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ABSTRACT
In this paper we present our ongoing work on developing a frame-
work supporting adaptive resource reservations targeting component-
based distributed real-time systems. The components may be spread
over different resources in a distributed system. The proposed frame-
work utilizes a reservation-based scheduling technique in which the
sizes of reservations are adjusted during run-time to deal with dy-
namic resource demands of the software components. We present
our modeling approach, we describe design options made and we
present corresponding challenges.

1. INTRODUCTION
Complexity in the embedded software domain has been growing
rapidly. Component-Based Software Engineering (CBSE) provides
a modular approach for developing complex software systems. CBSE
allows parallel development of a complex system by different de-
velopment teams. In this approach, each team is responsible to de-
velop a particular component. The components are integrated at the
final stage of the development. In the context of real-time systems,
resource reservation techniques have been widely used for devel-
oping component-based real-time systems [20, 13, 7]. In such an
approach the capacity of a resource is divided into a number of
reservations, and each reservation is assigned to a component. In
doing so, the timing properties of the component can be studied
in isolation. The integration techniques guarantee that the timing
properties will be preserved after the integration.

In the context of hard real-time systems, the size of resource reser-
vations is calculated at design time and kept fixed throughout the
life time of the components. In the soft real-time systems domain,
however, the reservation sizes may be adjusted during run-time to
deal with the dynamic resource requirements of the components.
Adaptive reservations have been studied for single resource sys-
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tems (e.g. [16, 11]). However, in the context of distributed sys-
tems, adaptive reservations have not received much attention. In
the distributed system context, the processor resources as well as
the network resources have to be considered in an integrated fash-
ion.

In this paper, we consider component models in which a component
may be composed of multiple tasks spread over a distributed sys-
tem. The tasks within the components may communicate through
the network using messages. Therefore, the components, besides
the tasks, may contain messages. We focus on dynamic resource
reservations on the processor resources as well as the network re-
sources. We also discuss the challenges associated with adaptation
of the reservation of such resources for the components, and we
propose a solution sketch.

2. RELATED WORK
In the following, we review the reservation techniques inherent in
three different areas, processor resources, network resources, and
end-to-end resources in distributed systems. We also review two
groups of works: (i) static reservations, and (ii) dynamic reserva-
tions. From a modeling perspective, several resource models have
been proposed for modeling resource reservation techniques. For
instance, the Periodic Resource (PR) model [20] uses a period and
a budget for characterizing a reservation. A reservation is guaran-
teed to receive a specific budget during each time interval equal to
the period. The budget is reduced while the resource is assigned
to a particular component, and it is replenished at the start of the
period.

Resource reservations on processors. A number of resource reser-
vation models are realized on the processor resources. For in-
stance, the Constant Bandwidth Servers (CBS) [2] are implemented
in the Linux kernel [9], or the PR model is implemented in Vx-
Works [4]. When the tasks have dynamic resource demands, it is
desirable to adapt the reservation parameters to deal with the re-
source demand changes. Adaptive CBS is promoted in the AQu-
oSA project [16] for dynamic tasks such as video decoders. The
ACTORS projects [5] uses adaptive CBS on multiprocessor plat-
forms. In [11], the budget of periodic servers are adapted tracking
the processor demand of the components. In this work the model
is hierarchical, i.e., the periodic servers may contain multiple tasks
as well as multiple child periodic servers.

Resource reservations on network. The same modeling concepts
as in processors have been applied on the network resources. A
general category of the resource management in network is traffic
shapers [14]. The purpose of these shapers is to limit the amount
of traffic that a node submits to the network in a given time in-
terval. Similar to the techniques used by processor servers, the



traffic shapers use methods based on capacity which is replenished
with different policies, e.g. credit-based shaping in Ethernet AVB.
Moreover, some real-time Ethernet protocols enforce a cyclic-based
transmission and reserve windows for different classes of traffic
(e.g., Ethernet POWERLINK [8], FTT-SE [3] and HaRTES [19]).
Also, a hierarchical server model [18] is proposed for the Ethernet
switches in the context of the FTT-SE protocol to reserve a portion
of bandwidth for different traffic types, hence providing temporal
isolation among them. An online QoS management [21] is pro-
posed in the context of a multimedia real-time application, which
adapts the video compression parameters and the network band-
width reservations to provide the best possible QoS to the streams.
Our end-to-end reservation framework can use the above network
technologies for reserving the network resources.

