
Migration-Aware WCET Estimation for
Heterogeneous Multi-Cores

Peter Munk∗†
∗Corporate Sector Research and Advance Engineering

Robert Bosch GmbH
70442 Stuttgart, Germany
peter.munk@bosch.com

Jan Richling†
†Communications and Operating Systems Group

Technische Universität Berlin
10587 Berlin, Germany
jan.richling@tu-berlin.de

Abstract—Heterogeneous Multi-Processor Systems-on-Chip
(MPSoCs) are increasingly used in the embedded safety-critical
domain with real-time constraints. Fault tolerance, temperature
distribution, and energy management in such systems can be
improved by reconfiguration mechanisms that rely on task
migration. In order to serve a migration request while meeting all
deadlines, the remaining worst-case execution time (WCET) must
be known as tightly bound as possible. We show that scaling the
WCET by a linear factor to compensate for migration between
heterogeneous cores can lead to dangerous underestimations. Our
approach is to split the WCET of a task into parts and derive
the WCET for all parts on all individual core architectures. We
present a formal model to show how the remaining WCET can
be calculated as the sum of unprocessed parts. We differentiate
between two levels of heterogeneity, namely same instruction set
architecture (ISA) with different performance characteristics and
different ISAs. We propose three implementation concepts to
partition a task, calculate the remaining WCET, and perform
the migration.

I. INTRODUCTION

An increasing number of today’s Multi-Processor Systems-
on-Chip (MPSoCs) contain heterogeneous cores with differ-
ent performance characteristics and architectures in order to
enable power-saving technologies and accelerate application-
specific tasks, e. g. in the multimedia processing domain. Such
processors invade embedded systems with real-time constraints
due to an increasing computational demand.

Scheduling protocols for hard real-time systems require the
a priori knowledge of the worst-case execution time (WCET).
In this paper, we address the fact that the remaining WCET
of a task that is migrated between heterogeneous cores is in
general not proportional to the difference of the cores’ perfor-
mance characteristics. The behavior of most real applications
varies over execution time, and most migration requests arrive
sporadically. Thus, it is difficult to find a linear scaling factor
that allows to determine a tight bound of the remaining WCET.

To show the inherent problem, we conducted the following
motivating experiment: We wrote a program that contains
three subroutines. The first routine, “Mem”, copies 1 KB
of memory, the second routine, “Calc”, repeats some integer
arithmetic functions one thousand times, and the third routine,
“Combined”, copies 1 KB of memory to a location calculated

The paper was presented at APRES 2014. Copyright retained by the authors.

Mem Calc Combined
0

20

40

60

80

100

W
C

E
T

/
10

3
cy

cl
es

ARM
AVR
Scaled

Figure 1. The WCETs of three different subroutines on an ARM7 TDMI and
an AVR ATMega128 compared to the scaled values for the AVR processor.

by some integer arithmetic function. The source code was
compiled using GCC with debug information but without
optimization or LibC. Bound-T [1] was used to derive the
WCET of the sample program on an ARM7 TDMI and
an AVR ATMega128. The ratio between the WCETs of the
ARM and the AVR version of the entire program is 1.72.
Figure 1 shows that scaling the WCETs of the subroutines
with this ratio is not exact. When migrating a task between
heterogeneous cores, the WCET also depends on the access
latency of other resources such as memory or I/O. For the
memory dependant subroutine, the real ratio between the ARM
and the AVR version is 1.85. This results in a longer WCET
than estimated by scaling. Thus, the scheduling policy cannot
guarantee to meet all deadlines, and hazardous situations could
arise.

Other hazardous situations can origin from imminent fail-
ures of cores in an MPSoC. In case these failures can be
detected in time, job-level migration, i. e. during the execution
of a task instance, allows to continue the execution on another
core while keeping interim results and thus enhances the
system’s adaptivity. Core failures can arise from thermal hot
spots on an MPSoC [2]. In order to manage the temperature
distribution on an MPSoC, task migration has shown to be
a useful method [2]. Furthermore, power-aware scheduling
algorithms need to move tasks between heterogeneous cores in

order to maximize energy efficiency [3]. Job-level migration
also allows to continue the execution of a job on a higher per-
formance processing element and thus enables the job to meet
its deadline which would not have been possible otherwise.
Altogether, these examples motivate research on migration-
aware WCET estimation for heterogeneous MPSoCs.

