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ABSTRACT

This paper explores the problem of energy optimization in
embedded platforms. Specifically, it studies resource allo-
cation strategies for meeting performance constraints with
minimal energy consumption. We present a comparison of
solutions for both homogeneous and single-ISA heteroge-
neous multi-core embedded systems. We demonstrate that
different hardware platforms have fundamentally different
performance/energy tradeoff spaces. As a result, minimiz-
ing energy on these platforms requires substantially differ-
ent resource allocation strategies. Our investigations reveal
that one class of systems requires a race-to-idle heuristic to
achieve optimal energy consumption, while another requires
a never-idle heuristic to achieve the same. The differences
are dramatic: choosing the wrong strategy can increase en-
ergy consumption by over 2× compared to optimal.
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1. INTRODUCTION
Embedded systems require predictable performance such

as real-time or quality-of-service guarantees to meet their
design requirements. At the same time, these systems are
often limited by available energy. Embedded systems de-
signers must therefore contend with the constrained opti-
mization problem of meeting performance guarantees while
minimizing energy consumption.

To support systems designers, embedded processors are
becoming increasingly configurable. These processors ex-
pose a number of components which can be managed in
software to change the system’s performance/power trade-
offs. Embedded operating systems could potentially reduce
the burden of energy minimization by automatically schedul-
ing resource usage to meet the performance constraint and
minimize energy.

Unfortunately, scheduling multiple resources, each with
their own unique power and performance tradeoffs, is a dif-
ficult problem. In practice, most designers turn to heuristic
solutions that ensure the performance targets are met and
approximate the minimal energy solution. The race-to-idle

heuristic, in particular, is often employed because it is easy
to implement and has achieved acceptable results in prac-
tice. This heuristic simply makes all resources available to
an application until it completes and then idles the system,
taking advantage of low-power states.

As the diversity of embedded systems increases, it is in-
creasingly unlikely that any single heuristic will perform well
across all systems. In this paper, we investigate heuristics for
scheduling on configurable embedded architectures to meet
application performance constraints and minimize energy.
We first discuss a formulation of the scheduling problem as
a linear program which is general enough to capture schedul-
ing across a variety of configurable systems. We then discuss
two heuristics and describe their relationship to the linear
program. Specifically, we compare race-to-idle to never-idle,
which tries to keep the system busy until the task deadline.
We capture empirical data from four benchmarks on two
embedded systems and derive an oracle representing opti-
mal energy consumption for each benchmark and system.
We then model the energy consumption of the race-to-idle
and never-idle heuristics and compare them to the oracles.

Our two systems are: a Sony Vaio tablet, with an In-
tel Haswell processor, and an ODROID development board,
with an ARM big.LITTLE processor. Our results indicate
that no single heuristic is effective on both platforms, and



the differences are striking. On the Vaio, the race-to-idle
heuristic is near optimal, while the never-idle heuristic con-
sumes 28% more energy than optimal on average. In con-
trast, on the ODROID, never-idle is within 15% of optimal,
while race-to-idle consumes 2.43× more energy. These re-
sults hold despite the fact that the ODROID’s idle power
consumption is only a small fraction of the Vaio’s. Although
counter-intuitive, the race-to-idle approach is actually bet-
ter on the system with higher idle power. Our study indi-
cates that a general, portable resource allocator for embed-
ded systems must be flexible enough to match the resource
allocation strategy to the characteristics of the hardware.

2. BACKGROUND
Energy optimization under performance constraints is a

widely studied problem both in theory and in practice.
Embedded hardware platforms support energy manage-

ment by exposing configurable components. For example,
dynamic voltage and frequency scaling (DVFS) gives soft-
ware control over processor speed [20, 22], which can then
be tuned to ensure that performance targets are met while
energy is minimized. Theoretical results have produced op-
timal uniprocessor scheduling algorithms for DVFS [1].

As energy reduction has become increasingly important,
processors have become increasingly configurable. For ex-
ample, some processors augment DVFS with a sleep state,
allowing a system with no work to reduce power consump-
tion [12]. For even a single core system with a low-power idle
state and DVFS, optimal energy scheduling is intractable,
but approximation algorithms have been developed that are
within a bounded distance from optimal [2].

