
Merging Network Coding with Feedback Management in
Multicast Streaming

André Moreira
Instituto de Telecomunicações

University of Porto
Porto, Portugal

andre.moreira@fe.up.pt

Luis Almeida
MRTC

Mälardalen University
Västeras, Sweden
lda@mdh.se

Daniel E. Lucani
Dept. of Electronic Systems

Aalborg University
Aalborg, Denmark
del@es.aau.dk

ABSTRACT
Reliable multicast over wireless poses interesting challenges
arising from the unreliable nature of the wireless medium.
Recovering lost packets is particularly challenging in multi-
cast scenarios since different receivers lose different packets.
For this reason, simply retransmitting packets does not scale
well with the number of receivers and particularly with the
packet loss rate. A more efficient alternative is to use erasure
codes to generate packets that can help many receivers at the
same time. In this paper, we propose using online network
coding to send coded packets that repair losses according
to feedback reports sent by the clients. In particular, we
propose using a recently developed scheduler for controlling
feedback reports, which also allows differentiating the QoS
provided to clients, and combine it with an online coding ap-
proach to provide novel stochastic guarantees of worst-case
delay as required for QoS sensitive applications. We show
preliminary simulation results that confirm the bounded de-
coding delay of our approach in a streaming application.

1. INTRODUCTION
Video streaming is gaining more popularity, either to ac-

cess pre-stored video materials or as a means for live broad-
casting. A particular scenario of this latter case is when
many wireless clients try to access the same video stream
in the same hot spot, e.g., associated to a sports or cul-
tural event. This case, for bandwidth efficiency and scalabil-
ity reasons, requires multicast transmissions over a wireless
medium which typically uses unacknowledged packets at the
link layer, and are thus unreliable. In heavy loaded condi-
tions, packet losses increase and the overall quality of the
stream reception degrades, with strong asymmetries among
clients. It is even possible that packet losses affect most of
the video frames causing a complete failure of the streaming
service.

In general, managing Quality of Service (QoS) provided to
clients requires sending feedback to the streaming server so
that it can resend the missing information and differentiate
the QoS offered to each client. However, when many clients
are involved there will be many feedback messages (acknowl-
edgements), increasing the processing load in the server and
the load in the wireless medium. For this purpose, we pro-
pose using the multicast protocol for video streaming that
was proposed in [2], which synchronizes and schedules feed-

The paper was presented at APRES 2015. Copyright retained by the au-
thors.

back from clients improving QoS. The proposed protocol
allows fine tuning the balance between the bandwidth used
by feedback, the number of clients served and the QoS of
the streaming service. Preliminary results in [2] show the
advantage of synchronizing the transmissions of the feed-
back reports. Moreover, these feedback reports also support
individualized client Service Level Agreements (SLAs) ac-
tuating on the respective feedback rates and thus offering
differentiated QoS.

In this paper, instead of using simple retransmissions to
recover lost packets we use erasure codes to generate pack-
ets that can help many receivers at the same time. Erasure
codes are usually designed to maximize throughput and ul-
timately achieve channel capacity. However, such design
comes at the cost of additional delay resulting from the time
needed to decode the original data. For delay sensitive appli-
cations such as streaming, this is a critical issue and better
trade-offs between throughput and decoding delay are usu-
ally sought. A key technique that has been explored is online
coding, a feature of network coding that allows packets to be
encoded as they arrive to the encoder. This cuts on the la-
tency when compared with other codes that need to wait for
a whole block of packets to start encoding, and thus makes
it suitable for streaming applications. Moreover, feedback
can be used to dynamically adjust which packets should be
encoded to better satisfy specific performance requirements.

Online coding for streaming applications was already ad-
dressed in [3]. However, the solution in [3] did not consider
the use of a feedback reports scheduler. In this paper, we
propose using this scheduler together with a different cod-
ing approach that provides stochastic guarantees of worst-
case decoding delay, thus also allowing to compute the min-
imum buffer requirements that avoid missing deadlines in
the streaming process.

In the following section, we briefly discuss some related
work in coding, highlighting the novelty of our approach.
Then we describe the system model organized in terms of
the network model, coding mechanism and system architec-
ture. The following section shows and discusses preliminary
results focused on the impact of different coding schemes.
We then quickly elaborate on the dynamic adaptation of
different system parameters. Finally, the last section draws
a conclusion and discusses the ongoing work.

