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ABSTRACT
The concept of an adaptive acquisition of environment data
in distributed scenarios promises a number of benefits. If an
application aggregates and uses all available sensing infor-
mation in an intelligent environment it may provide a higher
precision and an increased fault-tolerance. Unfortunately,
the application developer has to cope with a number of ad-
ditional challenges compared to static sensor evaluation. It
is not possible to generate an optimized sensor application
schedule for a dynamic system at design-time. Due to the
adaptive selection process, this has to be executed at run-
time. In this paper we propose a general approach for this
problem based on a two-level analysis. The first level com-
pares sensor parameter sets (periods, offsets, delays) and
application requirements (number of measurements, qual-
ity) based on a worst/best case analysis. If a more precise
evaluation is necessary, the second level needs to be started.
This one considers additional, situation-specific properties
like phase shift of sensor periods, communication delays and
jitter. At the end, it provides an online optimization of
common goals e.g., minimization of the age of data and a
constant number of input counts.
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1. INTRODUCTION
1.1 Motivation
Previous sensor-actuator systems were designed as a combi-
nation of statically configured components interacting with
each other in a predetermined pattern. If we want to design
a mobile robot accordingly, the engineer has to

• anticipate carefully all possible environment situations
(shape and velocity of obstacles, crossing humans, en-
vironment conditions),

• chose a suitable set of sensors (cameras, laser scanners,
RGB-D devices)

• define an appropriate schedule for sensor polling, data
filtering and processing.

The specific knowledge about environment conditions and
tasks allows the development of highly optimized mobile sys-
tems. Sensors for instance can be adjusted precisely to each
other in space and time. This allows a minimization of the
response time, an increase of output quality, a maximiza-
tion of the covered area or the limitation of the required
processing performance.

This approach does not consider the information generated
by external stationary sensors (building automation, moni-
toring cameras, sensors inside machines) or by other mobile
entities (robots, smartphones, wearable sensors). Due to
the fact, that the number of sensors increases in our homes
or in industrial contexts, we need to overcome the “island
perspective” based on local sensor outputs. Why should
we detect the state of a door by laser scanner or camera
information in an elaborate process when the door control
system provides this information? Is it necessary to track
a human by RGB-D measurements, if the position of their
smartphone is available? This point of view addresses the
paradigms of Cyber-Physical Systems (CPS) [1] and the In-
ternet of Things [2]. Following these ideas, we no longer de-
sign a statically configured, local perception layer but inte-
grate interfaces to aggregate external perceptions in order to
improve task specific parameters adaptively. Following this
approach, a mobile robot is equipped with a number of sen-
sors to guarantee its basic functionality. Additional exter-
nal sensors enable additional services or higher performance
(higher speed, more precise localization, more efficient tra-
jectories). In the end, we will be able to build cheaper robots



with increased robustness in the context of changing envi-
ronments and unintended tasks. These properties will meet
the requirements of future scenarios like assistant robots in
industrial applications or in the private sector much more
than a static configuration.

1.2 Basic Concept
Replacing the static sensor configuration with an adaptive
perception layer poses a number of challenging problems.
First of all we need an abstraction mechanism for encapsu-
lating individual sensor parameters, like measurement range,
uncertainty level, update rate, and position. They are not
known at design-time but necessary to interpret and eval-
uate the measurements at run-time. The literature offers
different approaches ranging from uniform data types in
communication protocols to electronic data sheets [3], [4].
Based on these representations, we are able to distinguish
between relevant and non-relevant measurements, to eval-
uate measurement quality information and to synchronize
the input. Additionally, the application has to be adapted
and optimized with regard to the current number of data
sets. Consequently, a Cyber-Physical System needs an ad-
ditional component to apply these services. For this purpose
we developed the concept of an Adaptive Sensing Controller
(ASC).
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Figure 1: Online evaluation of the available sensor
sets combining a static analysis and an optional op-
timization loop in the Adaptive Sensing Controller
(ASC)

Fig. 1 illustrates its basic functions in a state machine. The
application (D) announces the type and quantity of sen-
sor data. Afterwards the ASC is started. It continuously
monitors all available sensors, evaluates their data sheets in
relation to the relevance and adjusts the application. One
important aspect is the generation of an optimized sched-
ule. Hence, the ASC compares the quality and quantity of
requested sensor data in relation to existing measured data
and prepares the application to process the current sensing

configuration. In case of mismatches an error status occurs.

