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Abstract—The connectivity of a wireless sensor network (WSN),
specified as the percentage of nodes that are able to reach the base station
(BS) that relays nodes data to other networks, has to be kept as high as
possible, without either increasing significantly the energy consumption or
worsening the WSN overall performance. Modelling accurately a WSN
and designing a control system for accomplishing the desired network
connectivity is an effortful task. In this paper, an approach based on
fuzzy logic control is proposed, as it provides a better trade-off between
accuracy, effort and time. The control system running in each node will
manage both the communication range to guarantee a minimum number
of neighbors called node degree, and the node degree itself, depending on
the node’s battery level at each moment. The fuzzy controller running in
a node will monitor the own node’s parameters, without flooding WSN
with monitoring messages.

I. INTRODUCTION

One of the target when designing, deploying and exploiting a
Wireless Sensor Network (WSN) is to maximize the number of nodes
that are able to transmit or receive data to or from the base station
(BS) in such a network, considering the BS as an element in the
network acting as a gateway between the WSN and any other data
networks. Unfortunately, the number of connected nodes in a WSN
(nodes that are able to send or receive data to or from the BS) would
decrease over time as nodes relaying messages crash or fail due to
hardware failures, battery discharge, software bugs and so forth.

There are several approaches and strategies that will minimize
such risks and will improve the WSN connectivity. Most of them are
high resource consuming as nodes are checking their availability of
reaching a BS from time to time. The network is flooded with control
messages that impact negatively on the performance and the energy
efficiency of all the nodes in the path. There are others, like the one
presented in the following sections, that provide a better trade-off
between the network connectivity and the resource consumption. The
strategy in this paper aims at keeping constant the node degree (ND)
of a node, its number of neighbors. The node degree depends on the
WSN deployment (regular, random, etc.), the area to be covered and
the number of nodes. So, the desired node degree will be calculated
for the specific WSN to be deployed and that value will become
the target of the self-adaptive system. Intuitively, if a node has a
higher degree (indicates more neighbors), it is more likely that there
are at least one path for it to transmit data to the destination. If
all nodes are randomly and uniformly deployed, the probabilistic
approach to analyze the relation between the node degree and the
network connectivity is fully described in [1].

The self-adaptive system presented in this paper aims to control
the communication range of each node to manage its degree, in
order to recover the link when its neighbors fail. Whenever a node’s
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neighbor fails, the communication range of that node is increased to
replace the failing neighbor. Therefore the node’s energy consumption
is likely to increase. If the desired node degree, whose value is
estimated before the nodes deployment as mentioned above, is kept
constant all the time, the battery might become exhausted too short.
Thus, the desired node degree has to be adjusted in run time taking
into account the battery level and the desired lifetime of autonomous
nodes. Note that directly changing communication range usually is
not feasible, instead the transmission power is the parameter can
be controlled in real sensor nodes. In this paper, we employed
the transmission power model in the literature [2], in which the
transmission power is linear function of square of the communication
range.

The basic idea of the control system is that if the node degree is
higher than the expected node degree, then the communication range
has to be decreased; if the node degree is lower than the expected
node degree, then the communication range has to be increased. The
desired node degree will depend on the energy of the node. How fast
and how long the communication range changes, is decided by the
controller, e.g. fuzzy logic based controller.

II. CONTROL SYSTEM DESIGN AND EVALUATION

A. Control System Design

The control of the node degree increases the robustness of the
network (or reliability) and also the network connection probability
[1], [3], [4]. This parameter could be controlled by varying the
transmission power or communication range of the node. The relation
between those variables has been characterized by a probability
density functions, they have nonlinear dynamic relation and is highly
topology depending [1], [5].

