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ABSTRACT
The multiplication of the number of cores inside embedded
systems has raised the pressure on the memory hierarchy.
The cost of coherence protocol and the scalability problem
of the memory hierarchy is nowadays a major issue. In
this paper, a specific data management for read-only data
is investigated because these data can be duplicated in sev-
eral memories without being tracked. Based on analysis of
standard benchmarks for embedded systems, this analysis
shows that read-only data represent 62% of all the data
used by applications and 18% of all the memory accesses.
A specific data path for read-only data is then evaluated by
using simulations. On the first level of the memory hierar-
chy, removing read-only data of the L1 cache and placing
them in another read-only cache improve the data locality
of the read-write data by 30% and decrease the total energy
consumption of the first level memory by 5%.
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1. INTRODUCTION
As demands for higher performance keep growing, multi-
core systems have become popular in embedded systems.
Memory system design is a critical problem for multi-core
embedded systems. With the increasing number of cores,
the cost of adopting hardware-controlled caches and en-
suring coherency in embedded systems becomes extremely
high. There are two reasons for this cost increase. Firstly,
the power overhead of automatic memory management in
memory caches is growing fast. It represents almost half
of the overall energy for a single-processor [1]. Secondly,
the coherence protocols lack scalability beyond a certain
number of cores. Two basic memory models are used for
the memory [11]: hardware-managed caches and software-
managed scratchpads (also called local stores or streaming
memories). Uniprocessors have dominant and well-understood
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models for memory organizations. Whereas for multi-core
designs, there is no widespread agreement on the memory
model. Cache memories are composed of tag, data RAM
and management logic that make them transparent to the
user. They exploit the spatial and temporal locality of data.
Their major drawbacks are their important power consump-
tion and the lack of scalability of current cache coherence
systems. One solution to these problems is to use scratch-
pad memories. They consume less energy for the same
memory size [1] and have a smaller latency because they
are composed of simple array of SRAM cells without tags or
complex logic comparators. Moreover, they do not generate
traffic caused by the coherence protocol but they introduce
programmability burdens because they need to be explic-
itly managed by the user. In order to resolve this problem,
users can rely on compiler code generation for scratchpads
management. Methods for automatic data management for
specific data on scratchpads have been proposed in many re-
lated works [12, 6, 14]. These solutions are mostly specific
to the behavior of data in the application. This paper is
focused on a particular kind of data: read-only data, that is
data that are set only once for the whole application execu-
tion. We will consider also some particular cases where data
is read-only for a limited span of the execution. They offer
interesting optimization possibilities thanks to the fact that
they are easier to manage. Indeed, they can be duplicated in
the memory system without being tracked. By handling dif-
ferently the read-only data, the energy consumption of the
memory hierarchy could be reduced without adding com-
plexity for developers. Data are used in a read-only way
either for the whole application execution like input data,
or for a limited scope such as a function, or a kernel. In
the latter case, read-write data are in a read mode for a
long time during the application’s execution. The memory
accesses of these data may also benefit from this specific
memory organization. A data transfer cost between the
two data paths must be considered in this case.

The long term perspective is to propose an architecture
where read-only data are removed from the original memory
hierarchy and are managed in a different memory organiza-
tion. This idea is similar to the one in Harvard architecture
where instruction and data are handled in different memo-
ries. This new memory subsystem would be added in paral-
lel to a classic memory system, and optimized for read-only
data. This solution aims to be transparent for the user and
generic to embedded systems. In order to use this system
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Figure 1: Proportion of read-only data and memory accesses done on read-only data

transparently, some steps are to be considered during com-
pilation. The compiler has to detect read-only data, and
may use some user information, such as those provided in
parallel languages like OpenCL, or OpenACC.