The electronic data sheet of all available sensing devices is
analyzed in the first evaluation step (A). If a relevant sensor
is detected, the static analysis will be started and calculates
the matching level in relation to the minimum number of
sensors per application cycle, maximum age, level of uncer-
tainty, e.g. This is the worst case analysis that just uses
the static parameters of the sensors and does not consider
the variable properties (delays, phase and jitter) of the dis-
tributed scenario. If all demands are fulfilled, the configu-
ration phase will be started. In case of a more challenging
requirement set, we have to start a scenario specific, second
level evaluation. The network monitoring component de-
termines the network characteristics by evaluating the time
series of measurement data (E). The results are included in
the dynamic analysis (F) and the subsequent optimization
(G). At this level, a more detailed temporal model is used
to define an optimal schedule. Consequently it provides a
more precise and adjusted result but requires more time to
monitor the network and to analyze the specific sensor con-
figuration.

This paper addresses one important aspect of the ASC: the
optimization of the application schedule in relation to the
sensor periods and phase shifts. It illustrates the two-stage
evaluation process, the low level worst-case static analysis
(B) and the dynamic analysis (F). The mathematical model
for both components is described shortly. At the end, we
illustrate the benefits using an exemplary scenario.

2. OFFSET ANALYSIS AND EVALUATION
2.1 General Problem - Phase Shift between Sen-

sor Periods
The ASC optimizes the different time frames of the sensors
related to the application periods. In statically configured
systems these adjustments are done at design-time. For run-
time solutions the reference literature describes several ap-
proaches.

• A static schedule is assumed in many control appli-
cations. The different sensor schedules are copied ei-
ther by ignoring (in case of systems with a limited dy-
namic) or by synchronizing the measurements based
on a mathematical model [5]. However, the estima-
tion of in-time sensor data based on older measure-
ments increases the level of uncertainty. With regard
to adaptive control applications, a number of authors
developed models that provide a flexible adaptation of
the control period related to the sensor state [6].

• An interesting example of an adaptive Kalman-Filter is
given in [7]. The authors adjust the period of the filter
in relation to the connected sensors. An optimization
of the measurement age is not applied.

• Some frameworks describe an adaptation of the sen-
sor periods at run-time according to predefined pat-
terns [8]. However, these approaches only consider sin-
gle application scenarios and are not applicable to our
distributed systems with multiple independent appli-
cations with different periods.
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Figure 2: Arbitrary adjustment of 2 sensors and the
fusion component. The diagram shows a super pe-
riod containing 4 or 6 periods of each sensor. The
application offset op determines the count of mea-
surements per application cycle.

In this paper we only consider periodically working sen-
sors and applications. Even with globally synchronized time
within the distributed system, each device triggers its mea-
surement generation or processing algorithm independently.
An appropriate synchronization method was presented in [9].
The start-up time or phase shift of a sensing devices on, op
(Fig. 2) cannot be controlled by the application, since there
might be more than one application using the sensor.

We want to illustrate a set of metrics for the static and dy-
namic analysis focused on an adjustment application period
offset op to sensor periods. At the end, the measurement
count and age should be stabilized and the uncertainty level
should be minimized. Fig. 2 illustrates the corresponding
challenge in an abstract way. For the sake of simplicity, we
only consider two sensors and one processing task at this
point. The processing task merges the received measure-
ments and calculates a combined result that is applied in an
application. The circle illustrates the super-period of this
example containing four periods p0 from sensor 0 and six
periods p1 from sensor 1. The fusion task runs eight times
during the super period.

The sensors generate one measurement per period, its prop-
agation depends on internal and network delays. The oc-
currence is modeled using a probability density function,
illustrated by the thin blue graphs. For this example we
assume that both sensor devices are connected with differ-
ent networks. Sensor 0 shows a tall window with uniform
probability, while measurements from sensor 1 are delayed
according to a Rayleigh distribution.

We suppose a constant phase shift between the two sensors
o1 − o2 determined by the different start times of the de-
vices. The ASC is only able to control the phase offset of
the application (op) that is completely independent. Its def-
inition affects the time adjustment of sensor and processing
periods and configures the age and the number of the incom-

ing measurements. The number of received measurements
fluctuates between 2 and 0 per cycle in Fig. 2. During the
application cycle and without a measurement, the applica-
tion has to use estimated values. Accordingly, the quality
of the environment representation decreases. If we suppose
a slightly smaller offset of the application (op) and rotate
the inner circle respectively, we can find an adjustment that
guarantees at least one measurement per cycle. Addition-
ally, we have to consider the age of each measurement. Due
to the periodical execution of the application, an additional
delay occurs. As you can see in Fig. 2, the measurements
are received at different points in time during the applica-
tion cycles. If we monitor highly dynamic processes, the
measurement value represents a backward view, and its un-
certainty increases besides the pure sensing noise.

