
A Software Framework for Simulation of Safety Hazards in
Robotic Surgical Systems

Homa Alemzadeh, Daniel Chen,
Zbigniew Kalbarczyk,
Ravishankar K. Iyer

Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign

{alemzad1, dchen8, kalbarcz, rkiyer}
@illinois.edu

Xiao Li,
Thenkurussi Kesavadas

Health Care Engineering Systems Center,
University of Illinois at Urbana-Champaign

{xiaoli16, kesh}@illinois.edu

Jaishankar Raman
Division of Cardiac

Surgery,
Rush University

jai_raman@rush.edu

ABSTRACT
This paper presents a simulation framework for recreating the
realistic safety hazard scenarios commonly observed in robotic
surgical systems, which can be used to prepare surgical trainees
for handling safety-critical events during procedures. The
proposed simulation platform is composed of a surgical simulator
based on an open-source surgical robot platform, Raven II,
integrated with a software-based fault-injection engine, which
automatically inserts faults into different modules of the robotic
software. We demonstrate the value of software-based fault
injection for simulating representative safety hazards seen in the
adverse events reported to the FDA MAUDE database, by
performing experiments both in simulation and on the actual
Raven II robot.

General Terms
Measurement, Reliability, Experimentation, Human Factors.

Keywords
Safety, Simulation, Fault Injection, Training, Robotic Surgery.

1. INTRODUCTION
Use of robotic systems for minimally invasive surgery has
increased significantly during the last decade. Between
2007 and 2013, over 1.74 million robotic procedures were
performed in the U.S. across various specialties of
gynecology, urology, general, cardiothoracic, and head and
neck surgery [1]. Our comprehensive analysis, covering
over 10,000 adverse robotic-surgery-related events during
2000–2013 as reported to the U.S. Food and Drug
Administration (FDA) Manufacturer and User Facility
Device Experience (MAUDE) database, showed that
despite significant improvements in robotic technology
through the years and broader adoption of the robotic
approach, there are ongoing occurrences of safety incidents

that negatively impact patients. The number of injury and
death events per procedure has stayed relatively constant
since 2007, with an average of 83.4 events per 100,000
procedures (with a 95% confidence interval of 74.2–92.7).
In particular, out of a total of 10,624 events reported during
2000–2013, 1,535 (14.4%) had significant negative patient
impact (including injuries (1,391 cases) and deaths (144
cases)) and 970 (9.1%) contributed to procedure
interruptions, such as manual reset of the system,
conversion of the procedure to non-robotic surgery, or
rescheduling of the procedure to a later time [2].

The ability of current robotic surgical technology to
automatically mitigate the impact of safety-related
incidents is not comparable to the situation in other safety-
critical industries, such as commercial aviation. In such
industries, great effort has been spent over the years on
improving safety practices by providing comprehensive
simulation-based training that includes operation in the
presence of safety-critical failures [3]. Multiple studies
have shown that simulation can be effectively used in
training to improve skill levels of robotic surgeons. There
are already several surgical simulators, training centers,
and validated curricula for robotic surgery [4]–[11].
However, the emphasis has been only on improving
surgical skills and not on handling safety-critical events
and responding to technical problems. Adverse events or
machine failures are rarely used as potential scenarios for
safety training of surgical teams.

Motivated by the idea of simulating safety hazards during
robotic surgery training in order to prepare surgeons for
handling safety-critical events, we created a platform to
demonstrate the feasibility of using software-based fault
injection to simulate realistic safety hazard scenarios with
minimal change to the robotic software and hardware.

Software-implemented fault injection (SWIFI) [12] is
commonly used for evaluating the safety and reliability of
computing systems [13][14]. SWIFI validates the
effectiveness of fault-tolerance mechanisms by studying
the behavior of a system in the presence of faults.
However, we use software-based fault-injection techniques
to enable evaluation of human operator performance and
response to safety hazards in simulation-based training.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Medical Cyber Physical Systems 2015, April 13, 2015, Seattle, WA
Copyright retained by the authors.

The proposed simulation platform was developed based on
the Raven II robot, an open-source surgical robot
developed by the Applied Dexterity and Biorobotics Lab at
the University of Washington [15][16]. We integrated the
robotic surgical simulator with a software-based fault-
injection framework that simulates realistic safety scenarios
observed in adverse event data during basic surgical tasks.
We simulated the safety hazards caused by either device
malfunctions or improper human operations by
automatically injecting faults into the software modules of
the robotic surgical simulator. Realistic safety hazards from
adverse events reported to the MAUDE database were used
to populate a library of hazard scenarios that define the
location and type of faults and the conditions under which
they should be injected into the RAVEN II software.