This study considered several scenarios where read-only data
are removed from the original memory organization and
handled in a different one. The special management of read-
only data is not optimized yet and will be considered in fu-
ture work. Firstly, read-only data are detected and quanti-
fied for a whole set of applications. Secondly, by using simu-
lation, different data management are tested and compared
in terms of energy consumption and data locality. The rest
of the paper is organized as follows: Section 2 describes a
quantification on read-only data. In Section 3, several sce-
narios of memory access separation are introduced. These
scenarios are compared in terms of data locality in Section
4 and in terms of energy consumption in Section 5. Finally,
related works are discussed in Section 6.

2. READ-ONLY DATA ANALYSIS
The first step of the evaluation is to show that read-only
data count for a significant part of the working set of ap-
plications in embedded systems. This analysis is a trace-
driven analysis on the standard Mibench benchmark [10].
Mibench is studied because it is a representative set of ap-
plications used in embedded systems. All the applications
of the benchmark are compiled on a x86 platform and are
used with their default input data set given with the appli-
cations.

The memory access analysis is performed through traces.
A trace records the flow of memory access occurring during
an execution of the application (including those done in ex-
ternal libraries and in the stack). The study focuses only
on data, instruction fetches are not recorded. The trace
allows to launch several simulations on the same flow of
memory accesses to compare different memory hierarchies
and data management policy. The generation of the trace
file is achieved by Maqao [2], a static instrumentation tool
that operates directly on binary code. It is used to record
which address is read/written for every instruction that ac-
cess the memory and the size of the accessed data. The
memory trace is compressed on the fly with the zlib library.
Statistics about read-only data are deduced from the trace.
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Figure 2: Example of the memory access classifica-

tion

The analysis results are shown in Fig.1. On average, 62%
of used data are in a read-only state but they represent
only 18% of the accesses made by the application. The pro-
portions of read-only data and the number of accesses are
very asymmetrical. It could be partially explained by the
fact that the stack is not removed from the analysis. The
data in the stack represent few data, but the same stack
addresses are used many times. Intuitively, this asymme-
try between access proportion and data proportion suggests
that read-only data are not reused as much as other data
and can cause some pollution in the memory systems. This
simple analysis shows that read-only data count for a signif-
icant proportion of data used by applications in embedded
systems. It is important enough to consider some specific
memory hierarchy optimizations for these data. In the fol-
lowing sections, the data path separation between read-only
and read-write data is studied.

3. SCENARIOS PROPOSITION
In order to explore the possibility of adding specific data
path in the memory hierarchy for read-only data, memory
accesses are divided in several categories. Two scenarios
of memory access separation are tested on simulation and
analyzes are performed for comparison.

3.1 Classification of memory access
For this study, memory accesses are classified as follows:
1) accesses to read-only data, 2) accesses to detected read
areas or 3) accesses that do not belong to one of the two
previous categories. Read areas are defined as a group of



L1 Cache:

- Read-write access

- Read-only access

- Read areas access

Scenario 1 

(Reference)

Scenario 2

Scenario 3

RW Cache:

- Read-write access

- Read areas access

RO Cache: 

- Read-only access

RW Cache:

- Read-write access

RO Cache: 

- Read-only access

- Read areas access

CPU L2 Cache

Figure 3: Scenarios for the read-only data manage-

ment

read accesses which are not separated from each other by
write accesses in time and address directions. This cor-
responds for instance to a read access to an array region.
Read areas are detected on read-write data and cannot in-
clude accesses to read-only data so an access belongs to only
one of three categories defined previously. The concept of
read areas is introduced in order to place in the specific
read-only memory, read-write data that present read-only
behavior during execution. For example, read areas can be
detected with intermediate results of an algorithm that are
generated (written) first and then read for the rest of the
algorithm. For a better understanding, an example of this
classification is shown in Fig. 2. It represents the accesses
made by an application during the first time frames. The
data set is composed of 7 distinct data (A, B, C, D, E, F,
G). All the data are initialized (written) in the first time
frame. Then, A,B and C are only read (never written to)
so they are considered as read-only data and all accesses to
these A,B,C belong to the first category. Then, the area de-
tection algorithm is launched on the remaining accesses and
one read area is detected, the accesses in the dark green area
in Fig. 2 belongs to the second category. All other accesses
belongs to the third category.

