
Towards Dynamic Adaptation in Broadcasting with
Hybrid Rateless Codes

Carlos Faneca, José Vieira,
André Zúquete

IEETA
Dep. Electronics, Telecom. and Informatics

University of Aveiro
Aveiro, Portugal

{carlos.faneca,jnvieira,andre.zuquete}@ua.pt

Julio Cano, André Moreira, Luis Almeida
Instituto de Telecomunicações

Dep. Electrical and Computer Engineering
Faculty of Engineering, University of Porto

Porto, Portugal
{jcano,andre.moreira,lda}@fe.up.pt

ABSTRACT
There are many situations, such as in training and educa-
tion, in which there is a frequent need to distribute large
files to many clients, e.g., operating system boot images or
raw data files. To carry out such distribution efficiently, we
use wireless broadcast and a hybrid coding technique that
combines forward coding using weak LT Codes with a feed-
back phase at the end, which allows concluding the process
faster with lower computing cost than traditional LT codes.
However, for the sake of scalability, in the feedback phase
a scheduler bounds the maximum number of clients that
can communicate feedback in each given cycle and schedules
them. Moreover, using a shorter or longer feedback phase
also impacts on the number of simultaneous clients in feed-
back mode, resulting in more or less impact of the scheduler
and more or less effectiveness of the feedback itself. In this
short paper we briefly describe a recently developed proto-
type and we summarize some preliminary results confirm-
ing the advantage of using scheduled feedback. Moreover,
we discuss the interplay between duration of the feedback
phase and clients scheduling as a line for future research in
scheduling-coding co-design.

Keywords
Wireless broadcast; Ad-hoc networks; Fountain codes; LT
codes; Weak-LT codes; Traffic scheduling

1. INTRODUCTION
Distributing large files to a large number of clients us-

ing a wireless network is a challenging task. However, it is
a typical requirement in educational and training scenarios
where operating system boot image files or raw data files
need to be distributed among the participants, or even in
sensor networks where a similar code image has to be up-
loaded to many nodes. Scenarios of this kind, with large
amounts of information disseminated among many clients
in microcells will probably become more common as new
networking paradigms, such as 5G networks, settle in.

Fountain Codes [1, 4], also called rateless such as LT [3,
4] codes, are an efficient way to preform this task. Using a
properly designed degree distribution, it is possible to con-

This paper was presented at APRES 2015. Copyright retained by the
authors.

struct practical rateless codes such that the original data
can be recovered from a number of codewords that is only
slightly larger than the number of original symbols. As the
information in the receiver grows, so does the probability
that a new random packet is not informative, and thus use-
less from a code perspective. This suggests that the last part
of the transfer can be enhanced with a feedback strategy in
which the clients inform the server of the specific symbols
they miss [2]. The encoder then gives preference to such
symbols in the generation of the following codewords.

An application similar to ours has been considered in [2],
where a feedback aided LT code is used to deploy a pro-
gram (file) to multiple sensor nodes via wireless broadcast.
Apart from code construction, one concern is the amount
and location of feedback. To avoid congestion, one of the
methods in [2] restricts acknowledgements to be uniformly
distributed across the transmission, at the cost of some sym-
bol overhead when compared to the non-uniform feedback
case. To cope with multiple receivers, the scheme considers
the worst case receiver. This inhibits the benefits for the
majority of the clients, in case one receiver is much worse
than the others or simply new clients join in the middle of
the transmission.

Recently we proposed using a scheduler in the server that
controls the transmission of the feedback packets to avoid
this problem. The scheduler explicitly polls a bounded num-
ber of clients that are in feedback mode, e.g., three, accord-
ing to an adequate scheduling criterion, e.g., those that miss
less symbols. The use of a feedback phase also grants the
server control over the transfer process to avoid producing
code words when there is no client ready, thus alleviating
the use of the wireless medium. However, there is an in-
terplay between the duration of the feedback phase and the
scheduler because the number of clients simultaneously in
feedback mode is highly dependent on such duration.