We propose a migration framework that is split into a moni-
toring and decision unit (MDU) and a migration execution unit
(MEU). The MDU requires the remaining WCET to derive its
decision of when and where to migrate a job—the decision
itself is based on criteria as sketched above. While the MDU
is out of scope of this paper, we address the question how
to derive the remaining WCET and how the MEU is able to
migrate between heterogeneous cores in general. We assume
all involved components to work without failures.

The contributions of this work are as follows:
• We propose a mechanism to increase the accuracy of

the estimation of the remaining WCET after a job-level
migration between heterogeneous cores by splitting the
overall WCET of a task into multiple parts.

• We discuss implementation concepts of our partitioning
idea at three levels, namely on (a) WCET analysis level,
(b) compiler level, and (c) library level.

The remainder of this paper is structured as follows: Sec-
tion II distinguishes between different levels of heterogeneity
and evaluates migration concepts for heterogeneous architec-
tures in general. Section III presents our general approach,
which can be implemented at different levels as we show
in Section IV. In Section V, we provide an overview of the
related work. Our conclusions are drawn in Section VI.

II. HETEROGENEOUS MIGRATION

In this section, we discuss two different levels of hetero-
geneity in an MPSoC and address their implications on job-
level migration.

A. Levels of Heterogeneity

We distinguish between cores with a common subset of the
ISA but a different architecture or operating frequency, and
entirely different ISAs.

An example for heterogeneous cores with identical ISA is
Nvidia’s Variable SMP platform, which contains five ARM
Cortex A9 cores. The fifth core is built in a special low power
silicon process and operates with reduced frequency to safe
power.

An example of an MPSoC containing cores with different
ISAs is Qualcomm’s Snapdragon S4. Apart from two general
purpose cores, it contains a digital signal processor (DSP),
a multimedia co-processor, and a graphics processing unit
(GPU).

B. Job-Level Migration

In general, job-level migration includes pausing the execu-
tion of the job, saving its current state, transferring the state
to the destination node, restoring the state, and resuming the
execution [4]. Note that we assume the hardware architecture

to provide features to transfer the state from one core to
another, e. g. a shared memory with global address space or a
communication infrastructure in hardware.

At the first level of heterogeneity, the OS can obtain the
state of the job in a similar way it does for context switches.
The state consists of the content of the register file, the job’s
stack, and the job’s dynamically allocated memory spaces.

On the second level of heterogeneity, migration is exacer-
bated by the need to save the job’s state in an ISA-independent
representation. There are different possibilities to migrate tasks
between cores with different ISAs.

First, the problem can be solved by using a common
intermediate language (CIL) and an interpreter [4]. This ap-
proach has the advantage that migration can be done at any
time, since the state is always present in an ISA-independent
representation. We assume that the language’s run-time system
or the interpreter is able to extract the state. An interpreted
program has the disadvantage that more memory space and a
longer execution time are usually required.

Second, the program can be compiled multiple times for
different architectures, which is also known as “fat binary”.
Migration is possible if a mapping between states from differ-
ent ISAs is known. By limiting migration to a specific set of
points in execution time, a mapping function can be derived
at compile-time.

III. APPROACH

In this section, we present a formal model to derive a
guaranteed remaining WCET. The complexity of the model
is increased stepwise.

Our key idea is to split a task’s overall WCET into multiple
parts pi ∈ P . Ignoring heterogeneous architectures and hard-
ware effects, the WCET (T) for task T is

∑n
i=1 pi, where

each part pi is element of the worst-case execution path and
n = |P | is the number of parts. We call the transition between
two succeeding parts a checkpoint ci ∈ C, so ci+1 − ci = pi.
Note that the checkpoints can be extended to those commonly
known from checkpointing and rollback mechanisms that are
used to enhance fault tolerance.