A minimal size for the detected area is fixed for two main
reasons. First, if this limit is not set, every read memory
access can be considered as a read area on its own. Sec-
ond, the proposed detection focuses on big areas of read
access with data reuse, detecting data structures or data
regions more than individual data accesses. After experi-
mentations, read areas are kept for this study only if more
than 128 memory accesses are done on this area. According
to the defined classification, on Mibench benchmarks, the
repartition shows that on average, 17.8% of all memory ac-
cesses are accesses to read-only data and 6.9% are accesses
to read areas. The remaining 75.3% of the memory accesses
are not concerned by the solution.

3.2 Data Management Policy

As mentioned in the introduction, the possibility of adding
a new data path along the memory hierarchy specific for
the read-only data is studied. All the other data use a
classic cache hierarchy. The instructions are not considered
in these simulations and are supposed to be handled in a
different memory organization. The impact of adding this
specific memory is studied on the first level of memory hi-
erarchy. Fig. 3 shows three different scenarios studied in
this analysis. Scenario n°1 is the reference scenario where
there is no specific management for the read-only data and
all the categories of access use the classic cache memory or-
ganization. In scenario n°2, accesses to read-only data are
removed from the classic way and are handled in the spe-
cific memory. Scenario n°3 is the same as scenario n°2, but
the read areas accesses are also placed in the specific mem-
ory. Since read areas are detected on read-write data, the
data in read areas take both paths depending on the tim-
ing. During simulations, the specific memory is modeled as
a simple memory cache. In order to simulate these scenar-
ios, five memory traces are generated, one for each memory
of each scenario. The original full trace of the application is
used for the scenario n°1 as a reference. For scenarios 2 and
3, partial memory traces are generated from the original
trace, accesses are removed according to the data manage-
ment policy, in order to form the memory access flow for
each memory. If no read area is detected, scenarios 2 and
3 are the same. This case happens for 10 out of 26 bench-
marks tested. The L2 cache is unified for all the data. For
the rest of the paper, the first level cache for read-only data
will be called the RO cache and the first level cache for read-
write data will be called RW cache. In the following section,
two analysis are presented, a data locality analysis and an
energy consumption analysis, to compare these scenarios.

4. DATA LOCALITY ANALYSIS
Data locality is important in order to take advantage of
CPU caching. The data locality can be evaluated by the
stack distance which is computed for all scenarios on all
benchmarks.

4.1 Definition
The stack distance [5] measures the distance in time between
the use and subsequent reuse of the same data location. It
is an indicator of the temporal locality of the data and de-
pends solely on the software. Bad temporal locality leads to
pollution in the memory hierarchy. The pollution happens
when a data is loaded in the cache and is evicted from the
cache before being reused. In this situation, copying the
data in the cache is a waste. Moreover, it takes the place of
another potentially more interesting data in the cache. The
application should access the data directly through main
memory. For a LRU (least recently used) fully-associative
cache, cache misses can directly be deduced from the stack
distance computation. For more complex caches, the stack
distance remains still a good predictor [4]. Generally, the
higher the stack distance is, the higher is the probability
that this access provokes a cache miss. Lots of algorithms
are proposed in literature to compute the stack distance
efficiently. The algorithm implemented for the scenario is
based on the Bennet version [3].

4.2 Analysis
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Figure 4: Stack Distance Variation between scenarios 1 and 2 for read-only data and read-write

To allow a meaningful comparison of different scenarios, the
average stack distances are always compared separately for
read-only and read-write data. Three steps are followed for
the analysis: In a first step, for each application of Mibench,
the stack distances are computed on the full memory trace
of the scenario 1. Once the stack distances are computed
for all accesses, the average stack distance is computed sep-
arately for accesses to read-only data and accesses to read-
write data (read area accesses are included in the accesses
to read-write data). For all the applications, the average
stack distance of read-only data is 16 times higher than the
average stack distance of read-write data. So, the difference
of locality is very significant, and means that read-only data
are less reused and pollute the classic L1 cache.