An alternative to face this issue is to design a control system
based on single feedback loops for self-adaptation of communication
range against dynamic changes in the links with the neighboring
nodes. A basic feedback control loop should contain a function of
decision-making (FDM) which provides a variation factor of the
communication range (∆cr) as output and the node degree error
(eND) as input (i.e. the difference between the desired value NDR

and the real one ND). Figure 1 describes a graphical representation
of the relationship between the node degree and the variation on
its communication range. The communication range of node N1

at consecutive sample instants is represented by the dashed circles
and the node degree are the number of links (solid line) with its
neighboring nodes. The disk model is widely adopted to simplify
the radio model, although the communication range is more likely to
be irregular [6], omnidirectional [7], or asymmetric [8] in reality.
However, the disk model does not directly have negative impact



Figure 1. The relation between variation of the communication range and
the node degree.
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Figure 2. Reconfiguration loops for a self-adaptive communication range.

on our controller design, because the controller inputs that needed
to measure are node degree and energy, rather than communication
range.

Additionally, another single feedback loop can be added to
perform the task of modifying the desired value for the node degree
according to the battery level (E). The aim of this action is to reduce
the device power consumption when the battery is under a certain
energy critical level (Ecr). A reduction of the node degree means
to reduce the device communication range by reducing the signal
transmission power. Hence, this represents a reduction of the energy
consumption and an increment in the battery lifetime. The controller
(FDM hereinafter) of this loop receives the difference between a
battery critical level (Ecr) value and the actual battery level (E) as
input.

Figure 2 illustrates both reconfiguration closed loops with two
FDM strategies, a “primary” loop for the calculation of ∆cr (FDM1)
and another or “secondary” loop to determine the desired or reference
value of the node degree (FDM2).

Within the primary reconfiguration loop, the communication
range can be updated at certain time instant k as follow:

eND(k) = NDR(k)−ND(k) (1)

e1(k) = kNDeND(k), ∆cr(k) = kcr∆u1(k) (2)

∆u1(k) = fDM1

(
e1(k)

)
(3)

CR∗(k) = cr(k) + CR0

cr(k) = cr(k − 1) + ∆cr(k)
(4)

CR(k) =


CRmin, CR∗(k) < CRmin

CR∗(k), CRmin ≤ CR∗(k) ≤ CRmin

CRmax, CR∗(k) > CRmin

(5)

At the above equations, CR0 is the initial value of the communi-
cation range and fDM1 represents the FDM1 function. The function
input e1 is the normalized node degree error and the output ∆u1 is the
normalized communication range variation factor. Also, the value of
CR is saturated between its minimum value CRmin and maximum
value CRmax. kND and kcr are normalization or scale factors for
the input and the output respectively. Both factors can be calculated
as:

kND = 1/ND, kcr = ∆cr (6)

where ND represents the nominal or desired value of the node degree
when the battery has a critical energy level (Ecr). Factor ∆cr is the
communication range variation rate.

The secondary loop tunes the desired value for the node degree
according to the battery level and can be formalized as follow:

eE(k) = Ecr − E(k) (7)

e2(k) = kEeE(k), ∆nd(k) = k∆nd∆u2(k) (8)

∆u2(k) = fDM2

(
e2(k)

)
(9)

NDR(k) = ND +∆nd(k) (10)

where eE is the difference between the battery critical level and the
actual level and ∆nd is the node degree variation factor. Besides,
fDM2 represents the FDM2 function where its input e2 is the
normalized or scaled value of eE and output ∆u2 is the scaled node
degree variation factor. kE and k∆nd are scale factors for the input
and the output respectively. Both factors can be calculated as:

kE = 1/Ecr, k∆nd = ∆nd (11)

where ∆nd is the node degree variation rate.

In general terms, both loops can be seen as a function which
receives the actual values of ND and E as inputs, returning a new
value of CR as output and requiring a set of parameters P:

CR(k) = g
(
ND(k), E(k),P

)
P =

[
CR0, ND,Ecr,∆cr,∆nd,

CRmin, CRmax

] (12)

where the complete parameters list is: initial value of the commu-
nication range (CR0); desired value of the node degree when the
battery has a critical energy level (ND); critical energy level (Ecr);
communication range variation rate (∆cr); node degree variation rate
(∆nd); minimum and maximum value of the communication range
(CRmin and CRmax).