In case a part pi is repeated in a loop, the repetition
variable ri saves the number of unprocessed iterations. Thus,
the WCET can be derived by WCET (T) =

∑n
i=1 ripi. The

upper bound of repetitions is typically known in the real-time
domain, since it is required by static timing analysis tools.
In case of nested loops, the repetition variable represents the
product of the repetitions of all nested loops.

We assume that the remaining worst-case execution path
of each part is known and that the WCET of each part
can be derived for different heterogeneity levels by apply-
ing established techniques. Thus, each part is a vector with
values for all heterogeneous architectures a ∈ A, i. e. pi =
{p1i , . . . , pai , . . . , pmi }, where m = |A| is the number of
different architectures. If a job is migrated to an architecture a
when it reaches checkpoints ci, the remaining WCET equals

WCETremain(T, ci) =

n∑
j=i

rjp
a
j +WCMT, (1)

where paj are the parts on the remaining worst-case path.
WCMT is the worst-case migration time, i. e. the time
required to pause the job, save, transfer, translate, and restore
its state, and to resume the job on the destination core.

If a job is migrated to an architecture a between checkpoints
ci and ci+1, an upper bound of the remaining WCET can
be derived by (1) with the last passed checkpoint ci and the
remaining number of unprocessed iterations ri.

If caches and pipelining effects are taken into account, the
WCET without checkpoints is less than or equal to the sum
of the WCETs between the checkpoints, i. e. WCET (T) ≤∑n

i=1 rjp
a
i , since the static timing analysis tool has to as-

sume that the caches and the pipeline are not loaded after
each checkpoint. This overestimation could be mitigated by
calculating the remaining WCET for the entire remaining
worst-case execution path at once instead of summing up
the remaining parts as in (1). However, this leads to an
exponentially growing number of remaining WCETs.

IV. MIGRATION-AWARE WCET

In the following, we present different concepts how the
current position of the execution, i. e. which parts have already
been executed, can be determined, and how it can be applied
for the different levels of heterogeneity.

A. Static Timing Analysis Extension

The input of most static timing analysis tools is the compiled
executable of a task. After decoding the executable, its control
flow graph (CFG) is reconstructed. Each node in the CFG
equals a basic block (BB) that represents a sequence of
instructions with only one entry point and only one exit
point [5]. The remaining worst-case execution path and the
WCET of each BB is derived by static timing analysis tools
with additional information about the target processor. Thus,
a part pi as defined in Section III can simply be represented
as a BB. The number of BBs and remaining worst-case paths
can become rather large for real applications. To mitigate this
effect, a part can be represented by a group of contiguous BBs,
e. g. a small loop.

Since the static timing analysis tool is aware of the compiled
executable, the currently active part can be determined by the
value of the program counter (PC). If the currently active part
is inside of a loop, the number of left repetitions ri has to be
known to determine the remaining WCET. When a migration
request arrives, the number of unprocessed repetitions can be
conservatively estimated by the time passed since entering the
repeating section and the upper bound of repetitions.

The advantage of this method is that the source code does
not have to be changed. Migration is always possible, indepen-
dent of the time when the migration request arrives. In case
migration takes place between two checkpoints, the remaining
WCET can be determined by including the current part to the
sum of unprocessed parts as mentioned in Section III.

However, the same property also restricts the application
of this method to the first heterogeneity level, i. e. same ISA
but different performance characteristics. In general, there is

no possibility to find a mapping between all instructions of
different ISAs, and a restriction to checkpoints requires some
modification of the original source code.

B. Compiler Extension

The compiler is able to instrument intermediate code at all
transitions of consecutive parts, thus adding checkpoints ci.
Again, a part can represent one or more contiguous BBs of
intermediate code. Using multiple back-ends, this allows to
generate binaries for different ISAs with a common set of
checkpoints which can be analyzed by static timing analysis
tools. The currently executing part and the number of left
repetitions can be determined with the help of the instrumented
code.

