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ABSTRACT 
This paper presents a simulation framework for recreating the 
realistic safety hazard scenarios commonly observed in robotic 
surgical systems, which can be used to prepare surgical trainees 
for handling safety-critical events during procedures. The 
proposed simulation platform is composed of a surgical simulator 
based on an open-source surgical robot platform, Raven II, 
integrated with a software-based fault-injection engine, which 
automatically inserts faults into different modules of the robotic 
software. We demonstrate the value of software-based fault 
injection for simulating representative safety hazards seen in the 
adverse events reported to the FDA MAUDE database, by 
performing experiments both in simulation and on the actual 
Raven II robot.  

General Terms 
Measurement, Reliability, Experimentation, Human Factors. 
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1. INTRODUCTION 
Use of robotic systems for minimally invasive surgery has 
increased significantly during the last decade. Between 
2007 and 2013, over 1.74 million robotic procedures were 
performed in the U.S. across various specialties of 
gynecology, urology, general, cardiothoracic, and head and 
neck surgery [1]. Our comprehensive analysis, covering 
over 10,000 adverse robotic-surgery-related events during 
2000–2013 as reported to the U.S. Food and Drug 
Administration (FDA) Manufacturer and User Facility 
Device Experience (MAUDE) database, showed that 
despite significant improvements in robotic technology 
through the years and broader adoption of the robotic 
approach, there are ongoing occurrences of safety incidents 

that negatively impact patients. The number of injury and 
death events per procedure has stayed relatively constant 
since 2007, with an average of 83.4 events per 100,000 
procedures (with a 95% confidence interval of 74.2–92.7). 
In particular, out of a total of 10,624 events reported during 
2000–2013, 1,535 (14.4%) had significant negative patient 
impact (including injuries (1,391 cases) and deaths (144 
cases)) and 970 (9.1%) contributed to procedure 
interruptions, such as manual reset of the system, 
conversion of the procedure to non-robotic surgery, or 
rescheduling of the procedure to a later time [2].  

The ability of current robotic surgical technology to 
automatically mitigate the impact of safety-related 
incidents is not comparable to the situation in other safety-
critical industries, such as commercial aviation. In such 
industries, great effort has been spent over the years on 
improving safety practices by providing comprehensive 
simulation-based training that includes operation in the 
presence of safety-critical failures [3]. Multiple studies 
have shown that simulation can be effectively used in 
training to improve skill levels of robotic surgeons. There 
are already several surgical simulators, training centers, 
and validated curricula for robotic surgery [4]–[11]. 
However, the emphasis has been only on improving 
surgical skills and not on handling safety-critical events 
and responding to technical problems. Adverse events or 
machine failures are rarely used as potential scenarios for 
safety training of surgical teams.  

Motivated by the idea of simulating safety hazards during 
robotic surgery training in order to prepare surgeons for 
handling safety-critical events, we created a platform to 
demonstrate the feasibility of using software-based fault 
injection to simulate realistic safety hazard scenarios with 
minimal change to the robotic software and hardware.  

Software-implemented fault injection (SWIFI) [12] is 
commonly used for evaluating the safety and reliability of 
computing systems [13][14]. SWIFI validates the 
effectiveness of fault-tolerance mechanisms by studying 
the behavior of a system in the presence of faults. 
However, we use software-based fault-injection techniques 
to enable evaluation of human operator performance and 
response to safety hazards in simulation-based training.   
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The proposed simulation platform was developed based on 
the Raven II robot, an open-source surgical robot 
developed by the Applied Dexterity and Biorobotics Lab at 
the University of Washington [15][16]. We integrated the 
robotic surgical simulator with a software-based fault-
injection framework that simulates realistic safety scenarios 
observed in adverse event data during basic surgical tasks. 
We simulated the safety hazards caused by either device 
malfunctions or improper human operations by 
automatically injecting faults into the software modules of 
the robotic surgical simulator. Realistic safety hazards from 
adverse events reported to the MAUDE database were used 
to populate a library of hazard scenarios that define the 
location and type of faults and the conditions under which 
they should be injected into the RAVEN II software. 
 

2. METHODOLOGY 
This section presents our methodology, including the 
analysis of adverse event reports on robotic surgical 
systems from the MAUDE database, the surgical simulator 
based on RAVEN II, and the fault-injection framework for 
simulation of safety hazards extracted from data. 