B. Decision-Making based on Fuzzy Logic

The relation between the input (e) and the output (∆u) for both
decision making functions (fDM1 and fDM2) can be as simple as:

∆u =


−1, e < 0
0, e = 0
1, e > 0

(13)

However, in order to handle with uncertainty in certain points
of the input variable space, we can divide it into regions with
fuzzy boundaries between them and therefore use Fuzzy Logic as
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Figure 3. Trapezoidal-shape distribution function and probability density
function.

mathematical tool for decision making [9], [10]. In the specific case
of the proposed control system, and according to the classification
for fuzzy linguistic controller (FLC) proposed by Wang et al. [11],
in the primary loop the fuzzy algorithm will be used for feedback
error/output control (Type 2 FLC) and in the secondary loop for input
selection task (Type 1 FLC).

As equation (13) suggests, the input space can be partitioned
in three regions or fuzzy sets (FS): negative values (NV), zero
values (ZV) and positive values (PV). The degree or probability of
membership of a value of e at certain instant k to any partition can
be calculated with a probability distribution. Some of the candidate
distributions very well known in the literature related to decision-
making based on fuzzy logic (FL-DM) are the Gaussian distribution,
triangular-shape distribution, a trapezoidal-shape distribution or the
generalized bell distribution [12].

Due to its simplicity for implementation and its low computational
load of mathematical operations, the trapezoidal-shape probability
distribution is a good candidate to define the input regions. Figure
3 describes the probability density function and its graphic represen-
tation of the trapezoidal-shape distribution.

Employing this function we can define a distribution or mem-
bership function (MF) for each partition. The boundaries of each
fuzzy partition and the parameters of its probability density function
is defined in Table I.

Fuzzy set MF a b c d Boundaries
NV µNV (e) -4 -2 -0.5 -0.25 e < −0.25
ZV µZV (e) -0.5 -0.25 0.25 0.5 −0.25 ≤ e ≤ 0.25
PV µPV (e) 0.25 0.5 2 4 e > 0.25

Table I. PARAMETERS FOR EACH MEMBERSHIP FUNCTION

Moreover, the output variable ∆u can be treated in a linguistic
way by assigning labels to the possible values that ∆u can achieve.
The output space can be defined as: function fNC for negative change
(NC), fZC for none or zero change (ZC) and fPC for positive change
(PC). According to this, equation (13) can be transformed as:

∆u =


fNC = −1, e ∈ NV
fZC = 0, e ∈ ZV
fPC = 1, e ∈ PV

(14)

FL-DM function defined above has been designed and evaluated
in the Matlab Fuzzy Logic Toolbox. The FL-DM function is a Sugeno
type Fuzzy Inference System (FIS) of one input and one output and
three rules. The algebraic product has been selected as AND logic
connective for the rules precedent calculation and for rule implication
and the function output value is calculated as a weighted average of
all rules.
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Figure 4. Matlab-based simulation tool

C. Control System Simulation and Evaluation

1) Matlab-based Simulation Environment: In order to evaluate the
control system, a Matlab-based simulation tool has been implemented
(see Figure 4) to facilitate the design and validation without consid-
ering the underlying WSN protocols. Our simulation tool is able to
configure the control system parameters and the network parameters
such as the number of the nodes to be deployed in the network, the
size of the area where sensor nodes will be deployed, etc. It also
visualizes the simulation process and analyzes the results once the
simulations are finished.

In order to evaluate the performance of the control system, the
simulation-based experimental platform were set up and configured as
follows: (1) 32 sensor nodes randomly are deployed in a 100×100m2

area. The Base Station (BS) is always located at the centre of the de-
ployment area. (2) Each sensor node was randomly assigned an initial
communication range with values within configurable boundaries, e.g.
[10,30]. (3) The node’s battery is fully charged at the beginning of
each simulation. (4) The deployed nodes start transmitting packages
to the BS if there is a routing path available. If there are more than
one paths to the BS, then the node chooses the shortest path. (5) The
sensor stops sending package when it runs out of battery. (6) The
whole simulation is terminated when there is no packages received
at the BS side.