Despite this difficulty, embedded systems now include not
only DVFS and idle states, but also multiple processing cores
and even heterogeneous multi-cores, each with different ca-
pabilities [13, 14]. Even for a single application, scheduling
for multiple cores, core types, DVFS settings, and idle states
is challenging, but worth pursuing. Empirical evidence has
repeatedly shown that configuring across multiple resources
provides greater energy efficiency than working with only a
single component[7, 9, 10, 17, 18].

Case studies done in the early and middle part of the 2000s
found that the complexity of theoretically optimal sched-
ulers provided little to no benefit in practice [3, 16, 19, 21].
Instead, these studies indicated the well-known race-to-idle

heuristic, which allocates all resources to complete a task
and then idles until the next task is ready, is often close
to optimal. More recent studies, however, suggest that this
trend is starting to reverse; they call into question the effi-
cacy of the race-to-idle heuristic [5, 8, 15]. These contradic-
tory results suggest that it is time to re-evaluate resource
allocation approaches and re-examine the potential energy
savings of more sophisticated algorithms while keeping in
mind practical implications.

In this paper, we express the problem of allocating re-
sources in a configurable system as a linear optimization
which minimizes energy subject to a performance constraint.
We then consider two common heuristic solutions to the
problem and compare their performance on two different em-
bedded systems. Our results indicate that the effectiveness
of the heuristics is entirely system dependent. Therefore,
a generalized approach that works across a range of sys-
tems will need to be more sophisticated than either heuristic
alone.

3. ENERGY OPTIMIZATION
Our goal is to generalize the problem of allocating system

resources to complete a task by a deadline while minimiz-
ing energy. We assume a task consists of some amount of
work to be accomplished. We assume that the system is
configurable – a configuration represents an assignment of
resources to a task. In a heterogeneous system, for exam-
ple, a configuration could represent the assignment of a core
type and clockspeed. As more resources can be assigned to a
task, the number of possible configurations increases. Each
configuration produces a different performance and power
consumption. We assume that tasks can be assigned time
with different system configurations. The energy optimiza-
tion problem, then, is to assign a time to each possible con-
figuration such that the total work accomplished is equal to
the task’s work and the total energy consumption is min-
imized. Some configurations may be assigned zero time,
meaning the task will not make use of them.

3.1 Problem Formulation
We build on prior work that expressed this problem as a

linear program [8]. We assume that a task starts at time 0,
has a workload of W work units, and a deadline at time t.
The system has C configurations such that c ∈ {0, . . . , C −
1}. Each configuration has a performance (work rate) rc and
a power consumption pc. By convention, we denote c = 0
to be the system idle state with r0 = 0 and p0 = pidle. This
idle power consumption is a constant property of the system.
Also by convention, we denote c = C−1 as the configuration
that allocates all resources to the task. For example, in a
two core system with four different clock speeds, there are
nine configurations (2cores × 4speeds + idle), and c = 8 is
the assignment of all cores at the highest speed.

We schedule time tc in each configuration where 0 ≤ tc ≤
t, ∀c. Each configuration contributes tc · rc work and con-
sumes tc · pc energy. Energy minimization under a perfor-
mance constraint can then be formulated as the following
linear program:

minimize
∑

c
tc · pc (1)

subject to
∑

c
tc · rc = W (2)

∑
c
tc = t (3)

t ≥ tc ≥ 0, for c = 0, . . . , C − 1 (4)

Equation 1 is the objective function representing total en-
ergy consumption. Equation 2 is the constraint that all work
is completed, while Equations 3 and 4 ensure the deadline
is respected.

This is an entirely general formulation of the problem.
It is applicable to any configurable system, deadline, and
workload. The issue is that as system complexity (i.e., the
number of configurable components) grows, the number of
configurations increases exponentially. Thus, this problem
is often difficult to solve in practice. The great irony is
that solving this problem would reduce energy consumption,
but embedded systems are often too resource constrained to
tackle such a difficult problem in the first place.

3.2 Heuristic Scheduling Strategies
Given the difficulty of solving this problem in practice,

we consider heuristic solutions. Interestingly, several well-
known heuristics map directly onto the structure of this op-



timization problem. These heuristic solutions meet the con-
straints – they complete the work by the deadline – but
may consume more energy than the true optimal solution.
Specifically, this paper considers two heuristics:

• race-to-idle: Also known as race-to-complete or race-
to-halt, this heuristic makes all resources available (i.e.,
schedules all time in configuration c = C−1) until the
task completes and then idles (i.e., schedules remain-
ing time in c = 0) until the next task arrives. Formally,
the time spent in each configuration is:

tC−1 =
W

rC−1

(5)

tidle = t− tC−1 (6)

tc = 0, ∀c 6= C − 1, idle (7)

