
Profiling-Based L1 Data Cache Bypassing to

Improve GPU Performance and Energy Efficiency
Yijie Huangfu and Wei Zhang

Department of Electrical and Computer Engineering

Virginia Commonwealth University

{huangfuy2,wzhang4}@vcu.edu

Abstract—While caches have been studied extensively in the
context of CPUs, it remains largely unknown how to exploit
caches efficiently to benefit GPGPU programs due to the distinct
characteristics of CPU and GPU architectures. In this work, we
analyze the memory access patterns of GPGPU applications and
propose a cost-effective profiling-based method to identify the
data accesses that should bypass the L1 data cache to improve
performance and energy efficiency. The experimental results show
that the proposed method can improve the performance by 13.8%
and reduce the energy consumption by about 6% on average.

I. INTRODUCTION

Graphics Processing Units (GPUs), originally designed for
fast graphical computation, have rapidly become a popu-
lar choice for high-performance computing. Modern GPUs
can support massive parallel computing with thousands of
cores and extremely high-bandwidth external memory systems.
Leading GPU vendors like NVIDIA and AMD have released
software development kits such as Compute Unified Device
Architecture (CUDA) and OpenCL, allowing programmers to
use a C-like programming language to write general-purpose
code for execution on GPUs. The tremendous computation
power and the enhanced programmability of GPUs greatly
accelerate the general-purpose computing on GPUs (GPGPUs)
to achieve superior performance or energy efficiency.

In the past few years, GPUs have been increasingly used
in high-performance embedded computing. The massive par-
allelism and energy efficiency of GPUs can benefit a wide
variety of data-parallel embedded applications including imag-
ing, audio, video, military, and medical applications [1]. Ac-
tually, there are already several embedded GPUs that can be
integrated on System-on-Chips (SoCs) for mobile devices, for
example ARM’s Mali graphics processor, Vivante’s embedded
graphics core, and the StemCell Processor from ZiiLabs (Cre-
ative).

Lately, major GPU vendors have introduced cache memories
in conjunction with the shared memory to benefit a wide
variety of GPGPU applications. For example, both the L1
data cache and the unified L2 cache are included in Nvidia
Fermi and Kepler architectures, in which the sizes of the
L1 data cache and the share memory are configurable while
the aggregate on-chip memory size is fixed. Although the
cache memory can effectively hide the access latency for data

Copyright is retained by the authors

with good temporal and/or spatial locality for both CPUs and
GPUs, GPGPU applications may exhibit divergent memory
access patterns from traditional CPU applications. Moreover,
the recent study shows that GPU caches have counter-intuitive
performance tradeoffs [4]. Therefore, it is important to explore
techniques to exploit the on-chip cache memories effectively
to boost GPU performance. In particular, for embedded and
mobile GPU applications, it is also crucial to develop cost-
effective optimization methods for improving performance and
energy efficiency.

In this paper, we examine the memory access characteristics
of GPGPU applications based on the Rodinia benchmarks [7].
We find that unlike CPU applications that generally exhibit
good temporal or spatial locality, a large fraction of memory
accesses in these GPGPU applications are not reused at all
or just reused for a few number of times. Also, GPGPU
applications have diverse utilization rates for data loaded from
the global memory. To reduce the pressure on GPU global
memory bandwidth and to decrease GPU cache pollution, we
propose a profiling based method to bypass those data accesses
for improving performance and energy efficiency.

II. MOTIVATION

A. Global Load Utilization Rate

A GPU typically consists of an array of highly threaded
streaming multiprocessors(SMs), and each SM has a number of
Streaming Processors (SPs) that can execute threads in parallel.
When a GPU kernel is launched, the runtime creates massive
concurrent GPU threads organized hierarchically. A number of
threads (32 in Nvidia GPU) with consecutive IDs compose a
warp (or wavefront), multiple warps form a thread block, and
all thread blocks compose a grid. A warp is the unit in GPU
scheduling; in which all threads proceed in a lockstep fashion.

