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ABSTRACT
This paper evaluates the performance of Reduction to Uniproces-
sor Transformation (RUNT) with Voltage and Frequency Scaling,
called Static RUNT (S-RUNT) and Dynamic RUNT (D-RUNT),
respectively. Simulation results show that how to assign tasks to
servers in RUNT influences energy consumption and the worst-fit
heuristic is the best in many cases. In addition, the idle task as-
signment policy saves more energy consumption in D-RUNT and
D-RUNT outperforms S-RUNT if the actual case execution time of
each task is shorter than its worst case execution time.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time and embedded systems

General Terms
Algorithms

Keywords
Optimal Multiprocessor Real-Time Scheduling, Multiprocessor Sys-
tems, Real-Time Systems, RUN Algorithm

1. INTRODUCTION
Real-time systems have required multiprocessors and there are

mainly two categories of multiprocessor real-time scheduling: par-
titioned scheduling and global scheduling. Partitioned scheduling
assigns tasks to processors offline and there are no migratory tasks
but it guarantees only 50% processor utilization in the worst case
[1]. In contrast, global scheduling can achieve 100% utilization
by migrating tasks among processors online but increases run-time
overhead. We are interested in optimal multiprocessor real-time
scheduling algorithms, which can achieve 100% utilization with
any implicit-deadline periodic task sets. Several optimal multi-
processor real-time scheduling algorithms have been proposed and
Reduction to UNiprocessor (RUN) [13] outperforms other optimal
algorithms with respect to the number of preemptions/migrations.
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Since the small number of preemptions/migrations improves the
practicality of the scheduling, we focus on RUN.

RUN transforms the multiprocessor scheduling problem into an
equivalent set of uniprocessor scheduling problems by the DUAL
and PACK operations and the detail of them is described in Section
3. After transforming offline, RUN uses Earliest Deadline First
(EDF) [11] to transform the uniprocessor scheduling into the mul-
tiprocessor scheduling online because EDF is optimal in implicit-
deadline periodic task sets on uniprocessors. Using these opera-
tions, RUN achieves the optimality with low overhead.

Voltage and Frequency Scaling (VFS) is one of the most popu-
lar techniques to reduce energy consumption in computer systems.
Especially, Real-Time Voltage and Frequency Scaling (RT-VFS)
can reduce energy consumption by scaling the operating frequency
and the supply voltage while meeting real-time constraints. RT-
VFS is based on the essential characteristic of real-time tasks. All
tasks can be executed slowly as long as their deadlines are met.
In most of the CMOS-based modern processors, the dynamic en-
ergy consumption E is proportional to the operating frequency f
and the square of the supply voltage V (i.e., E ∝ fV 2) [3], and
the maximum operating frequency depends on the supply voltage.
Therefore, RT-VFS can effectively reduce energy consumption at
a cubic order of the operating frequency. RT-VFS has two follow-
ing techniques: Real-Time Static Voltage and Frequency Scaling
(RT-SVFS) and Real-Time Dynamic Voltage and Frequency Scal-
ing (RT-DVFS). RT-SVFS determines the voltage and frequency
offline and does not adjust them after the system starts. RT-DVFS
can reduce energy consumption by adjusting the voltage and fre-
quency online, which potentially saves more energy consumption.
Changing the voltage and frequency takes some time due to I/O
operations. If the overhead of RT-DVFS is small, it is possible
to ignore overhead or incorporate it into execution time of tasks.
However, RT-DVFS may incur significant overhead in some sys-
tems and RT-SVFS is a good solution for these systems. There is a
trade-off between energy consumption and overhead in RT-VFS.

In our previous work, Reduction to UNiprocessor Transforma-
tion (RUNT) [4] was proposed to achieve optimal multiprocessor
real-time scheduling algorithm based on RUN with Voltage and
Frequency Scaling. Unfortunately, the performance of RUNT is
not evaluated.