In a second step, the values of the stack distances computed
previously are compared to the stack distance of scenario 2.
The variation of the stack distance for read-only data and
read-write data between the scenario 1 and 2 are shown in
Fig. 4. The decrease of the stack distance for scenario 2
is expected because separating data always leads to global
data locality improvement. The reason is that in each way
of the hierarchy, the number of accesses between two calls to
a same data is reduced. For the RW cache, only 18% of the
accesses are removed and the stack distance is reduced by
30% and for read-only data, 82% of the access are removed
and stack distance is reduced by 38%. This is asymmetric
between the number of removed accesses and the decrease
of the stack distance. Separating read-only and read-write
data improves significantly the read-write data locality.

In a third step, a metric is introduced in order to compare
the locality between all the scenarios. For the scenario 1, the
average stack distance of the full trace is computed without
data distinction. For scenario 2 and 3, a weighted sum is
computed by adding average stack distances for read-only
and read-write data in proportion of their respective number
of accesses. It gives a comparable global stack distance for
each scenario. The Fig. 5 shows the variation of the global
stack distance of scenario 2 and 3 compared to scenario
1. On average, the global stack distance is improved by
19% for the scenario 2 and 30% for the scenario 3. For
almost every application, the data separation improves the
overall locality. These results suggest that it is profitable to
separate the read-only and read-write data in terms of data

locality. The following section studies the proposition with
respect to energy consumption.

5. ENERGY CONSUMPTION ANALYSIS
The main motivation of this work is to reduce the energy
consumption of the memory hierarchy. An energy model is
introduced and the three scenarios are simulated to compute
energy consumption. On the contrary to the stack distance,
this analysis depends on the hardware.

5.1 Energy Consumption Model
The energy consumption of the cache is computed with a
simple energy model. The CPU is not modeled and the
study focuses only on the dynamic energy of the first level
memories of the memory hierarchy. For each cache, the dy-
namic energy consumption is determined as in equation 1.
The underlined terms are ignored for the moment. The
energyCPUStall is the energy consummed when the CPU
is stalled while waiting for the memory system to provide
data and the energyCacheBlockFill is the energy for writing
a block into the cache. The energyPerAccessL1 and ener-
gyPerAccessL2 are determined with Cacti v6.5 [13] and the
cacheHitsL1 and cacheMissL1 are determined by simula-
tions with the cache simulator dineroIV [7]. For the scenario
2 and 3, the energy consumption of the first level hierarchy
is the addition of the energy consumption of the RW cache
and the RO cache.




DynEnergyCache = energyPerAccess∗

nbHits+ energyMiss ∗ nbMiss

energyMiss = energyPerAccessL2+
energyCPUStall + energyCacheBlockFill

(1)

5.2 Analysis
The energy consumption of all the applications of the Mibench
benchmarks is studied. To simulate with dineroIV and
Cacti the described scenarios, cache designs have to be cho-
sen. First, the scenario 1 is explored extensively in order
to determine the most efficient design of the classic cache.
The cache’s design that minimizes the average energy con-
sumption on Mibench is a cache of 16KB with 2-way set
associativity. The energy consumption of the scenarios 2
and 3 is compared to this reference. To do a fair compari-
son between scenarios, an equivalent storage size at the first
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Table 1: Memory hierarchy design for the simula-

tion
Cache Design

Classic Cache 16KB, 2-way associative, 64B/line
RO Cache 8KB, 2-way associative, 64B/line
RW Cache 8KB, 2-way associative, 64B/line
L2 Cache 4MB, 8-way associative, 64B/line
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Figure 6: Energy Consumption of the scenario

level of the memory hierarchy for each scenario has to be
used. In Section 4, it has been pointed out that read-only
data have a weak locality, it suggests that the RO cache
must have an important size relatively to the number of
memory access it will handle. The choices for the design for
the RW cache and the RO cache are shown in Table 1. All
the applications are simulated independently in the cache,
and the energy consumption model gives the total energy
consummed by each application for the first level memories.
The energy consumption of each application is then added
to get the total energy consumption foFerr each scenario of
all the Mibench applications.