The 32 threads in a warp access the global memory in a
coalesced pattern. Assuming that each thread needs to fetch 4
bytes, if the data needed by each thread are well coalesced, this
load operation can be serviced by one 128-byte transaction, as
shown in Figure 1 (a). In this case, all the data in the memory
transaction are useful, thus the utilization rate (or efficiency) of
this load, which represents the percentage of bytes transferred
from global memory that are actually used by the GPU, is
100% (128/128). However, when the memory access pattern
changes a little bit, as shown in Figure 1 (b) and (c), the
address range becomes 96 to 223, which spans across the



� ��

��� ���
��	


�����

������������

� ��

�� ���
��	


�����

���������������

� ��

�� ���
��	


�����

���������������

Fig. 1. Examples of different memory access patterns that lead to various
global load utilization rates.

boundary of 128 bytes. In this case, two 128-byte transactions
are needed to transfer the data needed by the threads. Thus the
utilization rates of these two transactions are 25% and 75%
respectively, resulting in a 50% (128/256) overall utilization
rate. This indicates half of the memory traffic, generated by
these two load operations, are useless and unnecessary if they
are not reused, which may degrade both performance and
energy efficiency for GPGPU computing.

Moreover, in the CUDA programming model, if the required
data are cached in both the L1 and L2 data caches, memory
accesses are done by 128-byte transactions. However, if the
data are only stored into the L2 cache (i.e. bypassing the
L1 data cache), 32-byte transactions are used instead [3].
Therefore, for the load operations depicted in Figure 1 (b)
and (c), assuming the data are not reused from the cache,
using only 32-byte transactions can reduce the over-fetching
of useless data and therefore decrease the memory traffic.

B. Data Reuse Times in GPU L1 Data Cache

The GPGPU applications usually operate on massive amount
of data. However, the cache line usage among the data with
different addresses may differ significantly. This is not only
because GPGPU applications can exhibit irregular data access
patterns, but also because the effective L1 data cache space
per SP is too small. Thus even if some data are reused within
a warp, they may have been replaced from the cache by other
data from the same warp or from other warps from the same
thread block before they can be reused, resulting in cache
misses and hence increasing global memory accesses.

Figure 2 shows the data reuse distribution in the L1 data
cache across different SMs for the benchmarks gaussian and
srad, both of which are selected from Rodinia benchmark
suite [7]. The experimental configuration and the evaluation
methodology are detailed in Section IV. In this figure, each
bar indicates the number of different data addresses that are
reused in the L1 data cache by a certain number of times,
which varies from 0, 1, up to 15, or more. As we can see,

0

1000

2000

3000

4000

5000

6000

SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10 SM11 SM12 SM13 SM14

N
u

m
b

e
r 

o
f 

d
if

fe
re

t 
a
d

d
re

s
s
e
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-

(a) Data reuse distribution of gaussian benchmark

0

500

1000

1500

2000

2500

3000

3500

SM0 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10 SM11 SM12 SM13 SM14

N
u

m
b

e
r 

o
f 

d
if

fe
re

t 
a
d

d
re

s
s
e
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-

32247 32456 32460 32394 32520 32177 32276 32362 32352 32263 32313 32331 32146 32211 32243

(b) Data reuse distribution of srad benchmark

Fig. 2. The data reuse distribution in the L1 data cache.

the number of different addresses reused in the L1 data cache
varies slightly across different SMs because of the GPU’s
SIMD execution model. We also find for both benchmarks
a considerable number of data addresses are never reused at
all or are only reused for a very small number of times. For
example, in gaussian, nearly half of the addresses are used for
just once, while in the srad the majority of the addresses are
not reused at all. The very low temporal locality from GPGPU
applications is quite different from typical CPU applications
that tend to have good temporal locality; therefore, we need
to explore novel cache management techniques for GPUs.