This paper evaluates the performance of RUNT with RT-SVFS/RT-
DVFS, called Static RUNT (S-RUNT) and Dynamic RUNT (D-
RUNT), respectively. Simulation results show that the saved energy
consumption strongly depends on the way to assign tasks to servers
in RUNT and the worst-fit heuristic is the most energy-efficient
in many cases. In addition, the idle task assignment policy saves
more energy consumption in D-RUNT and D-RUNT outperforms
S-RUNT if tasks are completed early.



2. SYSTEM MODEL

2.1 Processor Model
The system has M processors Π = { P1, P2, ..., PM }. Each

processor Pj is characterized by the continuous normalized fre-
quency αj (0 ≤ αj ≤ 1). Here, we discuss the differences be-
tween the system model and practical environments. (i) In prac-
tical environments, the system has the discrete frequency values
F = { f1, ..., fL | fmin = f1 < ... < fL = fmax } and the dis-
crete voltage values V = { V1, ..., VL | V1 < ... < VL }. We as-
sume that Vk corresponds to fk and the voltage is also changed
at the same time as the corresponding frequency is changed. The
lowest frequency fi ∈ F such that αj ≤ fi/fmax will be selected
to achieve the lowest energy consumption while meeting real-time
constraints. (ii) The system model assumes that no overhead oc-
curs at run-time. In practical environments, the scaled frequency
interferes with the scheduling even if the frequency is not changed
dynamically. The worst case overhead is included in the worst case
execution time (WCET).

2.2 Task Model
The system has a task set T = { τ1, τ2, ..., τN }, which is a set

ofN periodic tasks onM processors. Each task cannot be executed
in parallel among processors. Each task τi has its WCET Ci and
period Ti. The jth instance of task τi is called job τi,j . Task τi
executed on a processor Pj requires Ci/αj processor time at every
Ti interval. The relative deadline Di is equal to its period Ti (i.e.,
implicit-deadline). All tasks must complete the execution by their
deadlines. The utilization of each task is defined as Ui = Ci/Ti

and the system utilization is defined as U = 1
M

∑
i Ui. We assume

that all tasks may be preempted and migrated among processors at
any time, and are independent (i.e., they do not share resources and
do not have any precedence).

3. THE RUNT ALGORITHM
We introduce RUNT [4], which is an optimal multiprocessor

real-time scheduling algorithm based on RUN with VFS. RUNT
supports RT-SVFS/RT-DVFS techniques on uniform/independent
VFS multiprocessor systems, called Static Uniform RUNT (SU-
RUNT), Static Independent RUNT (SI-RUNT), Dynamic Uniform
RUNT (DU-RUNT), and Dynamic Independent RUNT (DI-RUNT),
respectively. Due to the space limitations, the details of these al-
gorithms are explained in [4]. When the actual case execution time
(ACET) of each task is often shorter than its WCET [6], RUNT uses
Enhanced Cycle-Conserving EDF (ECC-EDF) [9] to reclaim slack
for reducing energy consumption. RUNT achieves a small number
of preemptions/migrations compared to RUN because these opera-
tions are performed when every scheduling event occurs. If a task
set does not satisfy the full system utilization, idle tasks are in-
serted because RUN assumes the full system utilization. An idle
task assignment policy is an important factor to reduce energy con-
sumption. Therefore, the idle ratio-fit was proposed in our previous
work. We explain the overview of the RUN algorithm, the ECC-
EDF algorithm, and the idle ratio-fit as follows.

3.1 The RUN Algorithm
RUN [13] is an optimal multiprocessor real-time scheduling al-

gorithm with a small number of preemptions/migrations. We ex-
plain the detail of RUN in offline and online phases.

Now we introduce the RUN’s specific model because RUN has
many original parameters and assumptions to explain itself. A sys-
tem is fully utilized if the system utilization U is one. Since RUN
assumes the full system utilization, idle tasks are inserted to fill in

the slack if U < 1. The total utilization of idle tasks is defined
as Uidle = M −

∑
i Ui. Note that each idle task has just the pa-

rameter of utilization and does not have other parameters including
WCET and period.

