
Aligning Single Path Loops to Reduce the Number of
Capacity Cache Misses

Bekim Cilku
Institute of Computer

Engineering
Vienna University of

Technology
A1040 Wien, Austria
bekim@vmars.

tuwien.ac.at

Roland Kammerer
Institute of Computer

Engineering
Vienna University of

Technology
A1040 Wien, Austria

kammerer@vmars.
tuwien.ac.at

Peter Puschner
Institute of Computer

Engineering
Vienna University of

Technology
A1040 Wien, Austria

peter@vmars.
tuwien.ac.at

ABSTRACT
In this paper we address the problem of improving the in-
struction cache performance for single-path code. The prop-
erties of single-path code allow us to align single-path loops
within the cache in order to reduce the number of cache
misses during the loop execution. We propose an algorithm
that categorizes loops in a simple way so that the loops can
be aligned and NOP instructions can be inserted to sup-
port this loop alignment. Our experimental results show
the predictability for cache misses in single-path loops and
demonstrate the benefit of the single-path loop alignment.

Keywords
time predictability, cache memories, memory hierarchy, hard
real-time systems

1. INTRODUCTION
For hard real-time embedded systems, the time instant at

which the results are produced is as important as the ac-
curacy of the results [5]. This requirement necessitates the
calculation of Worst Case Execution Time(WCET) bounds
for code pieces and tasks in the design stage. Unfortunately,
the software and hardware used in hard real-time systems
are often highly complex which makes the WCET analysis
very difficult [16]. Software is written in a way to be exe-
cuted fast by having different execution paths for different
input data. Different paths, in general, have different tim-
ing, and analyzing all those paths can lead to cases where
the tool cannot produce results of the desired quality or the
analysis gets overly expensive [9]. The inclusion of state-
of-the-art hardware features (cache, branch prediction, out-
of-order execution, and pipelines) makes the analysis even
harder because of the state dependencies and mutual inter-
ference that have to be considered [12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the authors, 6th International Workshop on Com-
positional Theory and Technology for Real-Time Embedded Systems
(CRTS14), Vancouver, Canada.

An alternative approach to deal with the complexity of
WCET analysis is the use of the single-path paradigm [9].
This strategy generates single-path code by converting all in-
put dependent alternatives of the code into pieces of sequen-
tial code and transforming all loops with input-dependent
termination conditions into loops with constant execution
count. Single-path code forces every execution to follow
the same trace of instructions, which reduces the number
of paths through every code piece or task to one and thus
supports the composability of task timing from the software
side – as every execution of a task follows the same trace
the stream of executed instructions does not depend on the
context; this in turn eliminates control-flow induced varia-
tions in execution time. However, all these properties come
at the cost of a longer execution time.

In this paper we present an algorithm that aligns single-
path loops with cache lines in order to reduce code execu-
tion time by decreasing the number of cache misses. Loops
in single-path code have most of the time a sequential body
where every instruction is executed in each iteration. Also,
to eliminate time jitter, the single-path loops are bounded in
their maximum number of iterations [10]. When the proces-
sor fetches loop instructions from memory, it brings them
to the cache in form of chunks. If a loop is smaller than
the cache capacity then cache misses will appear only in the
first iteration as a result of compulsory misses. For loops
that are larger than the cache size, a capacity miss will also
be present. Our algorithm aligns single-path loop code in
order to reduce the number of cache lines that loops need in
the cache which reduce the number of cache misses in each
loop iteration. The strategy itself is quite old, but so far has
been implemented only for data cache [11]. The properties
of generating long and sequential loops with a maximum
number of iterations allows us to adapt this approach for
the instruction cache.

This paper is organized as follows. The next section gives
a short background on single-path code and describes the
logical organization of cache memories. Section three de-
scribes the algorithm to categorize the loops that can benefit
from the alignment and also describes the rules for aligning
loops. In section four, the evaluation of the concept is pre-
sented while section five shows the related work. The paper
is concluded in section six.