• never-idle: This heuristic attempts to keep the sys-
tem busy (but perhaps not fully utilized) and complete
the work just at the deadline. This strategy schedules
time in two configurations: the lowest power state that
is just faster than necessary, hi, and the most efficient
state that is slower than necessary, lo:

hi = argmin
k∈C

{pk|rk ≥ W/t} (8)

lo = argmax
k∈C

{rk/pk|rk < W/t} (9)

The time spent in each state is then:

thi =
W − rlo · t

rhi − rlo
(10)

tlo =
rhi · t−W

rhi − rlo
(11)

tc = 0, ∀c 6= hi, lo (12)

These two strategies place different burdens on imple-
menters. Race-to-idle is exceptionally easy to implement.
It simply allocates all resources and then transitions to the
idle state when the work completes as defined in Equations 5
and 6. Implementing race-to-idle requires no insight into the
performance or power delivered by the system – it only re-
quires recognizing when the task has finished. This heuristic
is also portable – the same strategy can be easily imple-
mented on any system. In contrast, the never-idle heuristic
requires more insight into the application’s performance and
system power in different configurations. Specifically, it re-
quires selecting the hi and lo states and it may be harder
to port from system to system as the interfaces to different
configurations may change. In addition, some configurable
components may not be available on different systems.

The next section evaluates these heuristics.

4. EMPIRICAL EVALUATION
In this section we describe two embedded platforms and

our approach to characterizing their properties. We then
analyze the results and discover that the two platforms have
contrasting performance/energy tradeoff spaces that require
different heuristics to achieve optimal energy efficiency.

4.1 Evaluation Platforms
Two different embedded platforms are evaluated - one

with homogeneous multi-cores and the other with single-
ISA, heterogeneous multi-cores. The homogeneous system

Table 1: System power characteristics.

System Idle Power Min Power Max Power
Vaio 2.50 W 3.04 W 12.20 W

ODROID 0.12 W 0.17 W 10.16 W

Table 2: System configurations.

Vaio
Configuration Settings Max Speedup
clock speed 11 2.72
cores 2 1.81
hyperthreads 2 1.10

ODROID
Configuration Settings Max Speedup
big cores 4 6.10
big core speeds 9 1.97
LITTLE cores 4 3.94
LITTLE core speeds 8 2.40

is a Sony VAIO SVT11226CXB Tablet PC with a dual core
Intel Haswell processor with hyperthreading that supports
eleven DVFS settings ranging from 600 MHz to 1.501 GHz.
The heterogeneous system is an ODROID-XU+E [6], an
ARM big.LITTLE development platform with the Samsung
Exynos5 Octa SoC containing Cortex-A15 and Cortex-A7
quad core CPUs. The Cortex-A15, the big cluster, supports
nine DVFS settings ranging from 800 MHz to 1.6 GHz, while
the Cortex-A7, the LITTLE cluster, supports eight DVFS
settings ranging from 500 MHz to 1.2 GHz. Both devices
run Ubuntu Linux 14.04 LTS, with the Vaio using Linux
kernel 3.13.0 and the ODROID using Linux kernel 3.4.91.

To measure power on the Vaio we use the Haswell pro-
cessor’s Model-Specific Register (MSR) which tracks energy
consumption. The ODROID has four integrated sensors [11]
that we use to monitor the A15 cluster, the A7 cluster, the
DRAM, and the GPU. Table 1 presents the power character-
istics captured from both devices, including the idle power
as well as the minimum and maximum power usage during
execution. The cpufrequtils interface is used to control the
DVFS settings on each device.

We use four benchmark applications from PARSEC [4] -
bodytrack, ferret, swaptions, and x264. These benchmarks
represent a variety of applications with performance require-
ments that one can reasonably expect to use on an embedded
system. Both bodytrack and x264 process video data and
could be required to match the performance of an on-board
camera. Ferret is a content-based search engine for non-text
data types. Swaptions is a financial pricing application that
is often run with performance and energy constraints to en-
sure that the prices it outputs are timely while minimizing
the electricity cost of producing them.