2. METHODOLOGY
This section presents our methodology, including the
analysis of adverse event reports on robotic surgical
systems from the MAUDE database, the surgical simulator
based on RAVEN II, and the fault-injection framework for
simulation of safety hazards extracted from data.

2.1 Analysis of Adverse Event Reports
Table 1 summarizes common types of device and
instrument malfunctions and inadequate operational
practices that contributed to catastrophic events or
interruptions during robotic procedures.

During 2000–2013, a total of 9,382 (88.3%) of the reported
events involved device and instrument malfunctions [2].

Table 2 shows samples of representative adverse events
(from the MAUDE database) in which malfunctions of
master tool manipulators (the inputs at the master console
that the surgeon uses to send control commands to the
robotic instruments) or motor encoders and potentiometers
(the sensors at the patient side that collect measurements
from robotic arms and instruments as feedback to the
master console) or other device-related failures led the
safety processor to stop the system and raise system errors
during a procedure. The majority of system errors in Table
2 could not be resolved even by multiple system restarts
and eventually led the surgical team to convert the
procedure or abort and reschedule it to a later date.
Between 2000 and 2013, out of 536 cases in which system
errors were experienced during procedures, 91% led to
procedure interruptions, including system resets (43%),
procedure conversions (61.5%), and rescheduling (24.8%)
[2]. (Note that those categories are not mutually exclusive.
In some cases, after several system resets, the procedure
was converted or rescheduled to a later date.)

Table 3 shows example events in which inadequate
operator actions, due to deficiencies of the human-machine
interface or lack of training, contributed to unexpected
device operation and led to adverse impact on patients.
None of the events in Table 3 resulted in a system error.

Although state-of-the-art robotic surgical systems are
designed with safety mechanisms that detect failures and
put the system into a recoverable or non-recoverable safe
state, in practice those mechanisms are imperfect because
of multiple factors.

Table 1. Common types of device malfunctions and inadequate operational practices

Device and instrument malfunctions Inadequate operational practices

- Master tool manipulator (mtm) malfunctions
- Patient-side manipulator (psm) failures
- Unintended operation of instruments (e.g., uncontrolled movements, power on/off)
- Video/imaging problems at the surgeon’s console
- Recoverable and non-recoverable system errors
- Burns and holes in tip cover accessories, leading to electrical arcing, sparking, or

charring of instruments
- Broken parts of instruments falling into patients

- Inadequate handling of emergency situations
- Lack of training with specific system features
- Inadequate troubleshooting of technical problems
- Inadequate system/instrument checks before procedure
- Incorrect port placements
- Incorrect electro-cautery settings or cable connections
- Inadequate manipulation of robot master controls
- Inadequate hand and foot coordination by main surgeon
- Incorrect manipulation or exchange of instruments

Table 2. Example adverse event reports that involved device and instrument malfunctions
Report No.

(Year)
Summary Description

Malfunction
Type

Procedure
Outcome

1006071
(2008)

- Recurring system errors #201 and #264, even after multiple restarts.
- Errors due to voltage tracking faults and put the system in a recoverable safe state.

Master tool
manipulators

Converted
after 2 hours

3283230
(2013)

- Master tool manipulator arm was sluggish and could not control the robotic arms.
- System error #22580 due to out-of-range hardware voltage level.
- Multiple system restarts did not resolve the issue.

Aborted
post anesthesia

3093014
(2013)

- Recurring error #23000, even after emergency power off & restart.
- System error caused because the angular positions of one or more robotic joints on a

manipulator as measured by the primary sensor (encoder) and secondary sensor
(potentiometer) were out of range or in disagreement.

Joint sensors
(Potentiometer

or encoder)

Aborted
post anesthesia

and port incision

2916352
(2012)

- Recurring system error #23008, even after emergency power off & restart.
- Recoverable errors caused because the angular positions of robotic joints as measured by the

primary sensor (encoder) and secondary sensor (potentiometer) were out of range or in
disagreement.

