
Dynamic Power Management for Thermal Control of

Many-Core Real-Time Systems

Matthias Becker∗, Kristian Sandström†, Moris Behnam∗, Thomas Nolte∗†

∗MRTC / Mälardalen University, Västerås, Sweden

{matthias.becker, moris.behnam, thomas.nolte}@mdh.se
†Industrial Software Systems / ABB Corporate Research, Västerås, Sweden

kristian.sandstrom@se.abb.com

Abstract—Many-core systems, processors incorporating nu-
merous cores interconnected by a Network on Chip (NoC),
provide the computing power needed by future applications. High
power density caused by the steadily shrinking transistor size,
which is still following Moore’s law, leads to a number of problems
such as overheating cores, affecting processor reliability and
lifetime. Embedded real-time systems are exposed to a changing
ambient temperature and thus need to adapt their configuration
in order to keep the individual core temperature below critical
values. In our approach a hysteresis controller is implemented
on each core, triggering a redistribution of the cores’ workload
and the transition into an idle state allowing the core to cool
down. We propose two approaches, one global and one local
approach, to redistribute the tasks and relive overheating cores
during runtime. We evaluate the two proposed approaches by
comparing them against each other based on simulations.

I. INTRODUCTION

Thermal management becomes increasingly important for
embedded real-time systems. The growing demand of comput-
ing power and the ongoing reduction of transistor size allows
chip manufacturers to integrate multiple processor cores on
one chip. The next generation of those parallel chips will
accommodate numerous simple cores. This allows for more
computing power but brings also new challenges due to the
increasing power density on the die and the accompanying
heat generation.

The shared bus as a traditional interconnection medium on
the System-on-Chip (SoC) experiences scalability problems as
the number of connected elements grows. Since the bus is
a shared medium, contention delays start to dominate. The
Network-on-Chip (NoC) was proposed to solve this problem
and to allow for reliable interaction between the different
elements on the SoC [1]. Each element is connected to a
router, routers are connected to each other and thus a network
is formed. The processor cores are located on so called tiles,
together with a cache subsystem, Fig. 1(a). Most recent many-
core processors [2]–[4] use a 2D-Mesh network to connect the
different cores. Each router, besides the ones on the edges, has
a connection in each cardinal direction plus a connection to the
tile, Fig. 1(b). Since each router only needs to service those
connections, it is independent of the number of tiles and thus
large networks are possible.

Due to cost and space limitations most embedded sys-
tems need to operate without heavy cooling equipment. High
temperatures on the die decreases the system reliability and

The paper was presented at APRES 2014. Copyright retained by the authors.

Core

Memory

Router

(a) One tile of a NoC (b) Tiled many-core architecture

Fig. 1. Architecture of a many-core processor using a 2D-Mesh NoC

lifetime [5], [6] and thus special attention should be given
to thermal management in order to reduce cost and increase
reliability. In this work we propose an approach to bound
the maximum temperature of the individual processor cores
by deploying a hysteresis controller on each core. If one
core reaches a predefined threshold temperature, the proposed
mechanism is activated and the core migrates all its tasks to
other cores before it transits into an idle state in order to cool
down.

II. RELATED WORK

Much research has been conducted in the field of thermal
aware single core scheduling. Most work applies Dynamic
Voltage Scaling (DVS) on both single- and multicore proces-
sors [7]–[9]. Dasari et al. [10] look at the different sources
of unpredictability of current off-the-shelf multicore systems.
They first emphasize the importance of effective thermal
control for safety critical systems and then look at the power
saving strategies available on such hardware including a list
of existing work in both power and thermal management for
multicore processors. Fisher et al. [11] propose a thermal aware
scheduling algorithm for sporadic real-time tasks targeting
homogeneous multicore systems with the goal to reduce peak
temperature. Fu et al. use thermal control to avoid overheat-
ing and thus frequency throttling of single core processors
by applying feedback loops [9]. Both temperature and CPU
utilization are controlled by their algorithm. They later present
their novel Real-Time Multicore Control (RT-MTC) framework
to handle the challenges introduced by multicore systems [8].
Yun et al. [12] predict the thermal dynamics of each core of
a multicore processor using machine learning techniques. The
thermal profile of each task is then used to predict if one core
will overheat, before the next protocol invocation. If the core