Registering resource reservations on network. In order to re-
serve resources for streams in the network several protocols have
been proposed, where they use similar concepts. For instance,
Stream Reservation Protocol (SRP) [1] defines a set of procedures
to reserve network resources for the specific traffic streams, which
are crossing through an Ethernet Audio Video Bridging (AVB) net-
work. The SRP protocol forces the traffic to be registered on the
AVB switches through its path, before being transmitted. Further-
more, a Resource ReSerVation Protocol (RSVP) [22] was proposed
to reserve resources for a stream with a specific Quality of Service
(QoS) requirement. This protocol operates using an admission con-
trol, which checks whether there are enough resources to supply the
requested QoS requirement. In both protocols, the mechanism per-
forms by sending a request through the network and checking in
each node the availability of resources. In our framework, we use
such protocols to communicate the resource adaptations (i.e. new
reservations) throughout the distributed system.

Resource reservations in distributed systems. Few authors have
addressed the end-to-end reservation of resources for distributed
systems, including processor and network resources. A distributed
kernel framework with a resource manager in each node has been
designed and implemented to provide an end-to-end timeliness guar-
antee [12]. Also, a resource management system, called D-RES [15],
has been developed to handle shared resources among multiple ap-
plications in distributed systems. A very close work related to
ours is the one presented in [6] in which a pipeline task is con-
sidered. Tasks may use one of the resources available in the system
to carry on their computations. Adaptive CBS is used to track the
resource demand of the tasks. In addition, a general model, called
Q-RAM [17], has been developed to manage the resources shared
among multiple applications. The applications in this framework
have different operation levels with different qualities depending on
the available resources. However, they have to satisfy their needs
such as timeliness, reliability and data quality. The model allocates
the resources to the applications considering that the overall system
utility becomes maximum while the applications meet their mini-
mum needs. This model has been extended in [10] for the systems
with rapidly changing resource usage.

The main difference of our work with [6] and [17] is that we con-
sider adaptation for components which may in turn be composed
of multiple tasks. In our framework, performing adaptation of a
reservation in one resource may imply adapting other reservations
in that resource that are coupled with other reservations in other
resources, via the distributed components, through the whole sys-
tem. We also focus on the design of an adaptation protocol that can
easily be integrated on top of the well established network tech-
nologies discussed in the previous paragraph. In the above outlined

proposals the adaptation overhead was not thoroughly addressed.
In our work, however, we will address the adaptive end-to-end re-
source reservation (both on processor and network resources) and
we will focus on light-weight protocols in which adaptation can be
enforced quickly with low overhead, i.e., with insignificant usage
of the resources for adaptation.
3. MODEL
We assume distributed real-time systems in which n resources are
available. We use rh to denote the hth resource available in the
system. A number of real-time components are placed on the dis-
tributed system. The components may use a subset of all avail-
able resources. We consider two types of resources: (i) network
resources; (ii) processor resources. The components use resource
reservation polices for accessing the resources.

Component model. We assume that a real-time component Ci is
composed of a set of tasks and messages:

Ci = {τ i
1, τ

i
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i
1,M

i
2, . . . },

where τ i
j and Mi

k represent the jth task and the kth message of Ci

respectively. The tasks are the processor consumers, while the mes-
sages consume the network resources. Ci is entitled to a share of the
available resources with other components in the system through
resource reservation techniques. In other words, fractions of differ-
ent resources are reserved for each component. We use component
interfaces for denoting the specifications of the resource reserva-
tions assigned to the components. The interface of Ci is denoted
using: Γi =< Ti, {Q

1

i , Q
2

i , . . . , Q
n
i }, ζi >, where Ti is the period

of the resource reservations, Qh
i denotes the budget of rh reserved

for Ci, and ζi represents the relative importance of the component
with respect to the other components. The importance parameter is
used when a resource is overloaded and some components have to
be prioritized for receiving the resource.

Task model. We assume a sporadic task model in which a task
τ i
j is characterized with a minimum inter-arrival time pij and an

execution time Ci
j . We assume an implicit deadline task model, i.e.,

the deadlines of tasks are equal to their periods. We further assume
that the tasks may operate in different modes. Each mode has its
own execution time and period. We denote the task period and
execution time associated with an operation mode m of τ i

j using
pij,m and Ci

j,m.