For data that are never reused at all, loading them into the
cache is not helpful to reduce neither latency nor memory
bandwidth. On the contrary, bypassing them may reduce cache
pollution. Even if the data are reused a few times, loading
them into the L1 data cache may increase the global memory
traffic if the load utilization rate is low. This may negate the
benefit of a small number of cache hits. Therefore, it becomes
attractive to bypass those data that are never reused or only
reused a few times to reduce the memory bandwidth pressure
and cache pollution for GPUs.

III. GPU L1 DATA CACHE BYPASSING

A. Bypassing by Addresses vs. by Instructions

By default, on the CUDA platform, global memory accesses
are cached in both the L1 and L2 caches (with the compilation
flag of -Xptxas -dlcm=ca). The data can also be configured
to be cached only in the L2 cache (-Xptxas -dlmc=cg) [3].
Based on this mechanism, Xie et al. recently proposed a
compiler-based GPU cache bypassing framework to improve
performance [5].

While Xie et al’s approach [5] can automatically analyze the
GPU code and select global load instructions for cache access
or bypassing intelligently, it relies on using Integer Linear



0%

20%

40%

60%

80%

100%

SM0 SM1 SM2

P
e

rc
e

n
ta

g
e

 o
f 

a
c

c
e

s
s

e
s

 t
h

a
t 

s
h

o
u

ld
 b

e
 b

y
p

a
s

s
e

d
ld 1 in _Z4Fan2PfS_S_iii ld 2 in _Z4Fan2PfS_S_iii ld 3 in _Z4Fan2PfS_S_iii

ld 4 in _Z4Fan2PfS_S_iii ld 5 in _Z4Fan2PfS_S_iii ld 6 in _Z4Fan2PfS_S_iii

ld 1 in _Z4Fan1PfS_ii ld 2 in _Z4Fan1PfS_ii

SM0 SM1 SM2

Fig. 3. Percentage of accesses that should be bypassed of each load instruction
in the kernels of gaussian benchmark.

Programming (ILP) to solve the traffic reduction maximization
problem exactly, which unfortunately is not scalable to large
problems. Even with a heuristic based approach, the algorithm
is iterative, and only one node in the traffic reduction graph
can be analyzed for bypassing or not in each iteration, which
can still take significant time for determining cache bypass or
not for large applications.

Also, making cache bypassing decisions solely based on
each global load instruction not be very effective for applica-
tions whose cache access patterns exhibit large variation. This
is because each global load instruction can access a wide range
of data addresses, which can have distinct reuse behaviors.
Bypassing at the load instruction level is only effective if the
data accessed by the load instruction have uniform locality. For
instructions that access data with diverse reuse characteristics,
making bypassing decisions at the instruction level is too
coarse-grained, i.e. it can only choose between bypassing or
caching all the data accessed by this instruction, not according
to the subset of data accesses with different temporal and
spatial locality. To address this deficiency, in this paper, we
study an address based cache bypassing method that enables
the GPU to bypass data at finer granularity.

Figure 3 shows, according to each load instruction of the
benchmark gaussian, the percentage of the memory accesses
to different addresses that have low L1 cache line reuse time
and low load utilization rate (see Equation 1 in Section III-B
for details). We focus on analyzing 8 load instructions in 2
kernels (ld 1-6 of kernel Z4Fan2PfS S iii and ld 1-2 of
kernel Z4Fan1PfS ii) from gaussian. We find that each global
load instruction has a varying fraction of data accesses that
should or should not be bypassed. For example, 65.3% of
data accessed by ld1 from kernel Z4Fan2PfS S iii should
be bypassed, indicating 34.7% of data accessed by this load
should not be bypassed. Therefore, simply bypassing all the
accesses from one load instruction will cause performance
overhead for those data accesses that should not be bypassed.
Similarly, simply caching all accesses from one load instruc-
tion will lose the performance improvement opportunity for
those data accesses that should be bypassed. To facilitate finer-
grained control of cache bypassing, in this work, we choose to
implement the GPU cache bypassing based on individual data
addresses instead of the load instructions.