4.2 Methodology
For these experiments, a configuration is a unique com-

bination of system components and their settings. Table 2
presents the configuration parameters for each system. In
total there are 44 configurations on the Vaio and 68 on the
ODROID. On both platforms a clockspeed setting is applied
to all active cores concurrently, meaning there are no config-
urations that include different clockspeeds on different cores.
The reason there are not more configurations on the ODR-
OID is because the system does not support executing on



(a) bodytrack (b) ferret

(c) swaptions (d) x264

Figure 1: Speedup and normalized energy efficiency for different benchmarks on the Vaio and ODROID.

the big and LITTLE clusters simultaneously.
To collect performance and power metrics, we modify the

Heartbeats API [10] to capture energy readings in addition
to performance statistics. Each benchmark is then edited to
produce heartbeats at intervals appropriate for their respec-
tive tasks. The modified Heartbeats library captures energy
readings from the MSR on the Vaio and uses the ODROID’s
embedded power sensors to calculate energy consumption.
The fact that one device records energy while the other offers
power measurements already demonstrates some complexity
in designing a general-purpose solution for meeting perfor-
mance targets with power/energy constraints. Indeed, this
additional complexity compelled us to abstract the compo-
nent that reads (or calculates) energy from the rest of the
Heartbeats library in order to build a more generic system
capable of capturing these metrics on diverse platforms.

By varying the settings in Table 2, we execute the four
benchmarks in all possible configurations on each system.
For each benchmark the number of worker threads is fixed
to match the maximum number of virtual cores (four in both
cases). This choice is predicated on the assumption that the
software either has a predetermined number of threads to
match the platform it is designed for, or the software is able
to determine the hardware configuration prior to performing
its main task. In each execution, the Heartbeats library
records the performance and power.

4.3 Performance/Energy Tradeoff Spaces
As mentioned previously, the four benchmarks are exe-

cuted in all configurations on each device, and we measure
power and performance. Our goal is to understand the rela-
tionship between energy efficiency and performance for each
device.

In Figure 1 we plot the performance vs. energy efficiency
curves for the two devices on the same chart for each bench-
mark. To make the charts readable, any state that delivers
less performance for the same energy efficiency is discarded
(so there are fewer points than configurations in the figures).
The X-axis (Speedup) describes the performance improve-
ment for each state, normalized to the lowest performing
state along each curve. Using the x264 benchmark as an
example, the amount of work to be done is the number of
frames to process and the performance (work rate) is mea-
sured in frames per second (FPS). The Y-axis (Energy Effi-
ciency) is defined as performance/power and is normalized
to the least energy-efficient state for each curve. In the x264
benchmark, energy efficiency is categorized as the number
of frames processed per Joule of energy ( FPS

Watts
= frames

Joule
).

For both axes, larger values are better.
In each chart of Figure 1 the Vaio’s energy efficiency in-

creases over the baseline along with its performance. In
contrast, the ODROID’s energy efficiency drops as it moves
to higher performing states. The area without points ap-
proximately halfway through the ODROID curve on each
plot is a result of the big.LITTLE architecture and the dis-
connect in performance and energy efficiency between the
ODROID’s smaller and larger cores. Clearly, these devices
have completely different performance and energy efficiency



(a) Vaio (b) ODROID

Figure 2: Never-idle and race-to-idle heuristics for the Vaio and ODROID with a performance target of 50% of their respective
maximums. The Y-axis is normalized to optimal.

tradeoffs, so each will need a different resource allocation
strategy to minimize energy.

The next section demonstrates how much energy can be
saved by picking the right strategy.

4.4 Energy Optimization Using Heuristics
Using the prior results we derive an oracle that, given

a performance target, calculates the minimum amount of
energy required to complete each benchmark on each sys-
tem. Energy consumption is then modeled for the never-idle
and race-to-idle heuristics on both platforms for each of the
benchmarks. Figure 2 presents the results for a performance
target of 50% of each device’s maximum performance on
each benchmark. Energy is normalized to the oracle’s mini-
mum energy consumption for each benchmark and platform.
Lower values are better.

Figure 2a indicates that the race-to-idle heuristic is near-
optimal for the Vaio tablet. Figure 2b shows that the ODR-
OID is more energy efficient using the never-idle heuristic
than race-to-idle. Therefore, the ODROID requires a dif-
ferent approach to completing these tasks on time. These
results follow from the tradeoffs spaces in Figure 1. On the
Vaio, speeding up increases energy efficiency, so it is better
to complete work faster using race-to-idle. On the ODR-
OID, slowing down increases energy efficiency, so it is better
to complete the work just at the deadline. This relation-
ship holds despite the fact the ODROID has much lower
idle power.