In this short paper we present a summary of prelimi-
nary results that confirm the advantage of using our sched-
uled feedback approach and we discuss the use of different
scheduling approaches as well as the interplay between the
scheduler and the feedback duration, paving the way for fu-
ture research along this line

2. CODING FRAMEWORK
In our approach, we consider LT Codes [3] with a lower

degree distribution, which we call Weak-LT Codes. These
are substantially simpler to compute but present an extra



Figure 1: Client state machine.

overhead in codewords that we compensate with the use of
feedback. According to this let us define a few variants that
we shall use in our analysis. For Classic LT Codes, we use
the robust soliton distribution with c = 0.03 and δ = 0.5.
For the Weak-LT Codes we further define two types. The
Weak-LT (Type I) consists on the same distribution of the
Classic LT but truncated to a maximum degree of 8. Com-
bined with 20% remaining symbols communicated through
feedback this approach aims at minimizing the mean and
maximum codewords overhead. The Weak-LT (Type II)
uses c = 0.05 and a maximum degree of 20. Combined with
2% feedback, this approach reduces the time clients spend
in feedback mode.

When the server handles a client in feedback mode it starts
to include in each codeword a missing symbol chosen ran-
domly from the clients’ feedback list, see Section 3, while
maintaining the distribution degree, choosing the remaining
symbols from the ones that are not in the feedback list. This
way, the coding distribution is kept intact for the remaining
clients that are receiving codewords at the same time. Due
to the low degree distribution, the server can satisfy just
a low number of clients simultaneously in feedback mode
(three in the current prototype) and indexes of the sym-
bols of the feedback list are explicitly sent on the broadcast
packet.

3. SYSTEM ARCHITECTURE AND
FEEDBACK PROTOCOL

We consider an ad-hoc network with one server storing
and disseminating a file among several clients. The server
and clients are configured to connect to the same SSID in
ad-hoc mode, so that the server communicates directly to
the clients. This reduces latency and eliminates distribution
problems that the use of an Access Point in infrastructure
mode could generate. The identification of all nodes in the
system is carried out using their respective MAC addresses.

The protocol state-machine of the client side is shown in
Fig. 1. The client starts in normal mode in which it re-
ceives codewords and periodically registers in the server to
signal its presence. When only a few symbols are missing
the client enters the feedback mode. In this state, each client
registers in the server as a feedback mode client, so that the
server considers this client when scheduling the feedback re-
quests. When requested for feedback the client sends a uni-
cast packet with a list of the symbols it needs to complete
the download. When the download is completed the client
sends a message to the server indicating so, and finishes.

The protocol state-machine of the server side is shown in

Figure 2: Server state machine.

Fig. 1. The server starts in idle mode where it simply sends
periodic requests for registrations. It does not broadcast
codewords to prevent flooding of the wireless channel while
no client is present. When it receives the registration of at
least one client it changes to the slow start mode. This mode
is designed to receive a large amount of initial registrations.
In this state, many clients are expected to initiate the down-
load process simultaneously. This mode reserves a time slot
to receive many registrations from clients. This time slot is
progressively reduced to a minimum value, at which point
the server changes to normal mode. In normal mode the
server uses most of the time to broadcast codewords, while
periodically requesting client registrations. Existing clients
will still send their registration messages to the server to
signal their presence. In case a client does not renew its
registration, the server deletes it from its database. When
no client is active the server goes back to idle mode, waiting
for new clients.

While in normal mode, if at least one client registers in
feedback mode the server enters its own feedback mode. In
this state, the server additionally sends periodic feedback
requests to clients in feedback mode. In each broadcast re-
quest, a limited number of clients is polled for feedback, to
bound the bandwidth used by the feedback. The server is
notified when a client completes the download. When no
clients remains in feedback mode, the server changes back to
normal mode.

4. PRELIMINARY RESULTS
In this section we show some preliminary results from sim-

ulations with one client, to verify the impact of the feedback
approach. Then we show the results of practical experiments
with a test bed of 10 clients. These results motivate us for
the dynamic adaptation approaches we wish to research next
and which we discuss in the following section.

4.1 Simulations
We implemented our coding framework for one client in

MATLAB to analyze the behavior of the coding process with
feedback and help tuning it. In particular, we simulated the
decoding of a file with 10 000 symbols, using the Weak-LT
Codes of Type-I (20% feedback) and of Type-II (2% feed-
back) as defined in Section 2, plus traditional LT codes for
comparison. Figure 3 shows the distributions of the num-
ber of codewords needed to decode the complete file with



1 1.05 1.1 1.15 1.2

x 10
4

200

400

600

800

1000

1200

1400

1600

1800

Number of codewords to complete the decoding

 

 

LT Codes

Weak−LT (Type II) codes

Weak−LT (Type I) codes

Figure 3: Histogram of the number of codewords
needed to decode a file with 10 000 symbols.

the three types of coding when repeating the transfer 10 000
times.