2. RELATED WORK
In the seminal work of online network coding [7], the au-

thors simply use feedback to manage the buffer at the sender.
In [5, 1, 6], different authors study the decoding delay of



online coding with feedback for the multiple receiver case.
One common assumption in these works is the availability of
perfect feedback, which is not feasible in wireless communi-
cations, especially in multicast scenarios. Periodic feedback
is considered in [4], in terms of the asymptotic behavior of
throughput and decoding delay, and analyzed for a single
client. The metric of choice considered is the in-order de-
livery delay, which seems a much more suitable metric for
multimedia streaming applications. Still, as most works, the
analysis is based on average values. For more stringent re-
quirements, such as those found in real-time applications,
the second-order moment of the decoding delay should be
also taken into account. A practical solution to massive mul-
ticast streaming with online network coding has been pro-
posed in [3]. However, the proposed coding mechanism only
provides a best-effort solution with no formal guarantees.
This is the basis for the coding approach that we follow in
this work, where we aim at providing stochastic guarantees
of worst-case coding delay under realistic feedback settings.

3. SYSTEM MODEL

3.1 Network
We consider a streaming server that is in charge of mul-

ticasting a video to a group of N clients through a wireless
medium, where the link between the server and each client
i is modeled as a binary erasure channel with packet era-
sure probability ei. We assume that time is organized in
slots where each time unit corresponds to the time needed to
transmit one packet, hence the server transmits one packet
per slot. Feedback is periodically requested from the clients
in multiples of T slots, where T can be regarded as the min-
imum feedback period. Hence, communication is organized
in rounds of T packet transmissions, at the end of which
feedback can be received.

3.2 Coding
We assume that network coding is performed at the server

in an online fashion. An online encoder takes packets as they
become available in the buffer and generates coded pack-
ets that are linear combinations of these original packets.
Hence, a coded packet takes the form cj =

∑
i αijpi, where

the αij are coding coefficients. These coefficients are ran-
domly picked from a chosen finite field and appended to
the encoded packet. Coded packets can then be seen by a
receiver as equations in a linear system, where each coded
packet delivers a new degree of freedom, provided that it is
linearly independent from all previously received packets, in
which case it is said to be innovative.

Originally, the online coding mechanism does not restrict
which packets can be mixed together. This means that new
packets can be added indefinitely, potentially leading to high
decoding delay. To mitigate this issue, we consider that the
original data is partitioned in blocks of G packets called
generations, such that packets can only be mixed with other
packets in the same generation.

Since coded packets are a combination of multiple packets,
a key question is how to represent the state of each client
and what information should acknowledgments convey. This
question has been answered in [7] and it relies on the defini-
tion of seen packet which we present in Definition 1.

Definition 1 (Seen Packet). A client is said to have
seen packet pk if it is able to compute a combination that

only includes packet pk and packets pi with i < k, from all
information it has received so far.

Once all clients have seen a packet, the server no longer
needs to include that packet in further coded packets, and
thus clients need only to acknowledge seen packets. This
particular definition of seen packet (taken from [6]) allows
to easily establish a sufficient condition for a packet being
decoded, which is presented in Lemma 2.

Lemma 2 (Decodability). Under the terminology of
Definition 1, if all packets p1, . . . , pk up to some k have been
seen, then they have also been decoded.

The next step is to define a coding scheme that describes
how each coded packet is generated. Full-rank schemes al-
ways combine all packets available for a generation, achiev-
ing optimal throughput but poor decoding delay perfor-
mance. Instead, we base our analysis on the time-invariant
schemes presented in [4] which we describe in Definition 3.

Definition 3 (Time-Invariant Scheme). This cod-
ing scheme is characterized by a vector x = [ x1 ··· xT ]
where xi, for 1 ≤ i ≤ T , are non-negative integers satisfy-
ing

∑
i xi = T . In each round we transmit xi independent

linear combinations of the first i unseen packets in a gener-
ation.

These coding schemes define how to generate the T coded
packets for each round. Moreover, the maximum number of
packets combined is T , which makes sense from a decoding
delay perspective since no more than T packets can be de-
livered, and thus decoded, in each round. These schemes
incorporate feedback in each round, by coding the first un-
seen packets reported. The design task consists on choosing
the values composing x. In our analysis, we shall consider
two instances of such schemes denoted as xA and xB and
specified as

xA =
[
1 1 1 1 1 1 1 1 1 1

]
,

xB =
[
1 0 0 0 0 0 0 0 9 0

]
.

Comparing the structure of both codes, we see that xA
can potentially deliver 10 innovative packets in each round,
whereas xB can deliver at most 9. However, in average terms
code xB generates combinations with more packets than xA.
The intrinsic properties of each code shall induce different
throughput and delay profiles which we seek to analyze.

3.3 Architecture
We now present the system architecture whose goal is

twofold: manage feedback among many clients and recover
lost packets in a timely fashion. The architecture of the
proposed system is depicted in Fig. 1.