2.1 Analysis of Adverse Event Reports 
Table 1 summarizes common types of device and 
instrument malfunctions and inadequate operational 
practices that contributed to catastrophic events or 
interruptions during robotic procedures.  

During 2000–2013, a total of 9,382 (88.3%) of the reported 
events involved device and instrument malfunctions [2]. 

Table 2 shows samples of representative adverse events 
(from the MAUDE database) in which malfunctions of 
master tool manipulators (the inputs at the master console 
that the surgeon uses to send control commands to the 
robotic instruments) or motor encoders and potentiometers 
(the sensors at the patient side that collect measurements 
from robotic arms and instruments as feedback to the 
master console) or other device-related failures led the 
safety processor to stop the system and raise system errors 
during a procedure. The majority of system errors in Table 
2 could not be resolved even by multiple system restarts 
and eventually led the surgical team to convert the 
procedure or abort and reschedule it to a later date. 
Between 2000 and 2013, out of 536 cases in which system 
errors were experienced during procedures, 91% led to 
procedure interruptions, including system resets (43%), 
procedure conversions (61.5%), and rescheduling (24.8%) 
[2]. (Note that those categories are not mutually exclusive. 
In some cases, after several system resets, the procedure 
was converted or rescheduled to a later date.) 

Table 3 shows example events in which inadequate 
operator actions, due to deficiencies of the human-machine 
interface or lack of training, contributed to unexpected 
device operation and led to adverse impact on patients. 
None of the events in Table 3 resulted in a system error. 

Although state-of-the-art robotic surgical systems are 
designed with safety mechanisms that detect failures and 
put the system into a recoverable or non-recoverable safe 
state, in practice those mechanisms are imperfect because 
of multiple factors. 

Table 1. Common types of device malfunctions and inadequate operational practices 

Device and instrument malfunctions Inadequate operational practices 

- Master tool manipulator (mtm) malfunctions  
- Patient-side manipulator (psm) failures  
- Unintended operation of instruments (e.g., uncontrolled movements, power on/off) 
- Video/imaging problems at the surgeon’s console 
- Recoverable and non-recoverable system errors  
- Burns and holes in tip cover accessories, leading to electrical arcing, sparking, or 

charring of instruments 
- Broken parts of instruments falling into patients 

- Inadequate handling of emergency situations 
- Lack of training with specific system features  
- Inadequate troubleshooting of technical problems 
- Inadequate system/instrument checks before procedure  
- Incorrect port placements  
- Incorrect electro-cautery settings or cable connections 
- Inadequate manipulation of robot master controls 
- Inadequate hand and foot coordination by main surgeon 
- Incorrect manipulation or exchange of instruments 

Table 2. Example adverse event reports that involved device and instrument malfunctions  
Report No. 

(Year) 
Summary Description 

Malfunction 
Type 

Procedure 
Outcome 

1006071 
(2008) 

- Recurring system errors #201 and #264, even after multiple restarts. 
- Errors due to voltage tracking faults and put the system in a recoverable safe state.  

Master tool 
manipulators 

Converted  
after 2 hours 

3283230 
(2013) 

- Master tool manipulator arm was sluggish and could not control the robotic arms. 
- System error #22580 due to out-of-range hardware voltage level. 
- Multiple system restarts did not resolve the issue. 

Aborted 
post anesthesia 

3093014 
(2013) 

- Recurring error #23000, even after emergency power off & restart. 
- System error caused because the angular positions of one or more robotic joints on a 

manipulator as measured by the primary sensor (encoder) and secondary sensor 
(potentiometer) were out of range or in disagreement. 

Joint sensors 
(Potentiometer  

or encoder) 

Aborted  
post anesthesia 

and port incision 

2916352 
(2012) 

- Recurring system error #23008, even after emergency power off & restart. 
- Recoverable errors caused because the angular positions of robotic joints as measured by the 

primary sensor (encoder) and secondary sensor (potentiometer) were out of range or in 
disagreement. 

Converted  
after port incision

2014 
(3620041) 

- Non-recoverable error #23013 on patient side manipulator. 
-   Multiple system restarts to recover from error but unsuccessful 

Converted  
to open surgery 

 



1) The diagnostic mechanisms are usually not 
comprehensive enough to identify the root causes of 
malfunctions and system errors during surgery. Thus, 
information on the type of system error (e.g., in an 
error condition of recoverable or non-recoverable) and 
corresponding troubleshooting procedures are 
incorrectly communicated to the surgical team. The 
root causes are often determined only after the fact, 
when further investigations by the field service 
engineers are performed and the failure scenarios are 
replicated. For example, an encoder or sensor 
malfunction may be reported as a recoverable system 
error  during a procedure, when it is not recoverable 
and can only be fixed by replacing the component after 
the procedure (See report No. 3035720 [17].) 