B. Heuristic for GPU Cache Bypassing

We propose to use profiling to identify the L1 data cache
accesses that should be bypassed. We focus on bypassing the
data accesses that have low load utilization rates and low reuse
times in the L1 data cache, with the objective to minimize
the global memory traffic. More specifically, for each data
address A that is accessed by a global load, we use profiling
to collect its load utilization rate U and the reuse time R. We
use Equation 1 to determine which data accesses should be
bypassed.

U × (1 +R) < 1 (1)

In the above equation, (1 + R) represents the number of
times A is accessed from the L1 data cache, including the
first time when it is loaded into the cache, i.e., 128 bytes are
transferred from the global memory. If U is 1, then this product
is at least 1, even if A is not reused at all, indicating A should
not be bypassed. On the other hand, if U is less than 1, and if
R is 0 or a small integer (e.g. 1, 2, 3) such that the condition
in Equation 1 holds, then storing A into the L1 data cache
will actually increase the global memory traffic as compared
to bypassing this access from the L1 data cache. Therefore, in
this case, bypassing A can reduce the global memory traffic,
potentially leading to better performance or energy efficiency.
The reduction of cache pollution will also be a positive side
effect of bypassing this data from the L1 data cache.

Our cache bypassing method considers both spatial locality
(i.e. U ) and temporal locality (i.e. R). For example, for
the memory access pattern with low load utilization rate as
depicted in Figure 1 (b), i.e., U = 25%, this address must be
reused at least 3 times in the L1 data cache (i.e. R ≥ 3) to
not be bypassed. In contrast, for the memory access pattern
with high load utilization rate that is shown in Figure 1 (c),
i.e., U = 75%, if this address is reused at least once from the
L1 data cache (i.e., R ≥ 1), then it should not be bypassed.

IV. EVALUATION

In this work, we use the GPGPU-Sim [8] simulator to
implement and evaluate the proposed cache bypassing scheme.
Table I shows the default configuration of the simulator, which
simulates the Fermi GTX 480 platform. The benchmarks used
in this work are from the Rodinia[7] benchmark suite.

TABLE I. DEFAULT GPGPU-Sim CONFIGURATION

Number of SMs 15

Number of 32-bit registers per SM 32768

Size of L1 data cache per SM 16KB

L1 data cache block size 128B

L1 data cache associativity 4

Size of shared memory per SM 48KB

Size of L2 cache 768KB

DRAM latency cycles 100

Core clock frequency 700MHz

Figure 4 shows the performance improvement of the pro-
posed cache bypassing method, which is normalized to the
total number of execution cycles without bypassing. As we can
see, the cache bypassing method improves the performance for



0%

20%

40%

60%

80%

100%

120%

N
o

rm
a

li
z
e

d
 t

o
ta

l 
s

im
u

la
ti

o
n

 c
y
c

le
s

No bypassing With bypassing

N
o

rm
a

li
z
e

d
 t

o
ta

l 
s

im
u

la
ti

o
n

 c
y
c

le
s

Fig. 4. Numbers of execution cycles with and without cache bypassing,
normalized to that without cache bypassing.

all benchmarks. The total number of execution cycles for lud
is reduced by more than 40%, and the average reduction of
execution cycles for all benchmarks is 13.8%.

The performance improvements come from two factors. The
first factor is the reduction of the global memory traffic caused
by cache bypassing, which is shown in Figure 5. The results
indicate that the global load memory traffic can be reduced
by 24.7% on average among the benchmarks simulated in this
work. The second factor of performance improvement is the
reduction of L1 data cache miss rates as shown in Figure 6.
We observe the cache miss rate is reduced by up to 57.5% for
lud, and the average reduction is 24.6%.

Particularly, we find that when cache bypassing reduce both
global memory traffic and cache miss rates, the performance is
improve dramatically. For example, for both lud and gaussian,
both the global memory traffic and cache miss rates are
reduced significantly. As a result, the performance of lud
and gaussian is improved by 42.7% and 21.8%. In contrast,
for some benchmarks such as streamcluster, although cache
bypassing reduces its cache miss rate by 44.8%, its global
memory traffic is only reduced by 3.8%, leading to small
performance improvement of 3.4%. This also indicates that
reducing memory traffic may be more important than reducing
cache miss rates for GPGPU programs.