Converted
after port incision

2014
(3620041)

- Non-recoverable error #23013 on patient side manipulator.
- Multiple system restarts to recover from error but unsuccessful

Converted
to open surgery

1) The diagnostic mechanisms are usually not
comprehensive enough to identify the root causes of
malfunctions and system errors during surgery. Thus,
information on the type of system error (e.g., in an
error condition of recoverable or non-recoverable) and
corresponding troubleshooting procedures are
incorrectly communicated to the surgical team. The
root causes are often determined only after the fact,
when further investigations by the field service
engineers are performed and the failure scenarios are
replicated. For example, an encoder or sensor
malfunction may be reported as a recoverable system
error during a procedure, when it is not recoverable
and can only be fixed by replacing the component after
the procedure (See report No. 3035720 [17].)

2) System operators, including surgeons, surgical
assistants, and field service engineers, are often not
well trained to correctly interpret reasons for observed
system errors and to choose efficient troubleshooting
actions to recover from emergency situations. For
example, in one event, it was reported that the surgical
team spent a significant amount of time
troubleshooting a non-recoverable system error while
the patient was under anesthesia for more than one
hour. (See report No. 1743065 [18].)

Results from our analyses show the importance of

designing advanced safety mechanisms for active
monitoring of system components and operator actions to
assist surgical teams in predicting and preventing critical
events and performing effective troubleshooting
procedures. Also, surgical training on the use of robotic
systems must be improved to make troubleshooting and
handling of adverse events a central part of the training
experience.

2.2 RAVEN II Robotic Surgical Simulator
The RAVEN II robot is an open-source platform for
research in tele-operative robotic surgery. Figure 1 depicts
a typical configuration of a robotic tele-surgery system,
composed of a master console, a communication channel,
and a RAVEN II surgical robot, including software and
hardware components. As shown in Figure 2, we
developed a surgical simulator based on RAVEN II by
modeling the operation of the master console and robotic
arms and instruments in software in order to enable running
of RAVEN software without the robotic hardware. Thus,
we have the flexibility of either using real human input
from a haptic device or replaying previously collected
trajectories from real surgical tasks, to study test case
scenarios during which our fault-injection framework
recreates the safety hazards on the actual robot or in
simulation.

Master Console

Tool
Manipulators

Foot pedals

2D/3D
Display

Raven II Surgical Robot

‐ Robot status
‐ Position
‐ Orientation

Robotic Control
Software and Hardware Robotic Arms and Instrument

Motor
control

commands

Motor
encoder
feedback

Instruments

DC Motors
Robotic
ArmsRobot status feedback

Master Commands

Network Communication

Figure 1. Robotic Tele-surgery using Raven II Surgical Platform (Modified from [19][20])

Table 3. Example adverse event reports that involved improper operational practices
Report No.

(Year)
Summary Description Inadequate Operational Practices

Procedure
Outcome

921167
(2007)

- Patient-side manipulator dropped suddenly.
- Scissors instrument bumped into uterus.

Surgeon removed his/her hands from
master manipulators before removing

his/her head from console viewer

(keeping head in the console viewer
keeps the robot engaged)

Pierced
patient’s uterus

1570678
(2009)

- Endoscopic camera manipulator difficult to move.
- Master tool manipulator drifted when released.

Punctured
patient’s uterus

1961862
(2010)

- Instrument moved to guided tool change mode, moved slightly
forward, and bumped into colon.

Injury
to patient’s colon

2644122
(2012)

- Uncontrolled movement of master manipulators.
Damaged

abdominal wall
2636117
(2012)

- Limited range of motion and drift while master tool manipulators were
used, even after system restart.

Aborted
after 1.75 hours

2476271
(2012)

- Monopolar energy was released when bipolar instrument was used.
Improper connection of bipolar

instrument to electrosurgical unit

Injury
to patient’s bowel3024317

(2013)

2494890
(2012)

- Arcing from bipolar instrument when cautery energy was not being
applied.

Small burn
on diaphragm

The master console provides the means for the surgeon to
issue commands to the robot, using foot pedals and master
tool manipulators. The desired position and orientation of
robotic arms and robot control mode are transferred
between the master and the slave robot over the network
using the Interoperable Teleoperation Protocol (ITP), a
protocol based on the UDP packet structure [21]. The
RAVEN II software receives the master command packets
and translates them into motor commands that enable the
movement of robotic arms and instruments. We developed
a software module that generates master command packets
based on a previously collected trajectory of movements
made by a human operator and sends them to the RAVEN
control software.