is expected to overheat, adequate steps like Dynamic Voltage
and Frequency Scaling (DVFS) or clock gating are performed.
However scaling the frequency during runtime is a crucial step
for real time systems. A different frequency leads to variations
in execution time, affecting latency and introducing jitter. Jeon
et al. [19] propose a load unbalancing scheme to minimize
power consumption of multicore processors. They adapt the
number of active cores by concentrating the current load on
as few cores as possible while disabling all additional cores.
However they did not look at temperature effects.

III. ASSUMPTIONS AND SETUP

A. Hardware Assumptions

In this work we assume a 2D-Mesh network structure
supporting n identical cores. Each tile contains one processor
core and a local scratchpad memory, similar to Adaptevas
Epiphany chip [4]. The NoC uses wormhole switching [13]
as wormhole switching is currently used by most available
hardware [2]–[4]. In wormhole switched networks the message
is divided into small elements, so called flits. A header flit
contains information about the destination of the message and
is used to route the message through the network. It locks the
channel during its traversal, so all other flits can follow in a
pipelined fashion with a tail flit freeing the locked channels
again. If the header flit encounters a channel already locked
by a different message, it blocks till the channel gets free.
The static and deterministic XY-routing is implemented to
guarantee deadlock and livelock free operation. We further
assume that the processor offers capabilities to adjust the clock
speed at core level.

B. Task Model

We assume N independent periodic tasks to be scheduled
on the many-core platform. Each task τi can be executed
on any core. Migration to other cores is allowed after the
execution of one job finished and before the beginning of a
new period. Γ denotes the set of all N tasks. Each task can
be described by the tuple τ = {Ci, Ti} where Ci is the worst-
case execution time and Ti is the task period. The utilization
for a task τi is calculated by Ui = Ci/Pi. We further assume
deadlines equal to periods.

C. Mapping and Scheduling

We apply partitioned scheduling. Each core i schedules
its own set of tasks Si ∈ Γ. Without loss of generality
we assign task priorities according to the rate monotonic
priority assignment, and scheduling is done using fixed priority
preemptive scheduling [14].

The initial task mapping is done according to the First Fit
Decreasing Utilization (FFDU) algorithm. First the task set
Γ is sorted by its utilization in decreasing order. Tasks are
assigned one by one, starting with the first core as long as the
task set on that core stays schedulable including the new task.
If this is not the case, the next core is used to assign the task.

D. Thermal Model

We consider a many-core architecture as depicted in Fig.
1(b) with one heat sink, a cooling element, on each core. By
modeling the cooling element out of multiple small connected

elements, we get a more accurate temperature on the individual
locations. The heating and cooling process is a complicated
dynamic procedure since the neighboring cores affect each
others temperature. A way to model this behavior is the usage
of Fourier’s Law, which is done in most related work [11],
[15]. We use the model and notation defined in [11].

The thermal model consists of cores and heat sinks con-
nected by thermal conductances. The temperature on the core
j and heat sink h at time t is defined as Θj(t) and Θh(t). The
core j consumes the power Ψj(t) at time t and thus heats up.
This heat energy is then emitted to the neighboring cores and
to the connected heat sink. The heat sink itself is a passive
heat sink emitting heat to the environment which we assume
to be at a fixed temperature Θa.

Fisher et al. define the set of cores M = {1, 2, 3, . . . , n}.
The thermal conductance between two cores j ∈ M and l ∈
M is defined as Gj,l where Gj,l = Gl,j . The capacitance of
core j ∈ M is Cj .

H = {1, 2, 3, . . . , n} is defined as the set of heat sinks.
We define the thermal conductance of each heat sink to the
environment as G†. The set of heat sinks connected to core j
is defined as Hj . Similar to the cores, neighboring heat sinks
affect each other. This is modeled by the thermal conductance
Gh,g between sinks h and g, where Gh,g = Gg,h.