2) System operators, including surgeons, surgical 
assistants, and field service engineers, are often not 
well trained to correctly interpret reasons for observed 
system errors and to choose efficient troubleshooting 
actions to recover from emergency situations. For 
example, in one event, it was reported that the surgical 
team spent a significant amount of time 
troubleshooting a non-recoverable system error while 
the patient was under anesthesia for more than one 
hour. (See report No. 1743065 [18].)  

Results from our analyses show the importance of 

designing advanced safety mechanisms for active 
monitoring of system components and operator actions to 
assist surgical teams in predicting and preventing critical 
events and performing effective troubleshooting 
procedures. Also, surgical training on the use of robotic 
systems must be improved to make troubleshooting and 
handling of adverse events a central part of the training 
experience.  

2.2 RAVEN II Robotic Surgical Simulator 
The RAVEN II robot is an open-source platform for 
research in tele-operative robotic surgery. Figure 1 depicts 
a typical configuration of a robotic tele-surgery system, 
composed of a master console, a communication channel, 
and a RAVEN II surgical robot, including software and 
hardware components. As shown in Figure 2, we 
developed a surgical simulator based on RAVEN II by 
modeling the operation of the master console and robotic 
arms and instruments in software in order to enable running 
of RAVEN software without the robotic hardware. Thus, 
we have the flexibility of either using real human input 
from a haptic device or replaying previously collected 
trajectories from real surgical tasks, to study test case 
scenarios during which our fault-injection framework 
recreates the safety hazards on the actual robot or in 
simulation. 
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Tool 
Manipulators

Foot pedals

2D/3D 
Display 

Raven II Surgical Robot

‐ Robot status
‐ Position 
‐ Orientation

Robotic Control
Software and Hardware Robotic Arms and Instrument

Motor 
control

commands

Motor 
encoder 
feedback

Instruments

DC Motors
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Master Commands
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Figure 1. Robotic Tele-surgery using Raven II Surgical Platform (Modified from [19][20]) 

Table 3. Example adverse event reports that involved improper operational practices  
Report No. 

(Year) 
Summary Description Inadequate Operational Practices 

Procedure 
Outcome 

921167 
(2007) 

- Patient-side manipulator dropped suddenly. 
- Scissors instrument bumped into uterus. 

Surgeon removed his/her hands from 
master manipulators before removing 

his/her head from console viewer 
 

(keeping head in the console viewer 
keeps the robot engaged) 

Pierced  
patient’s uterus 

1570678 
(2009) 

- Endoscopic camera manipulator difficult to move. 
- Master tool manipulator drifted when released. 

Punctured  
patient’s uterus 

1961862 
(2010) 

- Instrument moved to guided tool change mode, moved slightly 
forward, and bumped into colon. 

Injury  
to patient’s colon

2644122 
(2012) 

- Uncontrolled movement of master manipulators. 
Damaged  

abdominal wall  
2636117 
(2012) 

- Limited range of motion and drift while master tool manipulators were 
used, even after system restart. 

Aborted  
after 1.75 hours 

2476271 
(2012) 

- Monopolar energy was released when bipolar instrument was used. 
Improper connection of bipolar 

instrument to electrosurgical unit 

Injury  
to patient’s bowel3024317 

(2013) 

2494890 
(2012) 

- Arcing from bipolar instrument when cautery energy was not being 
applied. 

Small burn  
on diaphragm 



The master console provides the means for the surgeon to 
issue commands to the robot, using foot pedals and master 
tool manipulators. The desired position and orientation of 
robotic arms and robot control mode are transferred 
between the master and the slave robot over the network 
using the Interoperable Teleoperation Protocol (ITP), a 
protocol based on the UDP packet structure [21]. The 
RAVEN II software receives the master command packets 
and translates them into motor commands that enable the 
movement of robotic arms and instruments. We developed 
a software module that generates master command packets 
based on a previously collected trajectory of movements 
made by a human operator and sends them to the RAVEN 
control software. 