The RAVEN II software runs on top of the Robotic
Operating System (ROS) middleware and a real-time Linux
kernel, communicating with the motor controllers through
custom USB interface boards. A watchdog timer
implemented on a PLC safety processor monitors the state
of the RAVEN control software and moves the system into
a fail-safe state upon detection of any problems. Three
main threads run in parallel in the RAVEN control
software: 1) a network-layer thread, which receives the
command packets from the master controller over the
network; 2) a control thread, in which the main robot
kinematics and control computations are performed; and 3)
the console thread, which provides an interface for setting
robot control modes and displaying the robot’s status to the
user [20].

We simulated the RAVEN II hardware by developing a
software module that mimics the dynamical behavior of the
real robotic actuators by modeling the MAXON RE30 and
RE40 DC motors used by RAVEN [15] as first-order
systems with different time constants. A 3D virtual
environment based on C++ OpenGL pipeline and CAD
models of robot mechanical components was created to
animate the movements of robotic arms and instruments.

Next, we integrated the RAVEN II surgical simulator with

a fault-injection framework to simulate representative
safety hazards observed in the MAUDE data.

2.3 Fault-injection Framework
We developed the fault-injection framework by using a
combination of compile-time and run-time software fault-
injection techniques. We recreated each hazard scenario by
injecting faults into different parts of the simulator to
emulate representative device malfunctions and improper
human operations. The safety hazard scenarios are read
from a hazard scenario library that specifies fault-injection
parameters such as the location in the software, the trigger
or condition under which the fault should be injected, and
target variables to be affected by the injection. The faults
are injected by replacing the code at the specified location
with a mutated version that mimics the intended faulty
operation (compile-time fault injection) [12] or by setting
breakpoints at the specified location and changing the
target variables at run-time (run-time fault injection) [12].
The fault-injection controller then collects the output from
simulator modules (e.g., user input packets, output joint
positions, and error messages), and the collected injection
logs are sent with the usual surgical simulator logs to an
online database for further analysis.

Run-time fault injection allows us to perform fault injection
in run-time generated data; however, the delay introduced
by the run-time fault injector is not suitable for modules
that have hard real-time requirements (e.g., the kinematics
and control computations). Compile-time fault injection
requires modification and pre-compiling of the fault
injection condition into the source code, but has negligible
timing overhead, which makes it suitable for modules with
real-time requirements. For example, to mimic the safety
hazards due to malfunctions in the master tool
manipulators, which send run-time packets to the RAVEN
network-layer thread, we corrupt the packets received in
the RAVEN network-layer thread through run-time fault-
injection using a fault injector that remotely attaches to the
RAVEN process in ROS. To mimic the safety hazards due

Raven II Surgical Simulator

Raven Software Modules

Console ThreadControl ThreadNetwork Thread Console
output

User Inputs:
‐ Position
‐ Orientation
‐ Foot pedal

Haptic Device Virtual Environment

Fault‐injection Framework

Simulated
Motor Models

Joint positions

3D Visualization
Software

Graphics
output

Safety hazard scenarios

Analysis of Adverse Event Reports
Safety hazards and their causal factors

Pre‐collected
Trajectories

Figure 2. Raven II Surgical Simulator Integrated with Fault-injection Framework

to sensor (encoder) malfunctions and unintended
instrument operations, we inject compile-time faults into
the USB packet communication in the control thread. The
RAVEN control thread has the hard real-time requirement
of one millisecond to perform kinematics calculations and
communication with the USB interface boards [20]. Run-
time fault-injection to the control thread introduces small
delays, leading to violation of the real-time constraint and
failure of kinematics calculations, resulting in unintended
robotic instrument vibrations and movements.

3. EXPERIMENTAL RESULTS
In preliminary experiments, we injected 5,500 faults into
the network and control threads on the surgical simulator
and 110 faults on the actual RAVEN II robot, while
running a pre-collected trajectory of a simple surgical
movement. Our purpose was to show that we can
regenerate realistic safety hazard scenarios seen in the
adverse events reported in the MAUDE database.