In a simplified way we can say that the change in temper-
ature is calculated by the energy put into the system minus the
energy emitted to neighboring cores and to the connected heat
sinks. The following equations describe the thermal process

on the core using Fourier’s Law where
dΘj(t)

dt is the derivative

of the temperature on core j and
dΘh(t)

dt is the derivative of
the temperature of the heat sink h

Cj

dΘj(t)

dt
= Ψj(t)−

∑

h∈H

Hj,h(Θj(t)−Θh(t))−
∑

l∈M

Gj,l(Θj(t)−Θl(t)) (1)

Ch

dΘh(t)

dt
= −G†(Θh(t)−Θa)

−
∑

j∈M

Hj,h(Θh(t)−Θj(t))

−
∑

g∈H

Gg,h(Θh(t)−Θg(t)) (2)

One of the parameters used by the thermal model is the
power consumed by the respective core. The consumed power
of one core can be divided into two parts, dynamic Ψdynamic

and static Ψstatic power, where the dynamic power depends on
the frequency [16] and the static power depends on the leakage
current. Since the static power grows with shrinking transistor
size it can not be neglected [17]. We use the approximations
Ψdynamic ≈ C · f · V 2

dd and Ψstatic ≈ I · Vdd to describe
the dynamic and static power consumption, where C is the
switched capacitance at each clock cycle, the clock frequency
is denoted by f , Vdd denotes the supply voltage and I the
leakage current.

Since we consider only two processor states, active and
idle, we can define two static power levels to be used (3). In

order to account for the workload on the individual core and its
impact on the power consumption we weight Ψdynamic with
the cores utilization. This simplification neglects the power
characteristics of the individual applications and the relation-
ship between temperature and consumed power; however it is
sufficient for the purpose of this work.

Ψi =

{

Ψactive ·
∑

∀j∈Si
Uj +Ψstatic if active

Ψstatic if idle
(3)

IV. THERMAL AWARE APPROACH

The main goal of our approach is to keep the temperature of
the individual cores below a critical value and thus improving
system reliability and lifetime [5], [6] while meeting all
deadlines. To achieve this, we apply feedback control on each
core. As a first approach we use a hysteresis controller and
limit the processor states to active and idle, achieved by clock
gating. It is further assumed that each tile is equipped with a
temperature sensor.

A. Hysteresis Controller

We implement an hysteresis controller on core level. Two
thresholds are used, κlow and κhigh, both are design parame-
ters. If the temperature Θj of core j exceeds κhigh, the core
initiates a migration of its load and transitions into an idle
state in order to cool down. If Θj falls under κlow, the core
is activated again.

B. Migration Costs

Locality is a big factor for NoC based many-core proces-
sors. Thus we have to consider this for the migration, since
migrating a task to a core far away might cause deadlines to
be missed.

A task can only migrate between instances of job exe-
cutions. Thus we do not need to take a context switch into
account. The tasks’ context is located in the local memory of
the tile and thus needs to be transfered to the destination tile.
We assume that the location of the code is in external memory
and that it does not need to be migrated.

The lack of communication between the tasks allows us to
assume a contention free network since task migration is only
performed as part of the thermal management which should be
enacted sparsely. Thus we can neglect contention delays and
only consider the basic network latency as described by Shi
and Burns [18]:

Pd =

⌈

Li

f

⌉

· f
b
+HMD · S (4)

where Pd is the time needed to migrate τi to core d, Li is the
size of the task context, f the flit size and b the bandwidth.
HMD denotes the hops, the manhattan distance, between the
two cores and S the constant delay incurred on each router.
τi can migrate to core d if inequation t mod Ti ≥ Pd is true.
Some tasks with high utilization might not be able to migrate
to any core. In this case all other tasks are migrated and the
core stays active handling only those tasks.