Hence, the application defines a minimum measurement count
and uncertainty. The ASC uses the data sheets of the avail-
able sensors and calculates an individual and common occur-
rence probability. If the minimal value covers the require-
ments, it is not necessary to run the dynamic analysis or the
optimization. The definition of the application‘s phase offset
is irrelevant in this case. Otherwise the specific offsets have
to be involved in the dynamic analysis in order to calculate
an optimized op.

2.2 Mathematical model
In contrast to a previous paper [10] we apply a mathematical
model for the evaluation process. In this section we derive
metrics for the static and dynamic analysis module. At this
stage of the project we do not consider any additional delays.
The maximum age of a measurement is determined by the
length of the sensor period only.

In a single sensor scenario the whole system can be described
by using just three variables: pp processing period, ps sens-
ing period and a phase shift or offset os between them. The
minimum and maximum number of measurements per ap-
plication cycle is defined by

mmax =

⌊
pp
ps

⌋
+ 1 and mmin =

⌊
pp
ps

⌋
(1)

The probability to meet the higher/lower number of mea-
surements, is defined by

P (mmax) =
pp
ps
−
⌊
pp
ps

⌋
and (2)

P (mmin) = 1− pp
ps

+

⌊
pp
ps

⌋
(3)

At this stage we are able to calculate both value pairs for a
single sensor. If more than one sensor is available we have to
calculate the convolution between all discrete distributions.

A second criterion of the analysis is the age of a measurement
related to its processing time at the end of an application
period. We have to determine the maximum value dmax out
of a set of delays d1, · · · , dn with n = np. All values in this
tupel are unique for a sensor period to application period
configuration but the order is determined by the offset o.
The difference between neighboring delay values is always
defined by the greatest common divisor (gcd) of sensor and
processing period. The offset o also shifts all delay values



within this range mod(os, gcd(ps, pp)). Hence, the maximum
and the minimum delay that may occur can be calculated
by

amax = ps −mod(os, gcd(ps, pp))

amin = gcd(ps, pp)−mod(os, gcd(ps, pp)) (4)

It has to be noted, that os is integrated in the following
equations. The static analysis does not know the offset con-
figuration and can only calculate a worst-case-assumption
with

amax ≈ ps − gcd(ps, pp)

amin ≈ 0 (5)

The dynamic analysis can access the network monitoring
results and determine a specific result.

3. EXAMPLE
3.1 Scenario
To illustrate the impact of the approach, we consider a
mobile robot scenario. In a previous European Research
Project 1, our group build an experimental setup for au-
tomotive scenarios based on miniaturized cars. The arena
has a size of 5x5m and shows a closed loop trajectory with
a width of 80cm. A section is visible in Fig. 3. The cars
are tracked using several cameras mounted on the ceiling
of the testing ground. The image capturing and processing
is executed on different embedded processors. All cameras
provide a 2D position and orientation information.

Figure 3: Experimental setup with a miniaturized
car. It is tracked using several cameras to optimize
the control algorithms.

For our exemplary scenario, we consider just two cameras
of the same type to estimate the location and orientation of
a car. In the context of this paper, they can be considered
an intelligent environment, and all sensor characteristics are
available from an electronic data sheet. As explained, the
sensors work completely independent and neither sensor pe-
riod nor phase shift can be manipulated by an application.
The phase shift ∆o between both sensor periods is arbitrar-
ily defined by the manual activation. The camera systems
are not synchronized and generate output data with a con-
stant frame rate of 25Hz = 1/(40ms).

The position measurements xn are disturbed by a Gaussian
noise with a standard deviation of σs = 2cm. Additionally
we have to consider the movement of the car after an image
was taken. Consequently, the fusion algorithm synchronizes
all received measurements x1, x2, · · · , xk in a first step and
predicts the related positions x̂1, x̂2, · · · , x̂k at the end of

1Homepage on http://www.karyon-project.eu/

the current processing period k · tp. For this purpose the
algorithm evaluates the following equations:

x̂n(k · tp) = xn(t) + f(k · tp − t) (6)

σ̂n(k · tp) = σs + σv · (k · tp − t) (7)

The specific estimation function f() is not important for the
context of the paper. It provides the position progress de-
pending on the current velocity. Additionally, we obtain an
uncertainty information (σ̂n) depending on the time window
of the prediction and on the sensor uncertainty. The uncer-
tainty of the velocity was defined by σv = 0.06cm/ms. At
the end of each fusion period the algorithm merges all po-
sition estimations x̂n in a common result. Each estimation
is weighted related to the reciprocal value of its uncertainty
level.

x̂ =

i∑
n=i

σ̂n
2 ·

i∑
n=i

x̂n

σ̂n
2 (8)

σ̂2 =
1∑i

n=i
1
σ̂n2

(9)

The adjustment of the car control algorithm defines the pe-
riod of the fusion to pp = 60ms.