RUN transforms the multiprocessor scheduling to the uniproces-
sor scheduling by aggregating tasks into servers S. We treat servers
as tasks with a sequence of jobs but they are not actual tasks in the
system; each server is a proxy for a collection of client tasks. When
a server is running, the processor time is used by one of its clients.
Clients of a server are scheduled via an internal scheduling mech-
anism. The utilization of each server Sk is Usrv

k =
∑

τi∈Sk
Ui,

where τi ∈ Sk means that task τi is first assigned to server Sk, and
Usrv

k does not exceed one.

3.1.1 Offline Phase
In an offline phase, RUN reduces the multiprocessor scheduling

to the uniprocessor scheduling by the DUAL and PACK operations.
RUN uses EDF for uniprocessor scheduling because EDF is opti-
mal in implicit-deadline periodic task sets on uniprocessors.

The DUAL operation transforms a task τi into the dual task τ∗i ,
whose execution time represents the idle time of τi (i.e.,C∗

i = Ti−
Ci). The relative deadline of dual task τ∗i is equal to that of task τi.
The dual task τ∗i is executed exactly when the original task τi is idle
and vice versa. A schedule for the original task set is obtained by
blocking τi whenever τ∗i executes in the dual schedule. In addition,
the sum of utilizations of task τi and dual task τ∗i is one and the
utilization of dual task τ∗i is U∗

i = C∗
i /Ti. The DUAL operation

reduces the number of processors whenever N −M < M .
The PACK operation packs dual servers into packed servers whose

utilizations do not exceed one. When N −M ≥ M , the number
of servers can be reduced by aggregating them into fewer servers
by the PACK operation. The scheme how to pack servers to fewer
servers is heuristic and the PACK operation is similar to the parti-
tioning scheme. Note that if assigning tasks to processors is suc-
cessful, RUN generates the same schedule as Partitioned EDF (P-
EDF) and does not perform the DUAL and PACK operations. Oth-
erwise the DUAL and PACK operations are performed to generate
the reduction tree offline, which is used to make server scheduling
decisions online. The detail of making scheduling decisions in the
reduction tree is shown in the next subsection.

In order to explain the reduction tree, we define the following
terms with respect to servers as follows. A unit server is a server
whose utilization is one. A null server is a server whose utilization
is zero. A root server is a last packed server whose utilization is
one (unit server).

Packing the dual servers of packed servers can reduce the num-
ber of servers by at least (almost) half. We perform DUAL and
PACK operations repeatedly until all packed servers become unit
servers. Now we define a REDUCE operation to be their composi-
tion.

DEFINITION 1 (FROM DEFINITION IV.6. IN [13]). Given a
set of servers Γ and a packing π of Γ , a REDUCE operation on a
server S in Γ, denoted byψ(S), is the composition of the DUAL op-
erationϕwith the PACK operation σ for π (i.e.,ψ(S) = ϕ(σ(S))).

In addition, we define reduction level/sequence to explain the re-
duction tree as follows.

DEFINITION 2 (FROM DEFINITION IV.7 IN [13]). Let i ≥ 1
be an integer, Γ be a set of servers, and S be a server in Γ. The
operator ψi is recursively defined by ψ0(S) = S and ψi(S) =
ψ ◦ψi−1(S). {ψi}i is a reduction sequence, and the server system
ψi(Γ) is said to be at reduction level i.



ψ0 S1(0.6),{5N*} S2(0.6),{10N*} S3(0.6),{15N*} S4(0.6),{10N*} S5(0.6),{5N*}

S6(0.4),{5N*} S7(0.4),{10N*} S8(0.4),{15N*}S9(0.4),{10N*} S10(0.4),{5N*}

S11(0.2),{5N*,10N*} S12(0.2),{10N*,15N*} S13(0.6),{5N*}

S14(1),{5N*,10N*,15N*}

τ1(2,5) τ2(4,10) τ3(6,15) τ4(4,10) τ5(2,5)

σ({S1}) σ({S2}) σ({S3}) σ({S4}) σ({S5})
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σ
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φ

σ

σ
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Figure 1: Reduction tree on three processors

Note that assigning tasks to servers is defined as reduction level 0
that does not perform the REDUCE operation.

