
Adaptive Embedded Computing with i-Core
Jörg Henkel, Lars Bauer, Artjom Grudnitsky and Hongyan Zhang
Karlsruhe Institute of Technology, Chair for Embedded Systems

{henkel, lars.bauer, grudnitsky, hongyan.zhang}@kit.edu

Abstract—Reconfigurable processors allow applications to ac-
cess accelerators on a runtime-reconfigurable fabric (like an
embedded FPGA) to speed-up execution. This work focuses on
providing multi-tasking support and increasing dependability for
reconfigurable processors. Two different task-scheduling strate-
gies and multiple efficient dependability improvement schemes
are presented and evaluated.

I. INTRODUCTION

A reconfigurable processor consists of a regular processor
core coupled with a reconfigurable fabric, allowing application-
specific accelerators to be loaded at runtime. The processor core
is implemented as an ASIC and the fine-grained reconfigurable
fabric is implemented as an embedded FPGA, allowing a high
degree of freedom in accelerator design and enabling applica-
tions from different domains to be run at a high performance
on the same reconfigurable processor. Such platforms have
been built in academia and industry (e.g. Xilinx Zynq-7000).
To speed up execution of computationally intensive kernels,
applications can use accelerators on the fabric via Special
Instructions (SIs), which are extensions of the instruction set
architecture (ISA) of the processor core.

A large portion of existing literature has focused on stand-
alone reconfigurable processors, optimizing for single-tasking
applications. However, while application-specific accelerators
can provide significant speed-up in domains such as mobile
computing (e.g. GSM, cryptography) and robotics (e.g. im-
age/audio processing, feature matching), applications in these
domains are typically composed of multiple tasks. Furthermore,
systems for these applications are often dynamic multi-tasking
systems, i.e. task arrival is not known at design time and task
duration is dependent on input data (e.g. the recognized objects
in a camera-based mobile robot). As long as such dynamically
changing multi-tasking scenarios are not efficiently supported by
reconfigurable processors, their inherent efficiency advantages
are inaccessible for these demanding domains. The main focus
of this work is therefore to enable efficient multi-tasking support
and dependability improvement for reconfigurable processors by
• two task schedulers that are specifically optimized for runtime

reconfigurable processors, one optimized for reducing the
tardiness (i.e. the total time by which deadlines were missed
over all tasks) and one for improving the makespan (i.e.
completion time of the tasks), and

• online testing (ensure the fitness of the underlying reconfig-
urable fabric), fault tolerance and aging mitigation to increase
system lifetime and adaptive runtime system (guarantees
given reliability under varying soft-error rate while maximiz-
ing performance).

The paper was presented at APRES 2014. Copyright retained by the authors.

A
cc

el
er

at
or

s

DDR Memory
Controller

Bitstream Loader
(DMA capable)

S
ys

te
m

 B
us

pipeline reconf. fabric

I
F

I
D

E
X

M
E
M

W
B

R
A

X
C

I-
ca

ch
e

D
-c

a
ch

e

ca
ch

e
 c

o
n
tr

o
lle

r

L
S

L
S

Fa
b
ri

c 
C

o
n
tr

o
lle

r

128 kB SRAM
Scratchpad Memory

Fa
br

ic
 In

te
rc

on
ne

ct

Te
st

 M
an

ag
er

Load/Store Units

Fig. 1: i-Core SoC. i-Core extensions are shaded yellow. Based on [1].

Figure 1 shows the i-Core reconfigurable processor [8]. The
core processor is a SPARC V8 in-order core. The mix-grained
reconfigurable fabric [7] (fine-grained accelerators, coarse-
grained interconnect) is tightly coupled to the core pipeline.
SIs are multi-cycle instructions and generally include both
arithmetic operations and memory access. The Fabric Controller
manages SI execution by controlling accelerator modes, fabric
interconnect and fabric-internal storage.