With the aim of comparing the network performance, the simula-
tion tool simulates two times on the same network topology, with
the same configuration parameters: the first time without control
algorithm and the second time with the control algorithms on each
node, e.g. control loops based on Fuzzy Logic. The sub-figures at
top-left, top-right and bottom-left in Figure 4 show respectively the
original deployment of the nodes, the links and status of the nodes
once the simulation has ended when no control has been carried out
and when the control algorithm has been running. In those three sub-
figures, the x and y axis indicate the width and the length of the
field. The energy consumption due to the processing of the control
algorithm has been considered negligible. The energy analysis sub-
figure at bottom right in Figure 4 illustrates the remaining energy of
all nodes at each round.

2) Results Evaluation: In order to measure the network per-
formance, the total number of packages received at BS (PBS)



Controller
Parameters

Communication Range PBS NC PBS WC Improvement

R = [10,30],RBS = 25 189.8 411.9 +117.02%

R = [15,35],RBS = 30 356.2 454.8 +27.68%ND = 4,
k∆nd = 3,
kcr = 2 R = [20,40],RBS = 35 538 576.8 +7.17%

R = [10,30],RBS = 25 224.6 479.2 +113.36%

R = [15,35],RBS = 30 442.1 537.8 +21.65%ND = 4,
k∆nd = 2,
kcr = 1 R = [20,40],RBS = 35 537.5 601.3 +11.87%

R = [10,30],RBS = 25 224.9 384.7 +71.05%

R = [15,35],RBS = 30 388.9 496.1 +27.56%ND = 3,
k∆nd = 2,
kcr = 1 R = [20,40],RBS = 35 519.1 504.7 -2.77%

Table II. COMPARISON OF RECEIVED PACKETS AT BS (AVERAGE OF 10
NETWORKS RANDOMLY DEPLOYED)

during the whole simulation has been measured. For each set of
the configuration parameters, 10 different network topologies have
been simulated. The nodes for each network are randomly deployed
and the simulation has been executed two times: with and without
the fuzzy control-based algorithm. The results are shown in Table
II where the first column is the controller parameters. The second
column contains the communication range interval for each node and
the communication range for the BS. The third and forth columns are
the average value of PBS obtained from the 10 networks deployed
with the same set of parameters. The last column is the improvement
percentage between the performance of the network with the control
algorithm (PBS WC ) and without it (PBS NC ). It is calculated as:
100%× (PBS WC − PBS NC)/PBS NC .

After an analysis of the results in the table, the following obser-
vations can be made: (1) in general, more packages were received at
BS when the fuzzy control algorithm was applied; (2) the number of
packages a BS receives increases directly proportional with the node
degree; (3) in general the self-adaptive communication range based on
fuzzy control loops improves the connectivity of the network; and (4)
as shown in the first sub-row of each row, both the radius of regular
nodes and BS are smallest, which would lead to worse connections
at initial node deployment, but the improvement is much higher. It
implies that the network shows better adaptive performance when
network is not well connected at the beginning.

III. CONCLUSION

The introduction of control loops based on fuzzy logic enables
each node to adjust automatically the communication range according
to a desired node degree and residual energy. After comparing the
performance of the network with and without the control system,
in general, the number of the packages received at BS has been
increased. It indicates that the network connectivity has been im-
proved and therefore the network is more resilient to the nodes
failure. However, several questions are still open. E.g., what is the
energy performance of the network? In order to have an optimal
balance between the performance of the network connectivity and the
energy consumption, what are the optimal values of the controller
parameters? How to tune the control system for different network
topologies? How to adjust the desired node degree for each node

independently according to its location in the network? When there
is an interaction between neighbours nodes, does the control system
introduces oscillations in the communication range and the connection
links between nodes? If it is the case, how to avoid or reduce this
oscillation? Once the control system described in this paper has been
deployed in a real system, how does it impact, among others, on
the memory footprint, the processor performance and the energy
consumption?

All of these questions and others will be answered in future works.
As a next step, an optimization strategy, based on the proposal of
Haber et al. [13], will be developed for an appropriate adjustment at
design time of the control system parameters. In addition, the control
system will be implemented in physical devices and its performance
at run time will be explored in depth.
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