Figure 1 shows the reduction tree on three processors. τ (Ci,Ti)
i

expresses that task τi has WCET Ci and period Ti. Tasks τ1, τ2,
τ3, τ4, and τ5 are assigned to servers S1, S2, S3, S4, and S5 at
reduction level 0, respectively. The total utilization of idle tasks is
Uidle = M −

∑
i Ui = 3 − 5 × 0.4 = 1. In this example, idle

tasks are assigned to servers at reduction level 0 uniformly, i.e.,
the utilization of each server is added to Uidle/N = 1/5 = 0.2,
respectively.

We represent a server as S(Usrv
k ),{ Dk }

k , where Usrv
k is the uti-

lization of server Sk and Dk is the deadline set of server Sk . The
deadline set includes all (absolute) deadlines of tasks in the server.
Each server sets the earliest deadline in each deadline set when the
server is released. We assign deadline sets 5N∗, 10N∗, 15N∗,
10N∗ , and 5N∗ to servers at reduction level 0, respectively, where
N∗ means natural numbers. Servers S6, S7, S8, S9, and S10 are
generated by the DUAL operation at reduction level 1 and their uti-
lizations are 0.4 because these servers are dual servers of servers
S1, S2, S3, S4, and S5 at reduction level 0, respectively. In this ex-
ample, servers S6 and S7 are packed, servers S8 and S9 are packed,
and server S10 is not packed by the PACK operation. Servers S11,
S12, and S13 are generated by the DUAL operation at reduction
level 2. Finally, server S14 is generated by the PACK operation at
reduction level 2 and its utilization is one, and hence the REDUCE
operation is finished and the reduction tree is completely generated.

Note that the number of root servers may become more than one
because when all servers are unit servers at the highest reduction
level, then the REDUCE operation is finished. If one server is a
unit server, its dual server is a null server, which is packed into
another server when the next PACK operation is performed.

3.1.2 Online Phase
In an online phase, RUN schedules servers by the following rules

and we use Figure 1 for reference.

RULE 3 (FROM RULE IV.2 IN [13]). If a packed server is run-
ning (circled), execute the child node with the earliest deadline
among those children with work remaining; if a packed server is
not running (not circled), execute none of its children.

RULE 4 (FROM RULE IV.3 IN [13]). Execute (circle) the child
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Figure 2: An example of RUN scheduling on three processors

(packed server) of a dual server if and only if the dual server is not
running (not circled).

In the reduction tree, a thick arrow represents a scheduled server
and a thin arrow represents a non-scheduled server by each par-
ent server. If a thick arrow from a server points a task, the server
schedules the task.

In Figure 1, root server S14 is always running, regardless of these
rules, because a root server is always a unit server. Next, S14 makes
scheduling decisions in EDF order and server S12 is running at this
time. Since server S12 is running, S8 and S9 are not running by
Rule 3. Since servers S11 and S13 are not running, servers S7 and
S10 are running by Rule 4. Servers S6, S8, and S9 are not running,
and hence servers S1, S3, and S4 are running by Rule 4.

Figure 2 shows an example of RUN scheduling on three proces-
sors. Each server is executed on virtual processor V PR,v , where R
represents the reduction level and v represents the virtual processor
ID at each reduction level. The task set is shown in Figure 1 and
this example shows the scheduling decisions at time 4. This system
has three processors P1, P2, and P3, reduction level 0 has three
virtual processors V P0,1, V P0,2, and V P0,3, reduction level 1 has
two virtual processors V P1,1 and V P1,2, and reduction level 2 has
one virtual processor V P2,1.

RUN uses the following task-to-processor assignment scheme;
(i) leave executing tasks on their current processors, (ii) assign idle
tasks to their last-used processor, when available, to avoid unneces-
sary migrations, and (iii) assign remaining tasks to free processors
arbitrarily. By this scheme, each server assigns tasks to processors
P1, P2, or P3 in Figure 2. When each task completes its execu-
tion on one processor, the processor becomes idle until the server
of each task exhausts its budget. For example, server S5 running on
V P0,1 completes task τ5 on processor P1 at time 3 and P1 becomes
idle (executes idle task) in time interval [3,4).