As expected, the earlier the feedback starts, in this case,
the Type I distribution is applied when just 20% of the sym-
bols are missing, the less codewords are needed to complete
the file transfer which ends sooner. Nevertheless, even with
a very short feedback phase, triggered when just 2% of the
symbols are missing we already have advantage in codewords
overhead with respect to the traditional LT codes.

4.2 Practical Experiments
To see if these results also occurred in practice with more

clients, we deployed a test bed with 10 clients scattered in a
classroom with 38.5m2 and with a noisy Wi-Fi environment.

The server was a laptop running in single user mode to dis-
tribute a 100 MBytes file using a Thomson TG123g (chipset
Realtek RTL8187B) Wi-Fi dongle interface. This Wi-Fi in-
terface was chosen because it is able to broadcast at 54 Mbit/s,
the maximum transmission speed of IEEE 802.11g and it is
able to explore the TxOP feature of the QoS enhancements
of IEEE 802.11, which increases significantly the transmis-
sion efficiency in unidirectional frame bursts.

The clients ran in ordinary laptops without any extra
equipment. However, we built a USB stick with a boot-
strap system that automatically joined the ad-hoc network
created by the server and downloaded the file 100 times. For
each download, a log was created containing the percentage
of missed packets, the total codewords needed to decode the
file, several time figures (elapsed time, time in feedback, user
CPU time and system CPU time) and the maximum amount
of memory used by the decoding process.

One aspect that we realized was that using more feedback
caused an effective reduction of global throughput due to the
extra contention in the wireless medium between communi-
cations from the clients and the server. This effect, how-
ever, is independent of the coding framework and depends
on the efficiency of the QoS mechanisms of IEEE 802.11,
only. Thus, to remove this effect we carried out two experi-
ments, each at a different server throughput.

4.2.1 Server broadcasting at a limited throughput
The first experiment considered a server broadcasting through-

put of 20 Mbit/s and was used to compare LT with weak
LT Type I codes. This throughput not only accommodated
more feedback packets but also other spureous communica-

7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8

x 10
4

0

5

10

15

20

25

30

35

40

45

Number of codewords needed to decode

File with 71919 symbols

 

 

LT Codes

Weak−LT (Type I) codes

Figure 4: Histogram of the number of codewords
needed to decode a file with 10 clients and limited
throughput.

7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8

x 10
4

0

10

20

30

40

50

Number of codewords needed to decode

File with 71919 symbols

 

 

LT Codes

Weak−LT (Type II) codes

Figure 5: Histogram of the number of codewords
needed to decode a file using all measurements ob-
tained by the 10 clients on the classroom.

tions that could need to use the channel.
We took 100 independent measurements on each of the

ten clients for broadcasting a file with 100 MB. The results
obtained are presented in Fig. 4. Surprisingly, the number
of codewords needed to decode the file was higher with weak
LT codes, as opposed to what we had observed with a single
client in simulation.

4.2.2 Server broadcasting at maximum throughput
In this scenario we followed the same approach and took

another 100 independent measurements on each of the ten
clients but with the server transmitting at full speed (effec-
tive throughput close to 43Mbit/s). In this case, we used
Weak-LT codes of Type II Code and again the classic LT
codes. The obtained results are presented in Fig. 5. In this
case, as expected from simulation the codewords overhead
was in fact lower with the feedback approach, used for the
last 2% of the symbols, only, when compared to the classic
LT codes.

5. DYNAMIC ADAPTION AND
SCHEDULING IN CODING

The preliminary results we achieved in practice generally
confirmed the value of using feedback with weak LT codes



to reduce the number of codewords needed to decode a file.
However, they also showed some inconsistency between the
situation with one client and many clients. In fact, when
we used a longer feedback phase with multiple clients, we
increased the number of clients simultaneously in feedback
mode. Since the scheduling approach limits the number of
clients that can be polled in each scheduler cycle to bound
the associated bandwidth, when there are many clients be-
yond those that can be polled, several clients may have to
wait until they transmit their feedback to the server.

5.1 Adapting the feedback strategy
This situation opens the possibility to use an adaptive

technique that change the coding strategy online accord-
ing to the number of clients simultaneously in the feedback
phase. For example, when the first few clients connect to
the server, it can use a Weak-LT distribution with a small
average degree, say 3 similarly to the Type I referred before.
This corresponds to a relatively large amount of feedback,
around 20% of the symbols, leading to very small codewords
overhead and thus to a quicker transfer.