In the server side, video packets arriving from the applica-
tion layer are assigned a unique sequence number and stored
in the input buffer. An encoder then generates coded pack-
ets from the original packets available in the buffer in an
online fashion. The scheduler receives the stream of coded
packets, interleaves feedback request packets with periodic-
ity T , and queues packets for transmission. Each feedback
request can poll many clients. The scheduling of clients to
be polled depends on their individual polling periods, i.e.,
Ti slots for client i with Ti being a multiple of T . The dif-
ferent periods Ti can be adjusted depending on the erasure



Scheduler

CLIENT

SERVER

WIFI

Online
Encoder

R
x

Q
ueue

T
x

Q
ueue

T
x

Q
ue

ue
R

x
Q

ue
ue

Input Buffer

Decoder

Registration
Handler

Feedback
Handler

Feedback
Handler

Registration
Handler

Decoder State

FBRQ

Output Buffer

CODED+FBRQ

CODED

CODED

VIDEO

VIDEO

ACK

ACK

REG

REG

Clients DB

Figure 1: Architecture of the proposed system show-
ing the main blocks in the server and client sides.
Different types of packets are considered, namely
video packets (VIDEO), coded packets (CODED),
feedback request packets (FBRQ), acknowledgment
packets (ACK) and registration packets (REG).

rate ei and service level agreement SLAi of client i. More-
over, the scheduler limits the maximum number of clients
that can be included in a single poll, say to M , in order to
limit the maximum bandwidth allowed for feedback (M ac-
knowledgments every T ). Within this constraint, the sched-
uler dynamically assigns this bandwidth among all clients,
shifting feedback bandwidth from clients with low erasure
levels to others with higher erasure levels. On top of that,
the scheduler controls the relative phase of clients feedback
transmissions (acknowledgments) to reduce collisions. Infor-
mation about the clients is stored in a database which holds
the registered clients together with respective SLA, erasure
rate and missing packets. The database is updated when-
ever a client registration packet or acknowledgment arrives
at the server.

On the client side, received coded packets are passed on to
the decoder, which keeps track of seen packets. Whenever a
client receives a feedback request, a feedback handler checks
the decoder status and reports seen packets to the server in
a short unicast acknowledgment packet. Whenever a new
packet is decoded, it is placed in the streaming buffer to be
consumed by the video application.

Choosing the design parameters for this system is a chal-
lenging task. On the feedback management side, proper
polling frequencies must be found. Higher frequencies allow
faster notification and recovery of missing packets, whereas
lower frequencies imply lower overhead but less opportuni-
ties to recover. On the data recovery side, erasure codes are
a bandwidth efficient alternative, albeit with an added cost

associated with decoding delay. On this aspect, the cod-
ing should be designed in a way to strike a balance between
throughput and decoding delay, which is the main focus of
this work. For this reason, in the following we consider that
Ti = T for all clients and neglect the time taken by feedback
requests and acknowledgments.

4. SIMULATION RESULTS
In this section we present preliminary results showing the

evolution over time of the number of packets delivered in-
order to the clients. In our experiments we considered N =
100 clients with packet erasure rates ei randomly picked
from an uniform distribution ranging from 10% to 40%.
Each transmission round has a length of T = 10 slots, where
one coded packet is multicast in each slot and after which
feedback is received, acknowledging seen packets. The re-
sults are for a single generation of G = 64 packets. For each
experiment we performed 1000 runs and present the results
for the worst client, i.e. the client with highest packet era-
sure rate.

The results are shown in Fig. 2 and Fig. 3 for codes xA
and xB respectively. The filled regions correspond to Tukey
boxplots with the red, blue and green regions representing
the median, boxes and whiskers, respectively. The outliers
have been omitted for clearness. Since the whiskers encom-
pass a very high percentage of the samples, we focus on their
lower limit which provides a worst case scenario with high
probability. The dashed line represents the requirements of
the client application. We consider that the video client ap-
plication consumes packets with a rate of R = 0.3 packets
per slot. For this fixed rate, we compare the initial buffer B
that is required to allow playback without interruption with
very high probability, which is given by the interception of
the dashed line with the Y-axis.

Looking at the results, one can observe that xB provides
better average goodput than xA which implies that it sup-
ports better video quality. In turn, xA presents less variation
in the number of packets decoded in each instant. As a re-
sult, with code xA the worst client needs to buffer B = 6
packets, whereas with code xB the same client must buffer
B = 9 packets. This gap may not seem significant but as
we increase the feedback period to more realistic values, or
increase the target video quality this difference is expected
to grow.

5. DYNAMIC ADAPTATIONS
The system that we envision has several degrees of dy-

namic adaptation. For example, as referred in [2], the feed-
back requested to each client can be adapted dynamically
so that clients with higher erasure rates are polled more fre-
quently, i.e., Ti is an inverse function of ei. This allows the
server to better track more dynamic erasure processes.