The main goal for the integration of the fusion algorithm
was to reduce the motion blur and to provide a position in-
formation with a standard deviation σ̂ < 2.5cm. This value
reflects the uncertainty level of the camera. In contrast, the
worst case of a single measurement during a fusion period
generates σ̂ = 2cm+0.08cm/ms·40ms = 5cm in worst case.
Obviously, one measurement cannot fulfill the requested un-
certainty. A second measurement reduces this value by half,
a third one results in one third. If the static analysis is able
to guarantee at least 3 sensor measurements per cycle, we
do not need to run a complete dynamic evaluation of the
sensing configuration

3.2 Static analysis
Both sensors work with a period of 40ms. According to
Equ. 1 each sensor generates at least mmax = 1 and at most
mmin = 2 measurements per application cycle. Both counts
occur with the same probability P (m = mmax) = P (m =
mmax) = 0.5 based on Equ. 3. The common measurement
count for both sensors can be calculated by a convolution
operation

Pcom(m) =

k=∞∑
k=−∞

P (k)P (m− k) (10)

to Pcom(2) = 0.25, Pcom(3) = 0.5 and Pcom(4) = 0.25.
Hence, the two sensors generate at least 2 measurements
per application cycle with a probability of 0.25. 3 measure-
ments occur in 50 percent and 4 in 25 percent of the fusion
periods. A dynamic evaluation of the offset configuration
cannot be avoided due to the requested minimum number
of 3 measurements per cycle. Hence, we have to evaluate the
phase shift and determine an application offset for meeting
the application requirements.

3.3 Dynamic analysis
Related to the configuration of our simplified model, the
network monitoring determines only the phase shift of each

http://www.karyon-project.eu/


sensor [o1, o2] . In a more realistic case, we would have to
monitor the timestamps of the sensor measurements and to
estimate the corresponding delay distribution. Afterwards
a search algorithm examines all sensor application adjust-
ments 0 ≤ op < pp, calculates the age of each measurement
set and determines the expected uncertainty level. Fig. 4
illustrates the result for all possible phase sensor and ap-
plication shifts. For simplicity the two sensor offsets are
combined in a single ∆o = o1−o2 measuring the phase shift
between the cameras. The colors illustrate the maximum
uncertainties σ̂ at the end of each fusion cycle calculated by
Equ. 9. A certain phase configuration [o1, o2] is represented
by a horizontal line in the diagram. For ∆o = 10ms the
corresponding uncertainty ranges from 2.2cm up to 3.2cm.
Consequently, an application offset of op = {1, 21, 41} pro-
vides the best fusion results. In conjunction with the color
bar it becomes clear that we can reach our uncertainty goal
in all cases by choosing the fusion offset carefully.
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Figure 4: Resulting fusion uncertainty max (σ̂) for
different fusion offset configurations considering var-
ious phase shifts between the camera periods

Compared to the low level static analysis the dynamic anal-
ysis generates precise result and allows a fine grained evalu-
ation between available and requested quality. The trade-off
is given by the duration of the monitoring process and the
delay caused by the analysis and optimization process. In
realistic scenarios this may effect the applicability.

4. FUTURE WORK
The paper addresses on important task of the ASC, the es-
timation of the expected quality of the result and the cor-
responding monitoring and control of the sensor data ag-
gregation. For this purpose, the ASC analysis the number
and age of the incomming measurements on two levels and
optimizes the schedule of the application. At the moment
the mathematical model is simple, we do not consider ad-
ditional delays or variable measurement uncertainties. As
next steps, we want to develop a general solution for the
phase optimization problem. It has to

• consider sub-goals (validity levels) and other metrics
(precision, accuracy),

• find an abstract description of application quality de-
mands,

• include an effective monitoring component for deter-
mining sensor phase shift o{1,2,...,n},

• solving the optimization problem in an effective man-
ner.

Finally, the approach needs to be validated using real hard-
ware considering different network types and configurations.
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