However, when the number of clients in feedback mode
grows beyond a certain number, e.g. 3, the server can change
the average degree of the coding distribution in order to
reduce the amount of feedback needed from each client. For
example, it would change from Type I to Type II codes. If
the number of clients in feedback mode grows even more,
above a higher threshold, the server can end up using a
plaint LT code avoiding this way the need of feedback.

This adaptive mechanism makes the best out of feedback
in each concrete situation and should lead to minimizing
the codewords overhead across a large range of numbers of
clients. There are, still, several aspects to determine, such
as the best codes and associated thresholds in number of
clients.

5.2 Choosing a scheduling criterion
Another aspect that remains open is the specific schedul-

ing strategy used during the feedback phase. Currently, the
scheduler picks the clients that have the smallest number
of missing symbols in an attempt to favor those that are
closer to decode the whole file. However, other criteria can
be used, such as random, time-driven or priority-driven or
hybrid.

In a time-driven approach, the scheduler would favor, for
example, the clients that have been waiting for a longer time.
Alternatively, we could even have clients with different ur-
gency, expressed as different deadlines, and schedule first the
clients with earlier deadlines. This is a well-known criterion
in real-time scheduling that maximizes meeting deadlines in
an error-free scenario.

In a priority-based approach, the scheduler would pick
the clients with higher priority. This could be used to create
classes of service and favor the clients of the best service
class first. Within each class, another criterion could be
used, such as time-driven, resulting in a hybrid approach.

The specific impact of different scheduling policies on the
coding process remains largely unexplored. However, when
using an adaptive technique such as the one referred in Sec-
tion 5.1, there will be less clients simultaneously in feedback
mode, and thus the scheduler impact is expected to be small.

Finally, whenever a specific client scheduled for feedback
informs the server of its missing symbols, we still need to de-

cide which symbols to pick since only a small number can be
encoded in low degree codewords. This is another schedul-
ing problem but applied to the symbols within the codeword.
The current approach is to choose randomly. However, other
approaches are possible, such as analyzing all the feedback
information the server has and picking the symbols that sat-
isfy the largest number of clients, or those that satisfy the
clients that are closer to finishing the file decoding. Again,
these policies applied at this level are still largely unexplored
and researching them seems an interesting direction.

6. CONCLUSION
In this work we addressed the case of disseminating a large

file for many clients using a broadcast approach enhanced
with rateless codes for reliability purposes. We showed that
it is possible to use coding with low degree distributions
combined with a feedback phase to reduce the code words
overhead. In order to manage the feedback phase we devel-
oped a protocol that allows the server to be aware of the
transfer process in the clients and thus stop the dissemina-
tion of codewords when no more clients are active.

We then characterized the process in simulation with one
client and distributions of different degrees implying differ-
ent amount of feedback. The results confirmed the expected
benefits in reduction of codewords overhead. We then car-
ried out practical experiments on a test bed with 10 clients.
For small amount of feedback the resulted matched those of
the simulation. However, with larger feedback, we obtained
different results.

From these discrepancies we discussed possible causes and
we drew the principles for an adaptive coding approach that
uses different degree distributions according to the current
number of clients in feedback mode. We also discussed the
potential impact of different scheduler criteria for scheduling
clients in feedback and pointed out to scheduling-coding co-
design issues that seem to remain largely unexplored and
which we plan to research in the sequel of this work.

7. ACKNOWLEDGEMENTS
This research is partly funded by the Portuguese Gov-

ernment through FCT grants CodeStream - PTDC/EEI-
TEL/3006/2012 as well as PEst-OE/EEI/UI0127/2014 and
UID/EEA/50008/2013.

8. REFERENCES
[1] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege.

A Digital Fountain Approach to Reliable Distribution
of Bulk Data. In ACM SIGCOMM Comput. Commun.
Rev, volume 28, pages 56–67. ACM, Oct. 1998.

[2] A. Hagedorn, S. Agarwal, D. Starobinski, and
A. Trachtenberg. Rateless Coding with Feedback. In
IEEE INFOCOM 2009, pages 1791–1799, Apr. 2009.

[3] M. Luby. LT codes. In Proc. IEEE Symposium on
Foundations of Computer Science, pages 271–280, 2002.

[4] D. MacKay. Fountain codes. IEE
Proceedings-Communications, 152(6):1062–1068, Dec.
2005.