II. EXTENSIONS FOR MULTI-TASKING

We now present a task-scheduler for minimizing system
tardiness (i.e. the total time by which deadlines were missed
over all tasks) for a given task-set. Tardiness reduction is
important for application scenarios where at least some of the
tasks have soft deadlines, e.g. reducing the tardiness for a video
recording task leads to a reduced number of dropped frames. In
[6] we present the Performance Aware Task Scheduling (PATS)
strategy that aims to reduce tardiness of all running tasks. We
use the notion of task efficiency in reconfigurable processors and
observe that it changes over time for a task. A task that has just
started executing a kernel (i.e. its required accelerators are not
yet loaded on the fabric) will have a low task efficiency, while
a task that has finished reconfiguring its accelerators will have
a high efficiency and thus execute faster compared to having a
low efficiency. Our scheduler favors executing tasks with high
efficiency (unless it would lead to a deadline miss for a low-
efficiency task), while tasks with low efficiency can perform
their reconfigurations in parallel to that and thereby become
high-efficiency tasks at a later time. PATS was compared
with Earliest Deadline First (EDF), Rate-Monotonic Scheduling
(RMS), and the scheduler used in the Molen processor1 on
reconfigurable processors with different fabric sizes and task-
sets with different deadlines. PATS achieves a 1.45× better

1M. Sabeghi, V.-M. Sima, and K. Bertels, “Compiler assisted runtime task
scheduling on a reconfigurable computer,” in Field Programmable Logic and
Applications (FPL), 2009, pp. 44–50.



tardiness on average (max: 1.92×, min: 1.14× better) than the
other schedulers.

For systems without deadlines, an important performance
metric is the makespan (i.e. the completion time) of a taskset.
To improve the makespan on a reconfigurable processor, we
use MORP, a combined task scheduling and fabric allocation
approach [1]. We observe that task efficiency is low after an
application switches from one kernel to another (as it requires
reconfiguration of accelerators for the new kernel), an effect we
call Reconfiguration-induced Cycle Loss (RiCL). By reducing
the RiCL of a taskset, we improve its makespan. The largest
potential for RiCL reduction is in complex tasks that switch
between different kernels during their execution time (e.g. video
encoders). Such tasks are scheduled by our approach as primary
tasks, which are initially assigned the full reconfigurable fabric.
Using profiling and light-weight online adaptation, the approach
predicts when the primary task will switch from one kernel
to another, and a short time before that, a small share of the
fabric is re-allocated to a secondary task. While accelerators of
the secondary task are reconfigured, the primary task completes
its current kernel. Upon switching to its next kernel, the task
efficiency of the primary task drops (as its required accelerators
are not yet available), and the system temporarily schedules the
secondary task, which by this point has a higher efficiency than
the primary task. The primary task reconfigures its accelerators
while the secondary task is running, re-acquiring the fabric share
of the secondary task at the end of its reconfigurations. At this
point, the system schedules the primary task as its efficiency is
high due to its completed configurations. Our approach achieves
an average makespan reduction by 6.5% and 20.3%, compared
to the SPT scheduler (Shortest Processing Time, optimal for
makespan minimization on a non-reconfigurable processor) and
the Molen scheduler, respectively.

III.DEPENDABILITY IN RECONFIGURABLE SYSTEMS

In [4], a test scheme has been developed and integrated into
the runtime system that schedules pre-configuration test (PRET)
and post-configuration test (PORT) to ensure a reliable recon-
figuration of the hardware accelerators with minimal impact
on performance. PRET tests exhaustively for structural faults
in the FPGA fabric prior to the instantiation of accelerators.
After the instantiation, a periodic PORT test scheme is applied
to test for faults in the container interfaces and errors in its
configuration bits. The time a fault remains undetected in the
system is reduced by up to two orders of magnitude at a
marginal performance impact of at most 4.4%.

Module Diversification [5] is a design method that enables
fault tolerance for permanent faults and aging mitigation. For
each accelerator, multiple diversified configurations, which dif-
fer in their CLB usage, are created such that any single can
be tolerated by using an alternative configuration. In addition,
the stress diversity in diversified configurations is exploited to
balance the stress among CLBs by optimally scheduling the
operation time of each configuration. Stress reduction by up to
69% is achieved, which translates to an increase in lifetime by
up to 222%.