C. Deciding the Destination Cores

Before we can send a core i into an idle state we need to
migrate all tasks ∈ Si to suitable cores so no deadlines are
missed. As we assume rate monotonic priority assignment we
can use a similar method as Jeon et al. [19] and exploit the
utilization threshold

∑

∀j∈Si
Uj ≤ n(n

√
2− 1) to check if one

task can be scheduled on a core, where n = |Si|.
1) Global Approach: Since global knowledge is difficult

to maintain in such systems each core acts independently. If
migration is initiated, the core sends a broadcast message to
obtain the current temperature and utilization of all other active
cores in the system. Proceeding like this gives the advantage
of not needing to know what cores are active and thus if it is
possible to respond at the moment.

A response message ri of core i can be described as a tuple
ri = {Θi, Ui} where Θi is the temperature of the core and Ui

is its current utilization. R denotes the set of all responses.

In order to select suitable destination cores for all tasks
τk ∈ Si, the overheated core i sorts its task set in decreasing
order by utilization (Algorithm 1). Similar to FFDU we try
to allocate the largest task first. In order to find a suitable
destination core the set of all cores which can provide enough
resources for τk are selected according to the utilization
threshold. We further select the subset containing all cores that
are close enough to guarantee task migration before the next
instance of τk starts. The core d ∈ D with least Θ is selected
as destination core.

Algorithm 1 Global Task Distribution Approach

1: R = request states
2: sortdec(Si, U)
3: for ∀τk ∈ Si do
4: Dsched = {ri|

∑

∀j∈Si
Uj + Uk ≤ (n+ 1)(n+1

√
2− 1)}

5: D = {d|d ∈ Dsched ∧ t mod Td ≥ Pk}
6: if D 6= ∅ then
7: d = min(D,Θ)
8: migrate(τk, d)
9: end if

10: end for
11: if Si = ∅ then
12: transition(idle)
13: end if

2) Local Approach: To minimize the communication over-
head we propose a second approach as described in Algorithm
2. A request message is sent to only one core, which is selected
based on its distance to the overheated core i. As in the global
approach this core replies the tuple rj = {Θj , Uj} which is
used by core i to evaluate if tasks can be migrated or not. For
this decision Si is sorted by utilization in decreasing order and
tasks are assigned to core j as long as the core has efficient
resources to schedule them. If the core can not support more
tasks but Si is not empty, the next core is selected.

V. EVALUATION

To evaluate the two approaches, we compare the resulting
average peak temperature at different average utilization levels
against measurements without implemented heat controller.
Additionally the message overhead of the global and local

Algorithm 2 Local Task Distribution Approach

1: C = sortdistance(cores,HMD)
2: while Si 6= ∅ ∨ C 6= ∅ do
3: c = min(C, HMD)
4: r = requestState(c)
5: while checkSchedulability(c,min(Si)) do
6: τk = min(Si)
7: Si = Si \ τk
8: migrate(τk, d)
9: end while

10: end while
11: if Si = ∅ then
12: transition(idle)
13: end if

approach is compared. All measurements are based on sim-
ulations. The task sets were generated randomly with task
utilization uniformly distributed by (0, 0.7] and the tasks period
uniformly distributed by [20, 100]ms, with 1000 task sets for
each data point. Like in [20] we pick 85 ◦C as the maximum
silicon temperature. Due to space limitations only a platform
with 8 × 8 layout, κlow = 50 ◦C and κhigh = 70 ◦C was
evaluated. The thermal parameters were chosen based on
similar hardware.

T
em

p
er

at
u
re

in
◦
C

N
u
m

b
er

o
f

M
es

sa
g
es

Utilization in %

no controller

global distribution

local distribution

local msg. overh.

global msg. overh.

60

65

70

75

80

85

5 10 15 20 25 30 35 40 45 50 55 60

0

10

20

30

40

50

60

70

Fig. 2. Simulation results of different core utilizations

Fig. 2 shows the respective peak temperature curves for
the three measured scenarios. The peak temperature of the
two proposed approaches behave very similar, which is to
expect since they only differ in the distribution strategy. Both
outperform the system without thermal control up until the
point when no suitable cores for load migration can be found.
Looking at the average number of messages that the two
approaches send at average we see that the local approach
clearly outperforms the global approach.