3.2 The ECC-EDF Algorithm



ECC-EDF [9] is an RT-DVFS technique on uniprocessors and
ensured that any implicit-deadline periodic task set T with utiliza-
tion U ≤ 1 is successfully scheduled. In addition, ECC-EDF out-
performs CC-EDF theoretically and Look-Ahead EDF [12] exper-
imentally with respect to energy consumption. Therefore, ECC-
EDF is used in RUNT to achieve optimal multiprocessor real-time
scheduling with RT-DVFS as well as EDF is used in RUN. To im-
prove CC-EDF, ECC-EDF takes the elapsed time of tasks into con-
sideration and finds the maximum utilization saved by the slack
on completion of the task by calculating the minimum utilization
needed to process the slack by its deadline using following Equa-
tion 1.

Us
i =

Ci − cci
Ti − Ei

, (1)

where cci is the ACET of task τi and Ei is the elapsed time of task
τi.

3.3 Idle Ratio-Fit
The idle ratio-fit [4] assigns idle tasks to servers uniformly for

reducing energy consumption in an offline phase when the system
is not fully utilized. The idle ratio-fit is inspired by optimality on
energy-efficiency of the worst-fit. Aydin and Yang proved that a
task assignment that evenly divides the total utilization among all
the processors, if it exists, will minimize the total energy consump-
tion, and also showed that the worst-fit task assignment heuris-
tic outperforms other heuristics in energy-efficiency including the
first-, next-, and best-fit [2]. We define the idle ratio of Sk denoted
by IdleRatio(Sk), which is the ratio of the utilization of idle tasks
assigned to server Sk to the utilization of Sk, as follows.

IdleRatio(Sk) =
U idle

k

Usrv
k

, (2)

where Usrv
k is the utilization of each server Sk and U idle

k is the
utilization of idle tasks assigned to server Sk. The idle ratio-fit
lowers the idle ratio of each server on average to reduce energy
consumption. Due to the space limitations, the detail of the idle
ratio-fit is shown in [4].

4. SIMULATION STUDIES

4.1 Simulation Setups
In this section, we evaluate RUNT through simulation studies.

This system has 16 processors (M = 16) on static/dynamic and
uniform/independent VFS systems. We use three frequency sets as
follows: F1 = { 0.5, 0.75, 1.0 } , F2 = { 0.5, 0.75, 0.83, 1.0 } , F3 =
{ 0.36, 0.55, 0.64, 0.73, 0.82, 0.91, 1.0 }. When a processor goes
to idle, the processor sets its frequency to the minimum one. For
example, when a processor using F1 goes to idle, set the operating
frequency to 0.5.

This simulation uses 1, 000 task sets in each system utilization.
The system utilization U is selected from [0.3, 0.35, 0.4, ..., 1.0].
Each Ui is selected within [0.01, 0.02, 0.03, ..., 1.0]. The period Ti

of each task τi is selected within [100, 200, 300, ..., 1600]. Tasks
in each task set are ordered by decreasing utilization. The ratio of
ACET to WCET is set to the range of [0.5, 1.0] or [0.75, 1.0], or
always 1.0, represented as DI-RUNT(50%), DI-RUNT(75%), and
DI-RUNT(100%), respectively. The simulation length is the hyper-
period of each task set.

The effectiveness of RUNT is in terms of energy ratio, which is
defined as follows.

Energy Ratio =
1

T

∫ T

0

∑
Pk∈Π f

3
i

M
dt

4.2 Simulation Results

4.2.1 Task Assignment Policy in SI-RUNT and DI-
RUNT

First, we evaluate the task assignment policy to examine which
heuristic is the most energy-efficient in RUNT. We use the idle
ratio-fit as the idle task assignment policy.