GUARD [3] is a runtime system that guarantees the target
reliability of SIs while optimizing the performance. At runtime,

depending on the observed soft-error rate, the runtime system
adaptively determines the scrubbing rate and the redundancy de-
gree of accelerators (i.e. DWC or TMR for selected accelerators
based on their vulnerability) for the SIs, such that performance
is maximized for a given reliability constraint. Compared to
related work which statically optimizes fault tolerance, GUARD
provides up to 68.3% higher performance at the same target
reliability.

IV.CONCLUSION

In this work we have presented 1) two task schedulers
that improve soft-realtime capabilities and general performance
on reconfigurable processors and 2) multiple dependability im-
provement schemes aiming to address different short-term and
long-term dependability threats. In soft-realtime scenarios, the
PATS scheduler achieves 1.45× better tardiness than compara-
ble state of the art schedulers, while for makespan improvement
our MORP scheduler achieves 6.5% to 20% improvement.
Online testing reduces the time a fault remains undetected by up
to two orders of magnitude at a marginal performance impact
of at most 4.4%. With Module Diversification stress reduction
by up to 69% and up to 222% lifetime increase are achieved.
GUARD provides up to 68.3% higher performance at the same
target reliability in comparison to statically optimized fault
tolerance approach.

V. ACKNOWLEDGMENT

This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative
Research Center “Invasive Computing” (SFB/TR 89). This work
is supported in parts by the German Research Foundation
(DFG) as part of the priority program “Dependable Embedded
Systems” (SPP 1500).

SELECTED PUBLICATIONS
[1] A. Grudnitsky, L. Bauer, and J. Henkel, “MORP: Makespan opti-

mization for processors with an embedded reconfigurable fabric,” in
Proceedings of the 22nd ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA), 2014, pp. 127–136.

[2] M. Shafique, L. Bauer, and J. Henkel, “Adaptive energy manage-
ment for dynamically reconfigurable processors,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol.
33, no. 1, pp. 50–63, 2014.

[3] H. Zhang, M. A. Kochte, M. E. Imhof, L. Bauer, H.-J. Wunderlich,
and J. Henkel, “GUARD: guaranteed reliability in dynamically recon-
figurable systems,” in IEEE/ACM Design Automation Conference (DAC),
accepted, 2014.

[4] L. Bauer, C. Braun, M. E. Imhof, M. A. Kochte, E. Schneider, H. Zhang,
J. Henkel, and H.-J. Wunderlich, “Test strategies for reliable runtime
reconfigurable architectures,” IEEE Transactions on Computers (TC),
Special Section on Adaptive Hardware and Systems, vol. 62, no. 8,
pp. 1494–1507, 2013.

[5] H. Zhang, L. Bauer, M. A. Kochte, E. Schneider, C. Braun, M. E. Imhof,
H.-J. Wunderlich, and J. Henkel, “Module diversification: fault tolerance
and aging mitigation for runtime reconfigurable architectures,” in IEEE
International Test Conference (ITC), 2013, pp. 1–10.

[6] L. Bauer, A. Grudnitsky, M. Shafique, and J. Henkel, “PATS: a per-
formance aware task scheduler for runtime reconfigurable processors,”
in Field-Programmable Custom Computing Machines (FCCM), 2012,
pp. 208–215.

[7] A. Grudnitsky, L. Bauer, and J. Henkel, “Partial online-synthesis for
mixed-grained reconfigurable architectures,” in Design Automation and
Test in Europe Conference (DATE), 2012, pp. 1555–1560.

[8] J. Henkel, L. Bauer, M. Hübner, and A. Grudnitsky, “i-Core: a run-time
adaptive processor for embedded multi-core systems,” in Engineering of
Reconfigurable Systems and Algorithms (ERSA), 2011.