Creating a two caches system instead of one has two con-
sequences on the energy consumption. The resources are
not mutualized so some of them can be underutilized lead-
ing to energy consumption increase. On the other hand, a
good data separation decreases the pollution in each cache
which reduces energy consumption. For each application of
the Mibench benchmark, the generated memory traces are
simulated through dineroIV and the energy consumption is
computed for each application. Then, the energy consump-
tion of each application is added for each scenario. As shown
in Fig. 6 energy consumptions in scenarios 2 and 3 are ap-
proximately the same. There is an improvement of 6.5%
of energy for scenario 2 and 5.0% for scenario 3 compared

to the scenario 1. It shows that read-only data can be han-
dled in a different memory without adding energy overhead.
Indeed, even with conventional caches for the specific read-
only memory, there is no overhead when dividing L1-cache.
For scenario 3, the cost of switching read accesses between
the RW and the RO cache has been ignored for the mo-
ment so the energy consumption for scenario 3 is probably
under-evaluated compared to a real situation.

6. RELATED WORK
Proposing special memories on the hierarchy to manage spe-
cific data is not new. A lot of solutions have been proposed
in literature to automatically use scratchpads memories for
specific data management. The rest of the data, are often
accessed directly through main memory or can go through
a cache parallel to the scratchpad. Some examples could
be found for the heap [6], the stack [14] or array tiles [12].
These solutions targeted uni-core systems and also multi-
core systems. In [6], an algorithm for heap management
in scratchpad is proposed. Managing the heap is challeng-
ing since the actual size of the data is known only at run-
time. This solution divides the application in region and
a compile-time analysis is performed on these regions to
place the most used heap variables in the scratchpad. Code
is added automatically to (de)allocate the scratchpad. In
[12], an extension to the openMP compiler is proposed to
place array tiles on scratchpads. The compiler realizes pat-
tern recognition. It detects regular and irregular array ac-
cess patterns and automatically produces code to activate
the DMA transfers between scratchpads and the main mem-
ory in order to distribute the array tiles on the scratchpads.
Partitioning cache is another technique that allows specific
data management. The solution proposed in [15] separates
I/O data from CPU data by adding a specific cache for I/O
data. Even if the technique has different motivations, the
work makes an analysis similar to the one presented in this
paper. The specific data management of read-only data is
not widely studied in literature. Some solutions have been
proposed like in the Fermi and Kepler [8] architecture of
the NVIDIA GPU’s architectures. At the first level of the
memory hierarchy, a specific read-only cache is added in
parallel to a shared memory and a private L1 cache. The
developer or the compiler needs to indicate the data that
will go through the read-only cache. Another solution is
proposed by Guo et al [9], on a VS-SPM (virtually shared
scratchpad memories) architecture which proposes a solu-
tion of data management for shared data is proposed. The
proposed algorithm allows the duplication of read-only data



in several scratchpads if the duplication comes with an en-
ergy reduction.

7. CONCLUSION
The paper has an analysis of the opportunity to handle
in different caches, data that is read-only, either for the
whole application or a limited amount of time. The re-
sults show that there are some optimization potentials for
specific data management for read-only data. Even if the
memories where read-only data are placed do not yet exploit
the read-only property, simulations show that the division
between read-only and read-write data on the first level of
memory hierarchy improves the data locality (in average,
30% on Mibench benchmarks) and does not introduce en-
ergy consumption overhead. The main interest of exploiting
read-only data appears in a multi-core environment, since
they can be shared without being handled by a costly co-
herence protocol. The future work will focus on optimizing
the read-only sub-hierarchy in an actual multi-core environ-
ment. Furthermore, the impact of compiler on the detection
of read-only data and read areas need to be evaluated.
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