Message model. We assume a sporadic message model in which
the kth message of Ci is denoted using Mi

k. The messages start
from a processor resource, consume a number of network resources
and end in a destination processor resource. The messages are
produced by a producer task and consumed by a consumer task.
The set of all resources consumed by Mi

k is denoted using Ri
k =

{rs, . . . , rd}, where rs and rd represent resources where the pro-
ducer task and the consumer task are located respectively. Similar
to the task parameters, we use pik,m and Ci

k,m to denote the min-
imum inter-arrival and the transmission time of Mi

k operating in
the mth mode.

Adaptation model. Since we assume that the tasks and the mes-
sages operate in different modes, the resource portions allocated
to the components should be adapted to allow efficient resource
utilizations. We intend to adapt the reservation budgets (Qr

i ) and
keep the reservation periods (Ti) constant. We assume that a mode
change in the producer task of a message leads to a mode change in
the message itself as well as a mode change in the consumer task.
We further assume that the table of mode associations are given
prior to run-time. Therefore, without loss of generality, we assume
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Figure 1: Surveillance system example. r1 and r5 have two cam-
eras attached. r6 hosts the manager task. Component controller
and resource adapter entities are described in Section 4.

that if the producer task is operating in mode m, then the message
and the consumer task are also operating in mode m. We perform
the adaptations periodically. Therefore, at the time of deciding new
budgets, the latest status of the resources and the components is
available.

The QoS experienced by a component depends on the budgets al-
located to the component. If a component receives the resource
portions that it has requested, then the component is fully satisfied.
However, components may receive lower budgets due to unavail-
ability of the resources. The components experience partial QoS
satisfactions when they receive lower budgets than their requested
budgets. The QoS of the whole system, on the other hand, is a
weighted aggregate of all components’ QoS. When calculating the
system QoS, the component importances are used as the weights.

Example. In the following we present an example for elaborating
our framework. In our example we assume a distributed system
consisting of six resources {r1, . . . , r6}. r1, r5 and r6 are pro-
cessor resources while r2, r3 and r4 are network resources. We
assume that a surveillance component has been placed on this dis-
tributed system. Two cameras are attached to r1 and r5. The video
frames are preprocessed in their source processors. Thereafter, the
video frames are sent to r6 which hosts the manager tasks. We
model this surveillance system as a component placed on the dis-
tributed infrastructure: C1 = {τ1

1 , τ
1

2 , τ
1

3 , τ
1

4 ,M
1

1,M
1

2, }. τ1

1 rep-
resent the video decoder task placed on r1, while τ1

2 is the video
decoder task on r5. Also, τ1

3 and τ1

4 are the consumer tasks of the
video streams produced by τ1

1 and τ1

2 . The video decoder tasks
generate messages M1

1 and M1

2 that consume the following set
of resources: R1

1 = {r1, r2, r3, r6}, R1

2 = {r5, r4, r3, r6}. The
resource reservations of C1 is represented using the following inter-
face: Γ1 =< T1, {Q
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1, }, ζ1 >. Note that C1

may be sharing the resources with other components.

4. FRAMEWORK
In this section we provide a high level description of our frame-
work. The objective of our framework is to adapt the component
budgets in response to the changes in the resource demands by the
components. The adaptation mechanism has to be responsive while
imposing insignificant overhead. We first need to sense the demand
changes. Thereafter, we have to adapt accordingly. We consider
two types of entities for performing the adaptations: (i) component

controllers which communicate with the producer tasks to sense the
resource requirement changes; (ii) resource adapters which adapt
the reservation budgets responding to the adaptation requests sent
by the component controllers.

Component controller. The change in the resource demand is ini-
tiated by the producer tasks. The producer tasks inform their cor-
responding component controller about the change in their oper-
ating mode. The component controller, then, makes note of the

new resource requirements. The following two problems may be
sensed: (i) resource excess, i.e., the resource is over-reserved for
the component; (ii) resource deficiency, i.e., the amount of reserved
resource for the component is less than the component’s required
resource. In the case of resource excess, the component controller
only sends an adaptation request, if the wasted resource is more
than a threshold value. However, for all resource deficiency prob-
lems an adaptation request is always sent. The adaptation requests
are sent to the corresponding resource adapters. Returning to the
example depicted in Figure 1, assume τ1

1 initiates an adaptation.
The controller of C1, that is placed in r1 in this example, will send
the request to the resource adapters of r2, r3 and r6.