2. BACKGROUND

2.1 Single-path Paradigm
The single-path strategy is an extension of if-conversion [1]

that transforms branching code into sequential code. With
this approach input dependent code alternatives are trans-
lated into sequential pieces of predicated code with the same
functional behavior. After the transformation, the execution
behavior of the generated single-path code becomes com-
pletely independent from the input data, which forces the
execution to follow always the same trace of instructions.
The essence of predicated execution is the ability to guard
the processor state modification based upon the predicate’s
condition [8]. Predicate instructions are all executed but
only those that have a predicate value true can change the
hardware state. If the predicate evaluates to false the in-
struction will behave like a NOP instruction without chang-
ing any hardware state. In the following we describe the
process of the transformation of conditional statements and
loops into single-path code.

Conditional Statements are considered as if-then-else
constructs. Depending on the result of the condition eval-
uation, the execution can continue on different traces. The
transformation of such conditional branches is straightfor-
ward. If the outcome of the branching condition depends on
the program input, then the single path conversion generates
a code sequence that serializes the alternatives into sequen-
tial code with predicates [10]. Figure 1 shows an example of
the if-then-else translation into branching code and predi-
cated code, both with equivalent semantics. In the first case
only one of the basic blocks (BB1 or BB2) will be executed
depending on the branch output, while in the second case
both blocks (BB1 and BB2) are executed but the predicate
value will guard the changes of the hardware states.

 IF(condition)
 THEN
 BB1
 ELSE

BB2
 END

 bne R1,R2, Else
 BB1

 j Exit
 Else: BB2
 Exit: END

Pred:=eq(R1,R2)
 (Pred) BB1
 (ɿPred) BB2

END

a) Branching code

b) Predicated code

Figure 1: Converted branching code

Loops with input-data dependency are transformed in
two steps. First, the original loop is replaced by a for-loop
and the number of iterations is assigned. The iteration count
of the new loop is set to the maximum number of iterations
of the original loop code. The termination of the new loop
is controlled by a new counter variable in order to force the
loop to iterate always a constant number. The second step
generates a statement from the termination condition of the
original loop to change the predicate value so to keep the

semantic of the original one [9]. Figure 2 shows a simple
example of the two-step while loop conversion. The loop is
converted to a for-loop and the iteration count is set to the
maximum. Before entering the loop, the maximum number
of iterations for the loop is assigned, and on each iteration
this value is decremented. At the end of the loop, the pro-
gram counter jumps back to the header, until the counter
will reach the value equal to zero. The termination condi-
tion of the old loop is assigned to the predicate in order to
keep the semantic of the old loop. In case the predicate value
changes (termination) the loop will still continue to execute,
but without changing any hardware state from then on.

 WHILE(condition)
 BB
 END

init Pred:=True
For 1 TO max

 Pred:= cond && Pred
 (Pred) BB

 END

init Pred:=True
mv R1,max

 L1: Pred:=cond && Pred
 (Pred) BB

 sub R1,1
 jnz R1,L1

Figure 2: Converted loop code

2.2 Understanding Cache Behavior
Caches are small and fast memories that are used to im-

prove the performance between processors and main mem-
ories based on the principle of locality. The property of
locality can be observed from the aspects of temporal and
spatial behavior of the execution. Temporal locality means
that the code that is executed at the moment is likely to be
referenced again in the near future. This type of behavior
is expected from the program loops in which both data and
instructions are reused. Spatial locality means that the in-
structions and data whose addresses are close by will tend
to be referenced in temporal proximity because the instruc-
tions are mostly executed sequentially and related data are
usually stored together [14].

References instructions (or data) that are found in cache
are called hits, while those that are not in the cache are
called misses. Usually the processor stalls in case of cache
misses until the instructions/data have been fetched from
main memory. The time needed for transferring the instruc-
tions/data from the main memory into the cache is called
miss penalty. To benefit from the spatial locality properties
of the code, the cache always fetches one or more chunks
of data, called cache blocks, and places them into the cache
lines. Those misses that are generated because a reference
is accessed for the first time are called compulsory misses.
If a cache cannot store all the blocks needed during the ex-
ecution of the program a capacity miss will occur, because
blocks can be evicted and later referenced again [4]. Cache
memories with more than one cache line can be organized as
a fully associative (cache blocks can be stored in any cache
line), set associative (cache lines are grouped into sets), or
direct mapped (cache blocks can be placed only on a partic-
ular cache line).