Figure 3 shows the simulation results of task assignment pol-
icy in SI-RUNT and DI-RUNT. In SI-RUNT, the worst-fit reduces
energy consumption the most when U ≤ 0.6 but other heuristics
outperform the worst-fit when U > 0.6 (Figures 3(a), 3(b), and
3(c)). Since SI-RUNT selects the maximum frequency among all
frequencies of servers assigned to the processor, it is necessary to
decrease them as much as possible. A simple way to realize this is
to insert idle tasks to a server, and hence the utilization of the server
can be 100%. Servers with 100% utilization can use the processors
exclusively and if the server has slack generated by inserting idle
tasks, we can decrease the frequency of the processor. Even if the
original utilization of the server which uses the processor exclu-
sively and inserting idle tasks may not be effective, isolating the
server increases the potential of decreasing the frequency assigned
to other processors. This idea is similar to T-N Plane Transfor-
mation (TNPT) [7, 8] that classifies tasks into two classes: heavy
tasks and light tasks, and a heavy task uses a processor exclusively.
In contrast, the first- and best-fit tend to increase the utilization of
each server up to 100%, and hence inserting idle tasks with low
utilization can make the utilization of each server be 100%. For
this reason, when the utilization of the task set becomes large and
few servers can decrease their frequency, the first- and best-fit can
outperform the worst-fit.

In DI-RUNT, the worst-fit reduces energy consumption the most
(Figures 3(d), 3(e), and 3(f)). The worst-fit tends to uniform the
utilization of each server, which results in well-balanced load of
each processor that can decrease the frequency effectively. When
the level of frequency becomes more fine-grained, that is to say,
the number of selectable frequency values becomes large, the ac-
tual frequency approaches theoretically optimal value. Therefore,
energy consumption in the frequency set F3 is the lowest in all fre-
quency sets.

4.2.2 Idle Task Assignment Policy in SI-RUNT and
DI-RUNT

Next we measure the effectiveness of the idle task assignment
policy, called idle ratio-fit, compared to other idle task assignment
policies. We use the worst-fit as the task assignment policy because
the worst-fit outperforms other heuristics in many cases as shown
in Section 4.2.1.

Figure 4 shows the simulation results of the idle task assignment
policy with the worst-fit in SI-RUNT and DI-RUNT. In SI-RUNT,
the first-, best-, and worst-fit reduce more energy consumption than
the idle ratio-fit (Figures 4(a), 4(b), and 4(c)). This is the similar
reason to the task assignment policy discussed in Section 4.2.1. RT-
SVFS needs to decrease the frequency of all servers. In DI-RUNT,
on the other hand, the idle ratio-fit achieves the best results (Figures
4(d), 4(e), and 4(f)) because the idle ratio-fit is based on the idea of
the worst-fit and assigns idle tasks to servers uniformly. Especially,
the idle ratio-fit is superior to other idle task assignment policies in
a coarse-grained frequency set such as F1 or F2 and can save more
energy as shown in Figures 4(d) and 4(e).

4.2.3 Comparison of DI-RUNT with SI-RUNT
DI-RUNT is compared to SI-RUNT with respect to energy ratio.

Table 1 shows task and idle task assignment policies in each algo-
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(b) SI-RUNT in Frequency Set F2
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(c) SI-RUNT in Frequency Set F3
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Figure 3: Task Assignment Policy with Idle Ratio-Fit

Table 1: Task and idle task assignment policies
Algorithm Frequency Set Task Assignment Idle Task Assignment
SI-RUNT F1 Worst-Fit Idle Worst-Fit
SI-RUNT F2 Worst-Fit Idle First-Fit
SI-RUNT F3 Worst-Fit Idle Best-Fit
DI-RUNT F1, F2 , and F3 Worst-Fit Idle Ratio-Fit

rithm. We choose these policies from the results of lowest energy
ratio in Sections 4.2.1 and 4.2.2.