The RAVEN II software runs on top of the Robotic 
Operating System (ROS) middleware and a real-time Linux 
kernel, communicating with the motor controllers through 
custom USB interface boards. A watchdog timer 
implemented on a PLC safety processor monitors the state 
of the RAVEN control software and moves the system into 
a fail-safe state upon detection of any problems. Three 
main threads run in parallel in the RAVEN control 
software: 1) a network-layer thread, which receives the 
command packets from the master controller over the 
network; 2) a control thread, in which the main robot 
kinematics and control computations are performed; and 3) 
the console thread, which provides an interface for setting 
robot control modes and displaying the robot’s status to the 
user [20].  

We simulated the RAVEN II hardware by developing a 
software module that mimics the dynamical behavior of the 
real robotic actuators by modeling the MAXON RE30 and 
RE40 DC motors used by RAVEN [15] as first-order 
systems with different time constants. A 3D virtual 
environment based on C++ OpenGL pipeline and CAD 
models of robot mechanical components was created to 
animate the movements of robotic arms and instruments.  

Next, we integrated the RAVEN II surgical simulator with 

a fault-injection framework to simulate representative 
safety hazards observed in the MAUDE data.  

2.3 Fault-injection Framework 
We developed the fault-injection framework by using a 
combination of compile-time and run-time software fault-
injection techniques. We recreated each hazard scenario by 
injecting faults into different parts of the simulator to 
emulate representative device malfunctions and improper 
human operations. The safety hazard scenarios are read 
from a hazard scenario library that specifies fault-injection 
parameters such as the location in the software, the trigger 
or condition under which the fault should be injected, and 
target variables to be affected by the injection. The faults 
are injected by replacing the code at the specified location 
with a mutated version that mimics the intended faulty 
operation (compile-time fault injection) [12] or by setting 
breakpoints at the specified location and changing the 
target variables at run-time (run-time fault injection) [12]. 
The fault-injection controller then collects the output from 
simulator modules (e.g., user input packets, output joint 
positions, and error messages), and the collected injection 
logs are sent with the usual surgical simulator logs to an 
online database for further analysis. 

Run-time fault injection allows us to perform fault injection 
in run-time generated data; however, the delay introduced 
by the run-time fault injector is not suitable for modules 
that have hard real-time requirements (e.g., the kinematics 
and control computations). Compile-time fault injection 
requires modification and pre-compiling of the fault 
injection condition into the source code, but has negligible 
timing overhead, which makes it suitable for modules with 
real-time requirements. For example, to mimic the safety 
hazards due to malfunctions in the master tool 
manipulators, which send run-time packets to the RAVEN 
network-layer thread, we corrupt the packets received in 
the RAVEN network-layer thread through run-time fault-
injection using a fault injector that remotely attaches to the 
RAVEN process in ROS. To mimic the safety hazards due 
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Figure 2. Raven II Surgical Simulator Integrated with Fault-injection Framework 



to sensor (encoder) malfunctions and unintended 
instrument operations, we inject compile-time faults into 
the USB packet communication in the control thread. The 
RAVEN control thread has the hard real-time requirement 
of one millisecond to perform kinematics calculations and 
communication with the USB interface boards [20]. Run-
time fault-injection to the control thread introduces small 
delays, leading to violation of the real-time constraint and 
failure of kinematics calculations, resulting in unintended 
robotic instrument vibrations and movements.  

3. EXPERIMENTAL RESULTS 
In preliminary experiments, we injected 5,500 faults into 
the network and control threads on the surgical simulator 
and 110 faults on the actual RAVEN II robot, while 
running a pre-collected trajectory of a simple surgical 
movement. Our purpose was to show that we can 
regenerate realistic safety hazard scenarios seen in the 
adverse events reported in the MAUDE database.  

The following fault-injection cases describe simulation of 
the safety hazards shown in Tables 2 and 3 in the same way 
they were reported in the MAUDE data: 

1. System errors due to master tool manipulator 
malfunctions: These malfunctions were simulated by 
injecting random faults into the ITP packets received 
by the network-layer thread. The fault-injection 
framework targeted the position, orientation, grasper 
angle, and foot pedal variables in the packet data 
structure by modifying their values into random values 
outside the range of possible values that the variables 
take. Since the ITP packets are sent in an incremental 
motion scheme, modifying the variables of a few 
packets to values inside the range of possible values 
did not have any impact, but intermittent injection of 
out-of-range values to the position, orientation, and 
grasper angle variables for an extended period causes 
the kinematics calculations to fail. The RAVEN II 
control software detects such failures by observing an 
over-the-limit electrical current command being sent 
from the software to the digital to analog converters 
(DAC) on the motor controllers and raises an E-STOP 
software error, leading the hardware watchdog timer to 
move the RAVEN hardware to an E-STOP safe state. 
The E-STOP error can only be resolved by restarting 
the system. Depending on the length of the faulty 

packets (e.g., if the master manipulator malfunction is 
permanent), the E-STOP error cannot be recovered 
from, even with multiple restarts. 