The basic structure of fully associative caches is illustrated
in Figure 3. As an application is executed over the time, it
makes a reference to the memory by sending the address.

 Block ID Byte

31 0

=

 Tag DataAddress

Figure 3: Cache organization

At this step the cache compares the Block ID part of the
address with tags from the cache. If a match is found, it
generates a cache-hit signal and then it uses the Byte part
of the address to select the requested data from the cache
block.

3. TECHNIQUES TO ALIGN THE SINGLE-
PATH LOOPS

In following we describe the algorithm for tuning single
and nested single-path loops.

3.1 Single Loop
The first instruction of the loop, based on the memory

address, can be located in any position within a cache line.
If this position is not aligned with the cache line bound
then the cache line will also contain instructions that do not
belong to the loop. The same can also happen with the
cache line that contains the last instruction. Loops that are
bigger than the cache capacity will bring these instructions
into the cache on each iteration due to the capacity misses.
In Figure 4 we show a simple example of a sequential loop
with 15 instructions. Depending on the starting address of
the loop, the loop instructions can be spread into four or five
cache blocks. If we assume that the cache size is equal to
one cache block, then on each iteration, the first two cases
will generate four cache misses, the last two cases five cache
misses. By padding NOP instructions at the end of the
upper basic block (the last two cases), we align the start of
the loop with the next cache block boundary. In this way, on
each iteration, the number of cache misses will be reduced
by one compared with the original code structure.

Before aligning the loops, the algorithm firstly has to
check which loops do not fit completely in the cache in or-
der to mark loops that generate capacity misses. Only loops
that are bigger than the cache size are vulnerable to capacity
misses. The amount of cache blocks that a loop occupies in
the cache is calculated as the difference between the Block-
IDs of the first and the last loop instruction, multiplied by
the size of the cache block (1). The produced value is com-
pared with cache size (2).

Loopsize = (BlockIDE −BlockIDB +1)∗CacheBlock (1)

LoopSize > CacheSize (2)

The next condition of the algorithm is to check if the loop
can be aligned. The requirement is that the size of all data

Start

B1

B2

B3

End

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

9

6

7

7

7

7 8

8

8

8

9

9

9

14 15

10

10

10

10

11

11

11

11

12

12

12

12

13

13

13

13

14

14

14

15

15

15

nop

1 2 3 4

5 6

9

7 8

10 11 12

13 14 15

B2

B2

B2

B2

nop

nop

1 2 3 4

5 6

9

7 8

10 11 12

13 14 15

B2

B2

00 01 10 11

Figure 4: Mapping the B2 loop block into cache lines

entries (instructions) that are fetched at the beginning and
the end of the loop but are not executed (NB and NE) to be
greater or equal than the size of the cache line. In Figure 5
we show the first and the last cache block of the loop. XB

is the byte offset of first loop instruction while XE of the
last one. If XB is bigger than XE then we know that NB

is smaller than NE and the loop can be aligned (3). The
number of NOP instructions that have to be inserted before
the loop is calculated with equation (4). NOP instructions
now belong to the upper basic block. They will be executed
only once, before the loop is entered. In this way the loop
will be spread on N-1 cache lines which reduces the number
of cache misses by one on each iteration.

XB > XE (3)

NB = CacheBlock −XB (4)

3.2 Nested Loops
For nested loops the reduction of cache misses is more

complex. The alignment of one loop can shift the other
loops which will generate more cache misses for the others.
In order to prevent this consequence, we build a table (Table
I) for all nested loops. Firstly we qualify which loop is larger
than the cache size (2) and of those we mark the ones that
can be aligned (3). The inner ones that satisfy the first
two requirements will be the first to be aligned. This choice
is made because in single-path nested loops the inner ones
iterate most. Then we continue with the other loops, until

00 01 10 11

00 01 10 11

S

E

.

.

.