VI. CONCLUSION AND FUTURE WORK

The high energy density on many-core chips lead to a
number of proposed approaches to manage the emerging heat.
We first give suitable models to represent the involved com-
ponents and then propose a method to increase the reliability
and lifetime of many-core embedded real-time systems based
on thermal management of the individual cores. Each core is
equipped with a hysteresis controller used to switch between
the processors idle and active state, allowing the core to cool

down in the idle periods. Two strategies to safely migrate the
real-time tasks before transitioning into idle state are proposed.

Future research will investigate if earlier migration of a
subset of tasks can prevent the core of reaching the critical
temperatures and thus allowing more reliable execution. We
further want to extend the presented approach to support a
more realistic task model and we want to consider depen-
dencies between tasks. This is important especially for many-
core processors where contention delays and longer distances
between the two communicating cores can cause messages to
miss their deadlines. This has to be taken into account in the
decision of selecting the destination core before migration.

ACKNOWLEDGMENT

The work presented in this paper is supported by the
Knowledge Foundation via the research project PREMISE.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chips: a new soc paradigm,”
IEEE Comp. J., vol. 35, no. 1, 2002.

[2] Intel. Single chip cloud computer.
http://www.intel.com/content/www/us/en/research/intel-labs-single-
chip-cloud-computer.html, Retrieved February 5, 2014.

[3] Tilera. Tile64 processor.
http://www.tilera.com/products/processors, Retrieved February 5, 2014.

[4] Epiphany Architecture Reference, Adapteva Inc., Adapteva Inc. 1666
Massachusetts Ave, Suite 14 Lexington, MA 02420 USA, 2012.

[5] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for
lifetime reliability-aware microprocessors,” in 31st ISCA, 2004.

[6] F. J. Mesa-Martinez, E. K. Ardestani, and J. Renau, “Characterizing
processor thermal behavior,” SIGPLAN Not., vol. 45, no. 3, 2010.

[7] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Power-
aware scheduling for periodic real-time tasks,” IEEE Transactions on

Computers, vol. 53, no. 5, 2004.

[8] Y. Fu, N. Kottenstette, C. Lu, and X. D. Koutsoukos, “Feedback thermal
control of real-time systems on multicore processors,” in 10th EMSOFT,
2012.

[9] Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X. Koutsoukos, and H. Wang,
“Feedback thermal control for real-time systems,” in 16th RTAS, 2010.

[10] D. Dasari, B. Akesson, V. Nelis, M. Awan, and S. Petters, “Identifying
the sources of unpredictability in cots-based multicore systems,” in 8th

SIES, 2013.

[11] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele, “Thermal-aware global
real-time scheduling on multicore systems,” in 15th RTAS, 2009.

[12] B. Yun, K. Shin, and S. Wang, “Predicting thermal behavior for
temperature management in time-critical multicore systems,” in 19th

RTAS, 2013.

[13] L. Ni and P. McKinley, “A survey of wormhole routing techniques in
direct networks,” IEEE Comp. J., vol. 26, no. 2, 1993.

[14] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, 1973.

[15] T. Chantem, R. Dick, and X. Hu, “Temperature-aware scheduling and
assignment for hard real-time applications on mpsocs,” in DATE, 2008.

[16] E. Grochowski, R. Ronen, J. Shen, and P. Wang, “Best of both latency
and throughput,” in 22nd ICCD, 2004.

[17] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,
M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets
static power,” IEEE Comp. J., vol. 36, no. 12, 2003.

[18] Z. Shi and A. Burns, “Real-time communication analysis for on-chip
networks with wormhole switching,” in 2nd NOCS, 2008.

[19] H. Jeon, W. H. Lee, and S. W. Chung, “Load unbalancing strategy
for multicore embedded processors,” IEEE Transactions on Computers,
vol. 59, no. 10, 2010.

[20] W. Huang, K. Skadron, S. Gurumurthi, R. Ribando, and M. Stan,
“Exploring the thermal impact on manycore processor performance,”
in 26th SEMI-THERM, 2010.

