)
[24]. As shown in Table 3, the logs of web search are com-
posed of random access requests. Financial On-Line Trans-
action Processing (OLTP) is mainly composed of sequential
access requests. We use the logs to simulate real workloads.

Table 3: Workload Characteristics
(a) Web Search

Web search
Read 99 %
Write 1 %

Request Size 8 KB
Workload Size 16.7 GB
Total Read 65.8 GB
Total Write 8 MB

(b) OLTP

OLTP
Read 25 %
Write 75 %

Request Size 512 B ∼ 2 KB
Workload Size 3.6 GB
Total Read 2.6 GB
Total Write 14 GB

We measured the normalized execution time under three
configurations. Three configurations are Hitachi HDD, 50%
HDD and 50% SSD, and Intel SSD. Hitachi HDD means
that all I/O requests in virtual machines are handled by a
hard-disk drive (Hitachi HDS721010CLA332 1TB) and Intel
SSD means that all I/O requests in virtual machines are
handled by a solid-state drive (Intel Series320 130GB). 50%
HDD and 50% SSD means that all I/O requests in virtual
machines are handled by a virtual storage device using a
hard-disk drive and a solid-state drive, and the hard-disk
drive and the solid-state drive will handle 50% workloads,
respectively. One virtual machine which only use Intel SSD
was used as a comparison baseline in terms of normalized
execution time. We run different number of virtual machines
(i.e., 1VM, 2VMs, 3VMs, and 4VMs). For example, 4VMs
means that four virtual machines are executed at the same
time to measure the normalized execution time.

Figure 4 is the experimental results of web search. Because
the logs of web search have many random access requests
(99% read and 1% wirte), the normalized execution time of
Intel SSD was about 11 times faster than Hitachi HDD when
running one virtual machine. When running two or more
virtual machines, Intel SSD was about 11 to 20 times faster
than Hitachi HDD. When compared to 50% HDD and 50%
SSD, as shown in Figure 5, Intel SSD was about 2.2 and 1.7
times faster than it when running one/two and four virtual
machines, respectively.
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Figure 6 is the experimental results of Financial OLTP. Most
of OLTP workloads are sequential access requests, and its
average request size was relatively small. The normalized
execution time of Intel SSD was about 10 times faster than
Hitachi HDD when running one virtual machine. Further-
more, when running two and three/four virtual machines,
Intel SSD was about 18 and 22 times faster than Hitachi
HDD, respectively. Although Financial OLTP workloads
mainly consist of sequential access requests, Hitachi HDD
cannot get benefit from small request size. On the other
hand, Figure 7 shows that Intel SSD was only 1.3 times faster
than 50% HDD and 50% SSD in all situations. Overall, we
can find out that the proposed virtual storage environment
using SSDs and HDDs can not only provide better perfor-
mance than only HDDs but also provide a more economical
solution than only SSDs.

7. CONCLUSION
In the paper, we build a virtual storage environment for
SSDs and HDDs in Xen hypervisor. The objective of the
paper focuses on the implementation and discussion on how
to revise Xen hypervisor to provide a platform using SSDs
and HDDs in virtualization environment. We revise the Xen
hypervisor by modifying two components (i.e., Tap-disk and
Block-aio) in the Blktap driver which abstracts each virtual
machine storage into a virtual block device. The revised Xen
hypervisor will play an important role of receiving and ana-
lyzing I/O requests from virtual machines, and performing
I/O requests to SSDs and HDDs (i.e., the monitor mech-
anism and the content mapping table). According to the
experimental results, we demonstrate that the proposed vir-
tual storage environment can provide users a platform to
include various storages such as SSDs (i.e., fast access) and
HDDs (i.e., low cost). For those (soft real-time) applica-
tions in virtual machines, the proposed virtual storage en-
vironment can provide an adjustment mechanism in their
I/O performance. Furthermore, the proposed virtual stor-
age environment using SSDs and HDDs can not only provide
better performance than only HDDs but also provide a more
economical solution than only SSDs.

For the future work, we think the monitor mechanism should
play different roles in different situations, such as different
access patterns of virtual machines and different character-
istics of SSDs. We think the monitor should be configured
dynamically and adaptively according to current demands,
available resources, and system workloads. We hope to find
different deployment approaches to improve the virtual stor-
age environment.
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