NB

XB

XE

NE

Figure 5: Position of the first and the last loop in-
structions in the cache lines

one of NE of any loop become zero. NE is the boundary
to ensure that the shifting of the loop will not increase the
number of cache lines for the other loops and with that the
number of cache misses.

In Figure 6 we show a nested loop with depth three. The
values for these loops are given in Table 1. Based on the
requirements, only L2 can be aligned. The additional con-
dition that has to be checked for nested loops is that the
number of padding NOP instructions should not be bigger
than the smallest NE of all loops.

4. EVALUATION
In this section we present the results we obtained from

our experiment. In the absence of a compiler with single-
path transformation we have not been able to evaluate the
performance of the algorithm for a larger number of bench-
marks. However, we used an FFT program code to observe
the number of cache misses that are generated for shifting
the loop through the cache line in order to see the behavior of
the cache misses for different numbers of NOP instructions
padded before the loop. The FFT program is a single-path
code that has a loop with a fixed number of iterations. The
code was compiled with the LLVM compiler [6] and run on
pasim (simulator for Patmos processor) [13]. The first in-
struction of the innermost loop was aligned with the cache
line. During the experiments we shifted the loop with NOP
instructions and executed the code for different cache-line
sizes in order to monitor the number of cache misses. From
the obtained results we saw that the number of cache misses
was changed only when the whole cache line was filled with
NOPs. In Table II we show the number of cache misses mea-
sured from the simulation. For a cache with cache line 16B
the number of cache misses was increased on every fourth
NOP instruction (instruction size 4B), and the cache miss
difference was always a constant number. The same behav-
ior had the other caches with 32B, 64B and 128B by increas-
ing the number of cache misses after every eight, 16, and 32
NOPs. In all cases, when the cache line was filled with NOP
instructions, the number of cache misses was increased by
63.

5. RELATED WORK

L1

NB

NE

L1

.

.

.

L1 L1

L3 L3L3

L3

L1 L1

L1 L1

.

.

.

.

.

.

.

.

.

.

.

.

L1 L2

L1L2

L2

L2L2L3

NB

NB

NE

NE

L1

Figure 6: Nested loops mapped into cache lines

Most of the techniques for program transformation to im-
prove cache performance are considering data cache behav-
ior. They reduce cache misses by merging arrays, padding
and aligning structures, packing structures and arrays, and
interchanging loops [7]. The first three techniques change
the allocation of data structures, whereas loop interchange
modifies the order in which data structures are referenced.
Capacity misses are eliminated by transforming the program
to reuse the data before they are evicted from cache, such
as loop fusion, blocking structure and array packing.

A technique that deals with capacity cache misses in the
instruction cache is cache locking [2], which loads cache con-
tents with instructions and locks it to ensure that the con-
tents will remain unchanged afterwards. The cache content
can be locked entirely or partially for the whole system life-
time (static cache locking) or it can be changed at runtime
at predefined points in execution (dynamic cache locking)
[3]. Usually the code is profiled and the most referenced
fragments of the code are brought into the cache in advance
and locked.

Table 1: Example of nested loop table

LoopID LoopS Iteration XB XE Alignment NB NE

L1 N 50 10 10 N 2 1

L2 N 15 11 00 Y 1 3

L3 F 20 01 01 N 3 2

Table 2: The number of cache misses for different cache line sizes

CacheLineSize(B) 16 32 64 128

Number of NOPs inserted 4 8 16 32

Number of cache misses 1 4754 2480 1189 600

Number of cache misses 2 4817 2543 1252 663

Number of cache misses 3 4880 2606 1319 726

In [15] the benefit of using scratchpads is demonstrated.
The main advantage of this type of memories is that the
contents can be controlled explicitly by the programmer or
compiler. The use of a comprehensive algorithm for scratch-
pad managing can improve the number of conflict misses by
utilizing efficiently the loops into the scratchpad. Also, this
type of memories are smaller and consume less energy than
conventional caches of the same size.