The effects of choosing the right strategy are dramatic.
On the Vaio, race-to-idle is only slightly worse than opti-
mal for all benchmarks., but the never-idle strategy con-
sumes 28% more energy than optimal on average. On the
ODROID, never-idle consumes 14% more energy than opti-
mal, but race-to-idle increases energy consumption by 2.43×
on average. These results indicate that choosing the wrong
strategy is not a trivial issue, but severely impacts energy
consumptions.

4.5 Sensitivity to Performance Target
In the previous section we set a performance target of

50% of each system’s performance capacity. This section
evaluates each heuristic’s sensitivity to this target.

For simplicity, we begin by considering two simple theo-

retical systems. All else being equal, the energy efficiency
of the first system scales proportionally to its resource con-
sumption, and the energy efficiency of the second scales in-
versely to its resource consumption. Both of these theoret-
ical systems obviously require different strategies for mini-
mizing energy usage while meeting performance targets. For
maximum energy efficiency, the first system will want to use
its relatively efficient high-power states as long as possible,
so it benefits from using race-to-idle. Conversely, the second
system prefers to use its relatively efficient low-power states
as long as possible, so it benefits from using never-idle.

For both theoretical systems, as the performance target
increases toward capacity and a race-to-idle heuristic is used,
more time is required in high-power execution states to com-
plete the task. Less time is then spent in the low-power idle
state. This is already known to be optimal for the first sys-
tem. The second system, however, now spends less time
in its relatively energy-inefficient low-power idle state, and
a higher energy efficiency is achieved than at lower perfor-
mance targets where more time is spent idling. Likewise,
if a never-idle heuristic is used on both systems, a larger
percentage of each system’s resources are required in order
to meet the performance target. The gap between the uti-
lized resources and total available resources closes, result-
ing in fewer resources being unused. This is already known
to be optimal for the second system. Now the first system
uses its relatively energy-efficient high-power states and thus
achieves a higher energy efficiency than at lower performance
targets where less energy-efficient execution states are used.
For both race-to-idle and never-idle heuristics, there is less
opportunity to save energy at higher performance targets.
We then conclude that the heuristic strategy becomes less
crucial as the performance target increases toward system
capacity.

To verify this conclusion, we model the energy usage for a
variety of performance targets across the range of attainable
targets for the Vaio and ODROID, each of which we believe
exhibit similar properties to one of the two theoretical sys-
tems. Using the x264 benchmark as an example, Figure 3
presents the energy used by each heuristic relative to the or-
acle for performance targets ranging from 5% to 95% of each
system’s performance capacity (lower values are better). It
is obvious again which heuristic is better for each system -
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Figure 3: Normalized energy for various performance targets using the x264 benchmark.

the Vaio benefits from race-to-idle and the ODROID from
never-idle. We see for both systems that the lower perfor-
mance targets suffer the most excess energy consumption
over the baseline when an inefficient heuristic is used. As
the performance target approaches capacity, the two heuris-
tics converge at the optimal energy usage for that target, as
anticipated.

Results for the other three benchmarks follow the same
trends, but are omitted for space. This sensitivity analysis
demonstrates that our conclusions hold across a range of
performance targets. Picking the right strategy is essential
for any system except those that are always fully utilized.

5. CONCLUSIONS
This paper evaluates two embedded platforms that demon-

strate a diversity in performance and energy efficiency trade-
off spaces. One platform improves in energy efficiency as it
moves to higher performance states while the other experi-
ences a reduction in energy efficiency as its performance in-
creases. Applying a race-to-idle heuristic to the first achieves
near-optimal energy consumption, but a never-idle heuristic
achieves comparable results on the other. Different resource
allocation strategies are clearly necessary for platforms ex-
hibiting these differing characteristics in order to attain op-
timal energy efficiency while meeting performance targets.
These results indicate that a general-purpose solution to this
problem must be able to support inherently different perfor-
mance/energy tradeoff spaces.

It is also reasonable to expect that, even on a single plat-
form, applications with different processing requirements may
have different performance/energy tradeoff spaces. There-
fore, a single heuristic may not be near-optimal for all ap-
plications on that platform. In such a scenario, a general-
purpose solution must also support different behavior for
various applications. Future work will identify applications
and systems that exhibit behavior different than those pre-
sented here. We will then evaluate whether new behaviors
require new heuristics or whether the heuristics are robust
for a given platform.
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