Migration on the second heterogeneity level, i. e. different
ISAs, is restricted to the checkpoints. So a job can only
be migrated if it has reached a checkpoint. This way, the
remaining worst-case execution path on the new architecture
and the state are known at compile-time. Further, the compiler
is able to create a mapping and an intermediate representation
of the state to be transferred. This information can be saved
externally, e. g. in the MEU, in order to limit the increase
of the size of the executable. Restricting the migration to
checkpoints also leads to a more precise calculation of the
remaining WCET. Note that this method also allows and
enhances migration on the first heterogeneity level by applying
the same methods as in the previous approach and providing
a more accurate value of unprocessed repetitions.

One possible implementation to serve a migration request
is to set a flag when the request arrives at OS level. The flag
is checked by the instrumented code and if set, the migration
is performed in cooperation with the OS.

Another approach is to save the state whenever the execution
reaches a checkpoint independent of a pending migration
request. Once a request arrives, the OS immediately stops
the task’s execution and starts the migration based on the
previously saved state. While this also increases fault tolerance
if accompanied by established checkpoint and rollback mech-
anisms, it has to be carefully adjusted with non-idempotent
functions. Such functions interact with their environment, e. g.
by I/O or by inter-task communication and cannot be repeated
without side-effects. To cope with such functions, the compiler
adds a checkpoint after each non-idempotent command and the
OS delays migration requests during these commands. Thus,
non-idempotent commands are never interrupted by migration
requests and the time a request is pending is minimized.

C. Manual Definition

Instead of relying on automatic mechanisms at compiler
or static timing analysis level, the user can exactly specify
at which point in time of the task’s execution a migration is
permitted. Under the assumption that the user has additional
knowledge about which data has to be migrated and which
data can safely be neglected, the overall amount of data to be
transferred can be decreased.

To ease the specification of checkpoints in the source
code, the user is provided with a library that facilitates the

definition of migration points and the corresponding state.
The library also keeps track of the current iteration in case
a checkpoint is defined within a loop. Additionally, non-
idempotent commands can be encapsulated by the library to
ensure consistency with external states. Once the program is
compiled and the static timing analysis tool has determined
the WCETs of all parts on all architectures, this data is fed
back into the library, e. g. by saving the values to a specific
memory location.

The library offers an interface for the OS that allows
to retrieve and to instantiate a job’s state in a machine-
independent format. Additionally, the library provides the
remaining WCET. This does not restrict the first approach, so
migration on the first heterogeneity level is always allowed.

V. RELATED WORK

Process migration has been an active research topic since
the 1980s and has mainly focused on the high-performance
computing (HPC) domain [4]. The problem of process migra-
tion between heterogeneous machines has been addressed by
several projects, e. g. [6], [7]. While such approaches typically
rely on checkpointing mechanisms to transfer the process state
in a machine-independent format, the embedded domain and
the effects on real-time constraints are not addressed.

One of the first approaches to migrate tasks on an embedded
processor was presented by Bertozzi et. al [8]. Other projects
have proposed migration schemes for embedded MPSoCs
without a memory management units (MMU) and with focus
on streaming applications [9], [10] or without shared memory
[11], [12]. Due to a special model of computation, this can be
achieved without user-defined checkpoints [13]. However, all
of them focus only on homogeneous MPSoCs.

Gantel et. al [14] migrate tasks between heterogeneous
cores of an MPSoC on top of µC/OS-II. Migration requests
are pending until the execution has reached a user-defined
checkpoint. Similar to our work, the authors focus on real-time
applications. However, we argue that the authors only rely on
measurements, while our approach considers the WCET to
guarantee hard real-time constraints.

Kumar et at. [15] present two MPSoCs of the first level
of heterogeneity and propose a set of heuristics for dynamic
job-to-core assignment. The heuristics are based on measure-
ments derived from hardware performance counters during a
sampling phase. In this phase, the scheduler permutes the
job-to-core assignments. After the sampling phase, a new
assignment is derived for the following steady phase. We argue
that in contrast to [15], our approach is able to guarantee
hard real-time constraints since we consider WCETs instead
of measured runtimes.

VI. CONCLUSION

The remaining WCET after a job-level migration between
heterogeneous cores has to be known in order to meet all
deadlines of a real-time system even in case of migration. In
this paper, we showed why linear scaling of the remaining
WCET can lead to dangerous underestimation, even if the
cores only differ in performance characteristics.