Resource adapter. The resource adapters are responsible to adapt
the component budgets based on the requests received from the
component controllers. In the case that the resource adapter re-
ceives multiple concurrent requests, then it sorts the requests based
on the importance of the sender component. The resource adapter,
then, executes requests starting from the most important sender. We
define the following three responses for a request: (i) accept (ii) re-
ject (iii) force accept. The resource adapter makes decisions based
on a simple utilization test. If the sum of requested budgets is less
than the schedulability threshold of the resource, then it accepts the
request. On the other hand, when the new budgets cannot be allo-
cated due to lack of free resource, then the request is rejected. In
this case the sum of the budgets of all more important components
than the current component Ci (i.e., ∀Ca | ζi < ζa) and the new
request is more than the schedulability threshold of the resource. A
reject response will be sent back to the sender node while rolling
back all adaptations caused by the request on its path. We also
have a case in which the request can be accepted, if and only if, we
force less important components to consume less resources. This
case is in particular challenging because the changes may need to
be propagated throughout the network. This is because if a compo-
nent does not receive its desired resource portion on one resource
due to a force accept response, then it may no longer require the
same amount of other resources that are on its path. For instance,
in Figure 1, if the component does not receive its desired portion
of r4 due to a force accept response, then it can reduce its required
portions of r3.

Design options. We divide the design problem into two main sub-
problems corresponding to the design of the component controllers
and the resource adapters. In the following we discuss the design
alternatives that we will take into consideration.

The component controllers are the generators of the adaptation re-
quests, which are sent to the resource adaptors using request mes-
sages. Therefore, the periodicity of the adaptation is governed by
the component controllers. The period of the adaptation affects the
overhead of the adaptation due to the number of messages that the
component controller may send. Thus, assigning an appropriate
period to the component controllers becomes an important issue.
Also, the threshold for sensing the resource excess plays a role in
controlling the number of adaptation requests.

Furthermore, it is desirable to minimize the overhead due to the
communications between the tasks and the component controllers.
Thus, it is important to place the component controller on a proces-
sor that minimizes such overhead costs. For instance in Figure 1, it
is better to place the component controller of C1 either on r1 or r5.
This is because one of the producer tasks (either τ1

1 or τ1

2 ) will be
able to communicate with the component controller without a need
to send messages over the network.



The component controllers need to calculate the required budget
for each resource based on their internal information about the op-
erating modes of the tasks and messages. Depending on the imple-
mentation of the resource reservation, different budget calculation
techniques may be used. For instance, we may use the periodic re-
source model [20]. In such a case, the analysis may also be used
for budget calculations. However, such an analysis is pessimistic,
and it will result in waste of the resources. It may also be possible
to update the budget assignments based on a feedback loop similar
to what is proposed in [11].

We have identified three types of messages which will be used for
performing the adaptations. (i) Adaptation requests which are sent
by the component controllers to the resource adapters communi-
cating the budget changes; (ii) request responses which are sent by
the resource adapters to the component controllers informing them
about the result of their request; (iii) adaptation requests due to
force accepts which are sent by the resource adapters to other af-
fected resource adapters enforcing the new changes. Note that the
type (iii) messages need to be sent before the type (ii) messages.
This is because the result of type (iii) messages is needed for mak-
ing decisions on how to respond to the adaptation requests. The
type (iii) messages may further result in other type (iii) messages.
Hence, it is important to define a stop criterion to avoid jamming
the network with the adaptation requests. The proposed method
can be applied on the available network resource reservation pro-
tocols. For instance, the type (i) and (iii) messages are similar to
the advertise messages, and the type (ii) messages are similar to the
ready messages used in SRP [1].

The resource adapter may utilize different approaches for deciding
the force accept cases. For instance we may guarantee a minimum
bandwidth (more than zero) of the resources for a component. In
such a model, it will not be allowed to completely shut down a com-
ponent. Moreover, the resource adapter may either be centralized or
distributed (as depicted in Figure 1). In the centralized approach all
adaptation requests are directed to a central resource adapter. The
adapter, then, decides on how to respond to the requests. The type
(iii) messages can be avoided using a centralized resource adapter.
This is because this type of messages are sent from an adapter to
other adapters which in this case are located on a single node. In the
distributed approach, however, each resource has its own adapter.
The adapter makes local decisions, i.e., it decides on how to re-
spond to the adaptation requests sent to itself using its local infor-
mation.

5. CONCLUSIONS AND FUTURE WORK
In this paper we discussed the design of an adaptive framework for
scheduling component-based distributed real-time systems. In the
future we would like to develop a simulation tool for investigating
different design options discussed in this paper. We will compare
the performance of our framework in terms of adaptation overhead
and components’ QoS satisfactions with respect to the different de-
sign options.
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