Figure 5 shows the simulation results of SI-RUNT and DI-RUNT.
The smaller the ratio of ACET to WCET is, the more DI-RUNT can
reduce energy consumption because small ACET/WCET means a
large amount of dynamic slack and the ratio of slack in the utiliza-
tion of each server is increased, which results in decreasing the fre-
quency. Note that even if the ACET of each task is always equal to
its WCET, DI-RUNT outperforms SI-RUNT except for U = 1. SI-
RUNT determines the frequency of each processor before starting
the system and cannot change the frequency online. On the other
hand, DI-RUNT can make use of dynamic slack, which is produced
in the early completion of tasks, to decrease the frequency. In the
case of U = 1, the system has no idle time, and hence SI-RUNT
consumes the same energy as DI-RUNT(100%).

4.2.4 Task Assignment Policy in SU-RUNT
Figure 6 shows the simulation results of the task assignment pol-

icy with the idle ratio-fit in SU-RUNT. When the level of frequency
becomes more fine-grained, the energy ratio is reduced. In all re-
sults, the worst-fit is the best energy ratio with the idle ratio-fit in
SU-RUNT. This is because the worst-fit assigns tasks to servers
uniformly in SU-RUNT, which is similar with assigning tasks to
processors in partitioned scheduling. In addition, the next-fit is
slightly better than the first- and best-fit for the same reason.

4.2.5 Idle Task Assignment Policy in SU-RUNT

Figure 7 shows the simulation results of the idle task assignment
policy with the worst-fit in SU-RUNT. All idle task assignment
policies are approximately the same energy ratios in all frequency
sets. In frequency set F3, the energy ratio of the idle ratio-fit is
slightly lower than other idle task assignment policies. Therefore,
the idle ratio-fit is the best idle task assignment policy in SU-RUNT
unlike SI-RUNT.

4.2.6 Comparison of DU-RUNT with SU-RUNT
We use the worst-fit and the idle ratio-fit as the task assignment

policy and the idle task assignment policy in DU-RUNT, respec-
tively. This is because the combination of these policies is the best
energy ratio by the simulation results in Sections 4.2.4 and 4.2.5.
Figure 8 shows the simulation results of SU-RUNT and DU-RUNT
with the worst-fit and the idle ratio-fit. Like DI-RUNT in Figure 5,
DU-RUNT can reduce more energy ratio when the ACET of each
task becomes short. Unlike SI-RUNT and DI-RUNT in Figure 5,
the energy ratios of SU-RUNT and DU-RUNT are approximately
the same. The energy ratio of DU-RUNT is higher than that of DI-
RUNT because the processor frequency can be changed uniformly.
These results show that uniform VFS systems do not have many
opportunities to reduce the processor frequency compared to inde-
pendent VFS systems. However, uniform VFS systems do not have
many opportunities to adjust the frequency compared to indepen-
dent VFS systems, and hence the runtime overhead of DU-RUNT
can be small. This is the trade-off between uniform and indepen-
dent VFS systems. Therefore, RUNT supports static/dynamic and
uniform/independent VFS systems.

5. CONCLUSION
This paper evaluated the performance of RUNT, which is an

optimal multiprocessor real-time scheduling algorithm based on
RUN with RT-VFS. Simulation results show that RUNT can reduce
energy consumption with the worst-fit task assignment heuristic,
compared to other task assignment heuristics, in many cases. Inter-
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(d) DI-RUNT in Frequency Set F1
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Figure 4: Idle Task Assignment Policy with Worst-Fit in SI-RUNT
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Figure 5: SI-RUNT and DI-RUNT

estingly, the idle ratio-fit does not reduce energy consumption com-
pared to traditional assignment heuristics in SI-RUNT but reduces
energy consumption the most in all idle task assignment policies
in DI-RUNT. In SU-RUNT and DU-RUNT, the combination of the
worst-fit and the idle ratio-fit is the best energy consumption.

In future work, we will compare RUNT to other RT-SVFS/RT-
DVFS techniques such as TNPT [7, 8] with respect to the energy
consumption and the number of preemptions/migrations. We will
implement RUNT to evaluate energy consumption and overhead in
the RT-Est real-time operating system [5]. We will integrate the
static/dynamic power management techniques such as [10] with
RUNT to reduce energy consumption effectively.
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Figure 7: Idle Task Assignment Policy with Worst-Fit in SU-RUNT
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