We differentiated between two levels of heterogeneity,
namely a common ISA with different performance charac-
teristics and entirely different ISAs. We presented general
migration concepts for these levels. Our main idea to derive
the remaining WCET is to split the WCET of a task into parts
and derive the WCET for all parts on each heterogeneous core.
Thus, the remaining WCET equals the sum of the parts on the
remaining worst-case execution path. Based on the general mi-
gration concepts, we proposed three implementation concepts,
namely on (a) static timing analysis level, (b) compiler level,
and (c) library level.

The proposed mechanisms can also be used to estimate
the energy consumption on the destination core and thus
allow an optimization of the overall power efficiency. The
further investigation of these topics as well as a practical
implementation and evaluation of the proposed concepts is
ongoing work.

REFERENCES

[1] Tidorum Ltd., “Bound-T,” 2013. [Online]. Available: www.bound-t.com
[2] P. Chaparro, J. Gonzalez, G. Magklis, C. Qiong, and A. Gonzalez,

“Understanding the thermal implications of multi-core architectures,”
IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 8, pp. 1055–1065, 2007.

[3] O. Ozturk, M. Kandemir, S. W. Son, and M. Karakoy, “Selective
code/data migration for reducing communication energy in embedded
MpSoC architectures,” in Proc. of GLSVLSI, 2006, pp. 386–391.

[4] D. S. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou,
“Process migration,” ACM Comput. Surv., vol. 32, pp. 241–299, 2000.

[5] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem—overview of methods and survey of tools,”
ACM Trans. Embedded Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53,
2008.

[6] P. Smith and N. C. Hutchinson, “Heterogeneous process migration: The
tui system,” Software: Practice and Experience, vol. 28, no. 6, pp. 611–
639, 1998.

[7] H. Jiang and V. Chaudhary, “Process/thread migration and checkpointing
in heterogeneous distributed systems,” in Proc. of HICSS, 2004, pp. 1–
10.

[8] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali, “Supporting
task migration in multi-processor systems-on-chip: A feasibility study,”
in Proc. of DATE, 2006, pp. 15–20.

[9] M. Pittau, A. Alimonda, S. Carta, and A. Acquaviva, “Impact of task
migration on streaming multimedia for embedded multiprocessors: A
quantitative evaluation,” in Proc. of ESTIMedia, 2007, pp. 59–64.

[10] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau, “Assessing task
migration impact on embedded soft real-time streaming multimedia
applications,” EURASIP J. Embedded Syst., vol. 2008, pp. 9:1–9:15,
2008.

[11] N. Saint-Jean, P. Benoit, G. Sassatelli, L. Torres, and M. Robert, “MPI-
based adaptive task migration support on the HS-scale system,” in Proc.
of ISVLSI, 2008, pp. 105–110.

[12] G. M. Almeida, S. Varyani, R. Busseuil, G. Sassatelli, P. Benoit,
L. Torres, E. A. Carara, and F. G. Moraes, “Evaluating the impact of
task migration in multi-processor systems-on-chip,” in Proc. of SBCCI,
2010, pp. 73–78.

[13] O. Derin, E. Cannella, G. Tuveri, P. Meloni, T. Stefanov, L. Fiorin,
L. Raffo, and M. Sami, “A system-level approach to adaptivity and
fault-tolerance in NoC-based MPSoCs: the MADNESS project,” Micro-
processors and Microsystems – Embedded Hardware Design, vol. 37,
no. 6–7, pp. 515–529, 2013.

[14] L. Gantel, S. Layouni, M. E. A. Benkhelifa, F. Verdier, and S. Chau-
vet, “Multiprocessor task migration implementation in a reconfigurable
platform,” in Proc. of ReConFig, 2009, pp. 362–367.

[15] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance,” in Proc. of ISCA, 2004, pp. 64–76.

www.bound-t.com

	Introduction
	Heterogeneous Migration
	Levels of Heterogeneity
	Job-Level Migration

	Approach
	Migration-Aware WCET
	Static Timing Analysis Extension
	Compiler Extension
	Manual Definition

	Related Work
	Conclusion
	References