6. CONCLUSION AND FUTURE WORK
In this paper we address the problem of improving the

instruction-cache performance by aligning single-path loops
with cache lines. The technique itself is old but has been
used only for data caches. The properties of the single-
path conversion of building single-path code allow us to
adapt and implement the same technique also for instruc-
tion caches. The proposed algorithm quantifies which loops
can be aligned and then estimates the minimal number of
padded NOPs to improve the execution performance, thus
reducing the number of cache misses. In lack of a compiler
that supports the single-path conversion, we have been able
to explore only the behavior of caches considering the num-
ber of the cache misses when single-path loops are executed.
From the obtained result we saw that the number of cache
misses for single-path loops is changed in a constant manner
when the cache line is filled with NOPs. In the next step we
plan to explore the cache misses for single-path loops that
contain input-data independent branches.

Acknowledgments
This work has been supported in part by the European Com-
munity’s Seventh Framework Programme [FP7] under grant
agreement 287702 (MultiPARTES).

7. REFERENCES

[1] J. R. Allen, K. Kennedy, C. Porterfield, and
J. Warren. Conversion of control dependence to data
dependence. In Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on Principles of
programming languages, POPL ’83, pages 177–189,
New York, NY, USA, 1983. ACM.

[2] A. Asaduzzaman, N. Limbachiya, I. Mahgoub, and
F. Sibai. Evaluation of i-cache locking technique for
real-time embedded systems. In Innovations in
Information Technology, 2007. IIT’07. 4th
International Conference on, pages 342–346. IEEE,
2007.

[3] A. M. Campoy, A. Perles, F. Rodriguez, and
J. Busquets-Mataix. Static use of locking caches vs.
dynamic use of locking caches for real-time systems. In
Electrical and Computer Engineering, 2003. IEEE
CCECE 2003. Canadian Conference on, volume 2,
pages 1283–1286. IEEE, 2003.

[4] J. L. Hennessy and D. A. Patterson. Computer
architecture: a quantitative approach. Elsevier, 2012.

[5] H. Kopetz. Real-time systems: design principles for
distributed embedded applications. Springer, 2011.

[6] C. Lattner and V. Adve. The llvm compiler framework
and infrastructure tutorial. In Languages and
Compilers for High Performance Computing, pages
15–16. Springer, 2005.

[7] A. R. Lebeck and D. A. Wood. Cache profiling and
the spec benchmarks: A case study. Computer,
27(10):15–26, 1994.

[8] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I.
August, and W.-M. W. Hwu. A comparison of full and
partial predicated execution support for ilp processors.
In Computer Architecture, 1995. Proceedings., 22nd
Annual International Symposium on, pages 138–149.
IEEE, 1995.

[9] P. Puschner and A. Burns. Writing temporally
predictable code. In Object-Oriented Real-Time
Dependable Systems, 2002. (WORDS 2002).
Proceedings of the Seventh International Workshop on,
pages 85–91, 2002.

[10] P. Puschner, R. Kirner, B. Huber, and D. Prokesch.
Compiling for time predictability. In Computer Safety,
Reliability, and Security, pages 382–391. Springer,
2012.

[11] P. Ranjan Panda, H. Nakamura, N. D. Dutt, and
A. Nicolau. A data alignment technique for improving
cache performance. In Computer Design: VLSI in
Computers and Processors, 1997. ICCD’97.
Proceedings., 1997 IEEE International Conference on,
pages 587–592. IEEE, 1997.

[12] M. Schoeberl. Time-predictable computer
architecture. EURASIP J. Embedded Syst.,
2009:2:1–2:17, Jan. 2009.

[13] M. Schoeberl, P. Schleuniger, W. Puffitsch,
F. Brandner, C. W. Probst, S. Karlsson, T. Thorn,
et al. Towards a time-predictable dual-issue
microprocessor: The patmos approach. In Bringing
Theory to Practice: Predictability and Performance in
Embedded Systems, volume 18, pages 11–21, 2011.

[14] A. J. Smith. Cache memories. ACM Computing
Surveys, 14:473–530, 1982.

[15] L. Wehmeyer and P. Marwedel. Influence of memory
hierarchies on predictability for time constrained
embedded software. In Design, Automation and Test
in Europe, 2005. Proceedings, pages 600–605. IEEE,
2005.

[16] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The
worst-case execution-time problem-overview of
methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 7(3):36:1–36:53, May 2008.