The following fault-injection cases describe simulation of
the safety hazards shown in Tables 2 and 3 in the same way
they were reported in the MAUDE data:

1. System errors due to master tool manipulator
malfunctions: These malfunctions were simulated by
injecting random faults into the ITP packets received
by the network-layer thread. The fault-injection
framework targeted the position, orientation, grasper
angle, and foot pedal variables in the packet data
structure by modifying their values into random values
outside the range of possible values that the variables
take. Since the ITP packets are sent in an incremental
motion scheme, modifying the variables of a few
packets to values inside the range of possible values
did not have any impact, but intermittent injection of
out-of-range values to the position, orientation, and
grasper angle variables for an extended period causes
the kinematics calculations to fail. The RAVEN II
control software detects such failures by observing an
over-the-limit electrical current command being sent
from the software to the digital to analog converters
(DAC) on the motor controllers and raises an E-STOP
software error, leading the hardware watchdog timer to
move the RAVEN hardware to an E-STOP safe state.
The E-STOP error can only be resolved by restarting
the system. Depending on the length of the faulty

packets (e.g., if the master manipulator malfunction is
permanent), the E-STOP error cannot be recovered
from, even with multiple restarts.

2. Sensor (encoder) malfunctions: We simulated
permanent and intermittent sensor malfunctions by
injecting faults into different parts of the USB
interface function responsible for communicating
packets from motor controllers to the control thread
through USB interface boards (get_USB_packet).
Corruption of the number of available USB boards,
indices for accessing USB boards, and packets read
from the USB boards caused the RAVEN watchdog
processor to detect an error and put the system in a
non-recoverable E-STOP safe state, from which one
cannot recover by pressing the restart button. Only a
complete restart of the software and robotic hardware
would resolve the issue.

3. Improper human operation or patient-side
manipulator malfunctions: To simulate unintended
instrument movements and sudden jumps of robotic
arms due to device malfunctions or improper human
operations, we injected faults into the motor command
variables in the control thread and USB interface
function (put_USB_packet). The injections into the
USB packets sent from the control thread to the USB
interface board caused abrupt jumps of the robotic
arms, leading the RAVEN software and hardware to
stop. Figure 3 shows the visualization of this safety
hazard scenario in the 3D virtual environment.

Table 4 summarizes the above fault-injection cases in the
actual robot. The last column shows the total number of
injected faults and the number of faults that were
manifested and caused the desired safety hazard scenarios.
Faults injected into the network-layer thread were not
manifested if they had been injected into the foot pedal
variable or if faulty values were within the range of
possible values (22/30 of faults injected into the network-
layer thread were manifested.)

In the control thread, the faults injected into the USB board
indices and packets in the get_USB_packet and
put_USB_packet functions were not manifested as safety
hazards during the robot initialization phase (homing)
(61/64 and 13/16 of faults injected into get_USB_packet
and put_USB_packet functions after the homing phase
were manifested, respectively.)

Figure 3. Visualization of a Safety Hazard Scenario in the Virtual Environment: The left robotic arm makes a sudden jump

because of a faulty packet sent from control software to the motors

4. CONCLUSIONS
We developed a robotic surgical simulator augmented with
fault-injection capabilities to show the feasibility of
simulating safety hazard scenarios, which are commonly
reported in the use of robotic surgical systems. The
proposed framework for safety-hazard simulation can be
used in designing future surgical simulators for safety
training of surgeons to prepare them for handling common
types of adverse events experienced during procedures.

The proposed fault-injection framework further provides
the means for safety-based design of next-generation
robotic surgical systems by evaluating the robustness of
safety and fault-tolerance mechanisms with respect to
realistic safety hazards previously reported in the field.

5. ACKNOWLEDGMENTS
A non-restricted grant from Infosys and a faculty award from
IBM partially supported this work. Our special thanks to Andrew
Lewis, David Drajeske, and Blake Hannaford from Applied
Dexterity and researchers at the University of Washington
Biorobotics Lab for providing the open-source code for the
RAVEN II surgical robot and allowing us to perform fault-
injection experiments on a RAVEN robot in their lab. We also
thank Jenny Applequist for her editing of the paper.

6. REFERENCES
[1] Annual Report 2013, Intuitive Surgical, Inc.: http://phx.corporate-

ir.net/External.File?item=UGFyZW50SUQ9MjIzOTk3fENoaWxkS
UQ9LTF8VHlwZT0z&t=1

[2] H. Alemzadeh, J. Raman, N. Leveson, and R. K. Iyer, “Safety
Implications of Robotic Surgery: A Study of 13 Years of FDA Data
on da Vinci Surgical Systems.” University of Illinois Coordinated
Science Laboratory Technical Report, UILU-ENG-13-2208 (2013),
In Proc. of the 50th Annual Meeting of the Society of Thoracic

Surgeons (STS) (Jan. 2014), Orlando, FL.

[3] F. Bilotta, et al. Impact and Implementation of Simulation-based
Training for Safety. The Scientific World Journal (2013).