2. Sensor (encoder) malfunctions: We simulated 
permanent and intermittent sensor malfunctions by 
injecting faults into different parts of the USB 
interface function responsible for communicating 
packets from motor controllers to the control thread 
through USB interface boards (get_USB_packet). 
Corruption of the number of available USB boards, 
indices for accessing USB boards, and packets read 
from the USB boards caused the RAVEN watchdog 
processor to detect an error and put the system in a 
non-recoverable E-STOP safe state, from which one 
cannot recover by pressing the restart button. Only a 
complete restart of the software and robotic hardware 
would resolve the issue. 

3. Improper human operation or patient-side 
manipulator malfunctions: To simulate unintended 
instrument movements and sudden jumps of robotic 
arms due to device malfunctions or improper human 
operations, we injected faults into the motor command 
variables in the control thread and USB interface 
function (put_USB_packet). The injections into the 
USB packets sent from the control thread to the USB 
interface board caused abrupt jumps of the robotic 
arms, leading the RAVEN software and hardware to 
stop. Figure 3 shows the visualization of this safety 
hazard scenario in the 3D virtual environment. 

Table 4 summarizes the above fault-injection cases in the 
actual robot. The last column shows the total number of 
injected faults and the number of faults that were 
manifested and caused the desired safety hazard scenarios. 
Faults injected into the network-layer thread were not 
manifested if they had been injected into the foot pedal 
variable or if faulty values were within the range of 
possible values (22/30 of faults injected into the network-
layer thread were manifested.)  

In the control thread, the faults injected into the USB board 
indices and packets in the get_USB_packet and 
put_USB_packet functions were not manifested as safety 
hazards during the robot initialization phase (homing) 
(61/64 and 13/16 of faults injected into get_USB_packet 
and put_USB_packet functions after the homing phase 
were manifested, respectively.) 

   
Figure 3. Visualization of a Safety Hazard Scenario in the Virtual Environment: The left robotic arm makes a sudden jump 

because of a faulty packet sent from control software to the motors 



4. CONCLUSIONS 
We developed a robotic surgical simulator augmented with 
fault-injection capabilities to show the feasibility of 
simulating safety hazard scenarios, which are commonly 
reported in the use of robotic surgical systems. The 
proposed framework for safety-hazard simulation can be 
used in designing future surgical simulators for safety 
training of surgeons to prepare them for handling common 
types of adverse events experienced during procedures.  

The proposed fault-injection framework further provides 
the means for safety-based design of next-generation 
robotic surgical systems by evaluating the robustness of 
safety and fault-tolerance mechanisms with respect to 
realistic safety hazards previously reported in the field.   
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Table 4. Summary of fault-injection experiments on actual 
robot 

Safety Hazard 
Scenario 

Fault 
Type 

Target 
Software 
Module 

Injection 
Type 

Target 
Variables 

No. 
Manifested/

Injected 
Faults 

Recoverable 
System 
Errors 

Intermittent 
master tool 
manipulator 
malfunction 

Network-
Layer 

Thread 

Run- 
time 

Position, 
Orientation, 
Grasper angle,
Foot pedal 

22/30 

Non-
recoverable 

System Errors 

Sensor 
(encoder) 

malfunctions 

Control 
Thread 

(get_USB
_packet) 

Compile-
time 

USBboardsAt,
Board index, 
Ret Value 

61/64 

Improper 
human 

operation or 
patient-side 
manipulator 
malfunction 

Control 
Thread 

(put_USB
_packet) 

USBboardsAt,
Board index,  
Ret Value 

10/12 

Unintended 
Instrument 
Movements 

(sudden 
jumps) 

Robotic joint 
commands 

3/4* 

* Since abrupt jumps of robotic arms could potentially lead to system 
damage, we repeated these injections only four times.