It should also be noted that the proposed bypassing method
does not necessarily reduce the L1 data cache miss rate, for
example srad, because the total number of accesses to the
L1 data cache is also reduced by cache bypassing. However,
on average, the L1 data cache miss rate is reduced by 24.6%,
indicating that the proposed cache bypassing method can effec-
tively alleviate cache pollution and thus improve performance.

We use the energy model GPUWattch [9], which is inte-
grated with GPGPU-Sim [8], to evaluate the effect of the
proposed cache bypassing method on the total energy con-
sumption of the simulated GPU platform. Figure 7 shows the
normalized energy consumption results of the simulated GPU
platform with and without the L1 data cache bypassing. The
results indicate that the energy consumption can be reduced
by about 6% on average. The energy saving comes from
the reduction of both the global memory traffic and the total
number of execution cycles.

0%

20%

40%

60%

80%

100%

120%

N
o

rm
a

li
z
e

d
 t

o
ta

l 
g

lo
b

a
l 

lo
a

d
 t

ra
ff

ic

No bypassing With bypassing

N
o

rm
a

li
z
e

d
 t

o
ta

l 
g

lo
b

a
l 

lo
a

d
 t

ra
ff

ic

Fig. 5. Normalized global memory traffic with and without cache bypassing,
which is normalized to that without cache bypassing.

0%

20%

40%

60%

80%

100%

120%

N
o

rm
a

li
z
e

d
 t

o
ta

l 
L

1
D

 m
is

s
 r

a
te

No bypassing With bypassing

Fig. 6. Normalized L1 data cache miss rates with and without cache
bypassing, which are normalized to that without cache bypassing.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

rm
a

li
z
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n

No bypassing With bypassing

N
o

rm
a

li
z
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n

Fig. 7. Normalized energy consumption results with/without bypassing.

V. CONCLUSION

In this work, we study a simple yet effective method to
profitably bypass the L1 data cache for GPGPU applications.
Our method exploits the profiling information to identify the
global memory load accesses with low utilization rates and
low L1 data cache reuse times, enabling the GPU to access
these addresses directly from the L2 cache while bypassing
the L1 data cache. Our experiment results show that the
proposed bypassing method can effectively reduce the global
load memory traffic and the number of L1 data cache misses,
and hence improve the performance of GPGPU applications.
On average, the proposed method reduces the global memory
traffic by 22.2%, improves the performance by 13.8%, and
reduces energy consumption by about 6%.



ACKNOWLEDGMENT

This work was funded in part by the NSF grant CNS-
1421577.

REFERENCES

[1] J. D. Owens, et al. GPU computing. Proceedings of the IEEE, 2008.

[2] NVIDIA Corp. NVIDIA’s Next Generation CUDA Compute Architec-
ture: Fermi, 2009.

[3] NVIDIA Corp. CUDA Programming Guide, Version 5.5.

[4] W. Jia, K. A. Shaw, and M. Martonosi. Characterizing and improving
the use of demand-fetched caches in GPUs. In ICS, 2012.

[5] X. Xie, Y. Liang, G. Sun and D. Chen. An efficient compiler framework
for cache bypassing on GPUs. In Proc. of IEEE/ACM International
Conference Computer-Aided Design, 2013.

[6] V. Mekkat, A. Holey, P. Yew and A. Zhai. Managing Shared Last-Level
Cache in a Heterogeneous Multicore Processor. In Proc. of PACT, 2013.

[7] S. Che, et al. Rodinia: A benchmark suite for heterogeneous computing.
In Proc. of the IEEE Int. Symp. Workload Characterization, 2009.

[8] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, T. M. Aamodt.
Analyzing CUDA Workloads Using a Detailed GPU Simulator. In Proc.
of the IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), Boston, MA, April 19-21, 2009.

[9] J. Leng et al. GPUWattch: enabling energy optimizations in GPGPUs.
In Proc. ISCA, 2013.