Another degree of adaptation is the dynamic adjustment
of the code structure in response to varying network condi-
tions and system requirements. In fact, the time-invariant
schemes used here can be used as a base for adaptive schemes
whose code structure depends, for instance, on the erasure
rates at the beginning of each round. This adaptation can
be naturally achieved by using the feedback obtained from
different receivers in order to determine the number of suc-
cessfully received packets out of a total number of transmis-
sions through the network, and thus the observed ei for each



0 25 50 75 100 125 150 175 200 225 250
-16

0

16

32

48

64

Time (slots)

D
e
c
o
d
e
d
 P

a
c
k
e
ts

Figure 2: Evolution over time of the number of pack-
ets delivered in order when using code xA. The
simulation parameters are N = 100, T = 10, G = 64
and ei ∼ U(0.1, 0.4). The dashed line represents the
video client application requirements. For a packet
consumption rate R = 0.3 the initial buffering re-
quired is B = 6.

receiver i.
Finally, it is equally relevant to analyze the interplay be-

tween the scheduling adaptations of the feedback informa-
tion and the dynamic adjustment of the code structure to
check whether there is any negative mutual interference.

6. CONCLUSION AND ONGOING WORK
In this paper, we discussed streaming for many clients.

Given the necessary multicast nature of the transmissions,
there is a need to mitigate packet losses since multicast
transmissions are inherently unreliable. In previous works,
such unreliability was mitigated with erasure codes with
feedback or with retransmissions management. In this paper
we proposed merging both techniques while using a coding
configuration that provides novel stochastic guarantees of
worst-case coding delay, a very significant feature for delay-
sensitive applications. Preliminary simulation results con-
firm the correctness of the analysis. We concluded the pa-
per highlighting two dimensions that can be used to grant
dynamic adaptation and so improve performance, namely at
the level of the feedback scheduler and the coding schemes.

As future work we intend to expand our analysis by mov-
ing towards more realistic settings. This includes consider-
ing larger feedback periods, incorporating the time needed
to request and receive feedback, and performing adaptation
under varying network conditions. Ultimately, we expect to
perform real-world experiments to validate our ideas.

7. ACKNOWLEDGMENTS
This work was partially funded by Fundação para a Ciên-

cia e a Tecnologia under grant SFRH/BD/81726/2011 as
well as the FCT projects PTDC/EEI-TEL/3006/2012 and
UID/EEA/50008/2013. This work was also financed by the
Swedish Foundation for Strategic Research (SSF), and by
the Green Mobile Cloud project (Grant No. DFF-0602-
01372B) granted by the Danish Council for Independent Re-
search.

0 25 50 75 100 125 150 175 200 225 250
-16

0

16

32

48

64

Time (slots)

D
e
c
o
d
e
d
 P

a
c
k
e
ts

Figure 3: Evolution over time of the number of pack-
ets delivered in order when using code xB. The
simulation parameters are N = 100, T = 10, G = 64
and ei ∼ U(0.1, 0.4). The dashed line represents the
video client application requirements. For a packet
consumption rate R = 0.3 the initial buffering re-
quired is B = 9.

8. REFERENCES
[1] J. Barros, R. A. Costa, D. Munaretto, and J. Widmer.

Effective delay control in online network coding. In
Proc. IEEE INFOCOM, pages 208–216. IEEE, Apr.
2009.

[2] J. Cano and L. Almeida. Feedback management for
scaling clients in streaming multicast. In Proc. ACM
Symposium On Applied Computing, Apr. 2015.
accepted for publication.

[3] D. Ferreira, R. A. Costa, and J. Barros. Real-Time
network coding for live streaming in hyper-dense WiFi
spaces. IEEE Journal on Selected Areas in
Communications, 32(4):773–781, Apr. 2014.

[4] G. Joshi, Y. Kochman, and G. W. Wornell. The effect
of block-wise feedback on the throughput-delay
trade-off in streaming. In IEEE INFOCOM Workshops,
pages 227–232. IEEE, Apr. 2014.

[5] L. Keller, E. Drinea, and C. Fragouli. Online
Broadcasting with Network Coding. In Proc. Workshop
on Network Coding, Theory and Applications, pages
1–6. IEEE, Jan. 2008.

[6] J. K. Sundararajan, P. Sadeghi, and M. Médard. A
feedback-based adaptive broadcast coding scheme for
reducing in-order delivery delay. In Proc. Workshop on
Network Coding, Theory, and Applications, pages 1–6.
IEEE, June 2009.

[7] J. K. Sundararajan, D. Shah, and M. Médard. ARQ for
network coding. In Proc. IEEE International
Symposium on Information Theory, pages 1651–1655.
IEEE, July 2008.