[4] R. Smith, et al. Comparative Analysis of the Functionality of
Simulators of the da Vinci Surgical Robot. Surgical Endoscopy
(2014), 1-12.

[5] J. Bric, et al. Proficiency Training on a Virtual Reality Robotic
Surgical Skills Curriculum. Surgical Endoscopy (2014), 1-6.

[6] A. Huser, et al. Simulated Life-Threatening Emergency During
Robot-Assisted Surgery.” Journal of Endourology (2014).

[7] K. Foell, et al. Robotic Surgery Basic Skills Training: Evaluation of
a Pilot Multidisciplinary Simulation-based Curriculum. Canadian
Urological Association Journal. 7, 11-12 (2013), 430-434.

[8] A. Patel, et al. Can We Become Better Robot Surgeons through
Simulator Practice? Surgical Endoscopy. 28, 3 (2014), 847-53.

[9] S. Seixas-Mikelus, et al., Face Validation of Novel Robotic Surgical
Simulator. Urology (Gold). 76, 2 (2010), 357-360.

[10] A. P. Stegemann, et al. Fundamental Skills of Robotic Surgery: A
Multi-institutional Randomized Controlled Trial for Validation of a
Simulation-based Curriculum. Urology. 81, 4 (2013), 767-774.

[11] A. Chowriappa, et al., Development and Validation of a Composite
Scoring System for Robot-assisted Surgical Training: The Robotic
Skills Assessment Score. Journal of Surgical Research. 185, 2
(2013), 561-569.

[12] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault Injection Techniques
and Tools. Computer. 30, 4 (1997), 75-82.

[13] D. Chen et al. Error Behavior Comparison of Multiple Computing
Systems: A Case Study Using Linux on Pentium, Solaris on SPARC,
and AIX on POWER. In Proc. 14th IEEE Pacific Rim Intl.
Symposium on Dependable Computing (Dec. 2008), PRDC.

[14] W. Gu et al. Characterization of Linux Kernel Behavior under
Errors. In Proc. International Conference on Dependable Systems
and Networks (June 22-25, 2003), 459-68.

[15] B. Hannaford, et al. RAVEN-II: An Open Platform for Surgical
Robotics Research. IEEE Transactions on Biomedical Engineering.
10, 10 (2012).

[16] “RAVEN II Open-source Surgical Robots.” ROS.org News:
http://www.ros.org/news/2012/01/raven-ii-open-source-surgical-
robots.html.

[17] MAUDE Adverse Event Report: Intuitive Surgical, Inc. da Vinci
Surgical System Endoscopic Instrument Control System, MDR
report 3035720, Mar. 5, 2013, U.S. Food and Drug Administration:
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.C
FM?MDRFOI__ID=3035720.

[18] MAUDE Adverse Event Report: Intuitive Surgical, Inc. da Vinci
Surgical System Endoscopic Instrument Control System, MDR
report 1743065, May 26, 2010, U.S. Food and Drug Administration:
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/Detail.C
FM?MDRFOI__ID=1743065.

[19] Robotic Surgery Simulator (RoSS), Simulated Surgical Systems:
http://www.simulatedsurgicals.com/.

[20] “RAVEN II Source Code,” University of Washington,
http://brl.ee.washington.edu/raven2docs/.

[21] H. H. King, et al., Plugfest 2009: Global Interoperability in
Telerobotics and Telemedicine. In Proc. Int. Conf. Robot. Autom.
(May 2010), ICRA 2010, 1733–1738.

Table 4. Summary of fault-injection experiments on actual
robot

Safety Hazard
Scenario

Fault
Type

Target
Software
Module

Injection
Type

Target
Variables

No.
Manifested/

Injected
Faults

Recoverable
System
Errors

Intermittent
master tool
manipulator
malfunction

Network-
Layer

Thread

Run-
time

Position,
Orientation,
Grasper angle,
Foot pedal

22/30

Non-
recoverable

System Errors

Sensor
(encoder)

malfunctions

Control
Thread

(get_USB
_packet)

Compile-
time

USBboardsAt,
Board index,
Ret Value

61/64

Improper
human

operation or
patient-side
manipulator
malfunction

Control
Thread

(put_USB
_packet)

USBboardsAt,
Board index,
Ret Value

10/12

Unintended
Instrument
Movements

(sudden
jumps)

Robotic joint
commands

3/4*

* Since abrupt jumps of robotic arms could potentially lead to system
damage, we repeated these injections only four times.

