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ABSTRACT
The virtualization technology is attractive for modern em-
bedded systems in that it can ideally implement resource
partitioning but also can provide transparent software devel-
opment environments. Although hardware emulation over-
heads for virtualization have been reduced significantly, the
network I/O performance in virtual machine is still not sat-
isfactory. It is very critical to minimize the virtualization
overheads especially in real-time embedded systems, because
the overheads can change the timing behavior of real-time
applications. To resolve this issue, we aim to design and
implement the device driver of the standardized virtual net-
work device, called virtio, over RTEMS real-time operating
system. Our virtio device driver can be portable across dif-
ferent Virtual Machine Monitors (VMMs) because our im-
plementation is compliant with the standard. The measure-
ment results clearly show that our virtio can achieve compa-
rable performance to the virtio implemented in Linux while
reducing memory consumption for network buffers.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
real-time systems and embedded systems

General Terms
Design, Performance

Keywords
Network virtualization, RTEMS, Real-time operating sys-
tem, virtio, Virtualization

1. INTRODUCTION
The virtualization technology enables a single physical ma-
chine to run multiple virtual machines, each of which can
have own operating system and applications over emulated
hardware in an isolated manner [20]. The virtualization has
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been applied to large-scale server systems to securely consol-
idate different services with high system utilization and low
power consumption. As modern complex embedded systems
are also facing the size, weight, and power (SWaP) issues,
researchers are trying to utilize the virtualization technology
for temporal and spatial partitioning [5, 22, 13, 7]. In the
partitioned systems, a partition provides an isolated run-
time environment with respect to processor and memory re-
sources; thus, virtual machines can be exploited to efficiently
implement partitions. Moreover, the virtualization can pro-
vide a transparent and efficient development environment
for embedded software [11]. For example, if the number of
target hardware platforms is smaller than that of software
developers at the development phase, they can work with
virtual machines that emulate the target hardware system.

A drawback of virtualization, however, is the overhead for
hardware emulation, which causes higher software execu-
tion time. Although the emulation overhead for instruction
sets has been significantly reduced, the network I/O perfor-
mance in virtual machine is still far from the ideal perfor-
mance [14]. It is very critical to minimize the virtualization
overheads especially in real-time embedded systems, because
the overheads can increase the worst-case execution time and
jitters, thus changing the timing behavior of real-time ap-
plications. Few approaches to improve the performance of
network I/O virtualization in the context of embedded sys-
tems have been suggested, but these are either proprietary
or hardware-dependent [8, 6].

In order to improve the network I/O performance, usually a
paravirtualized abstraction layer is exposed to the device
driver running in the virtual machine. Then the device
driver explicitly uses this abstraction layer instead of access-
ing the I/O space emulated. This sacrifices the transparency
of whether the software knows it runs on a real machine or
a virtual machine, but can improve the network I/O perfor-
mance avoiding hardware emulation. It is desirable to use
the standardized abstraction layer to guarantee portability
and reliability; otherwise, we would have to modify or newly
implement the device driver for different virtualization en-
vironments and have to manage different versions of device
driver.

In this paper, we aim to design and implement the vir-
tio driver for RTEMS [2], a Real-Time Operating System
(RTOS) used in spacecrafts and satellites. virtio [18] is the



standardized abstraction layer for paravirtualized I/O de-
vices and is supported by several well-known Virtual Ma-
chine Monitors (VMMs), such as KVM [9] and Virtual-
Box [1]. The VMM (aka hypervisor) is the software that
creates and runs the virtual machines. To the best of our
knowledge, this is the first literature that presents detail
design issues of the virtio front-end driver for RTOS. Thus,
our study can provide insight into design choices of virtio for
RTOS. The measurement results clearly show that our vir-
tio can achieve comparable performance to the virtio imple-
mented in Linux. We also demonstrate that our implemen-
tation can reduce memory consumption without sacrificing
the network bandwidth.

The rest of the paper is organized as follows: In Section
2, we give an overview of virtualization and virtio. We also
discuss related work in this section. In Section 3, we describe
our design and implementation of virtio driver for RTEMS.
The performance evaluation is done in Section 4. Finally,
we conclude this paper in Section 5.

2. BACKGROUND
In this section, we give an overview of virtualization and
describe virtio, the virtualization standard for I/O devices.
In addition, we discuss the state-of-the-art for network I/O
virtualization.

2.1 Overview of Virtualization and virtio
The virtualization technology is generally classified into full-
virtualization and paravirtualization. The full-virtualization
allows legacy operating system to run in virtual machine
without any modifications. To do this, VMMs usually per-
form binary translation and emulate every detail of physical
hardware platforms. KVM and VirtualBox are examples
of full-virtualization VMMs. On the other hand, VMMs of
paravirtualization provide guest operating systems with pro-
gramming interfaces, which are similar to the interfaces pro-
vided by hardware platforms but much simpler and lighter.
Thus, the paravirtualization requires modifications of guest
operating systems and can present better performance than
full-virtualization. Xen [3] and XtratuM [13] are examples
of paravirtualization VMMs.

virtio is the standard for virtual I/O devices. It was initially
suggested by IBM [18] and recently became an OASIS stan-
dard [19]. The virtio standard defines paravirtualized in-
terfaces between front-end and back-end drivers as shown in
Fig. 1. The paravirtualized interfaces include two virtqueues
to store send and receive descriptors. Because virtqueues
are located in a shared memory area between front-end and
back-end drivers, the guest operating system and VMM can
directly communicate each other without hardware emula-
tion. Many VMMs, such as KVM, VirtualBox, and Xtra-
tuM, support virtio or its modification. General-purpose
operating systems, such as Linux and Windows, implement
the virtio front-end driver.

2.2 Related Work
There has been significant research on network I/O vir-
tualization. The most of existing investigations are, how-
ever, focusing on the performance optimization for general-
purpose operating systems [21, 16, 23, 17, 4]. Especially,

Figure 1: virtio.

the approaches that require supports from network devices
are not suitable for embedded systems, because embedded
network controllers are not equipped with sufficient hard-
ware resources to implement multiple virtual network de-
vices. Though there is an architectural research on efficient
network I/O virtualization in the context of embedded sys-
tems [6], it also highly depends on the assist from network
controller. The software-based approach for embedded sys-
tem has been studied in a very limited scope without con-
sideration for the standardized interfaces for network I/O
virtualization [8].

Compared to existing research, virtio can be differentiated
in that it does not require hardware support and can be
more portable [18, 19]. The studies for virtio have mainly
dealt with the back-end driver [12, 15]. However, there are
several additional issues for the front-end driver on RTOS
due to inherent structural characteristics of RTOS and the
resource constraint of embedded systems. In this paper, we
focus on the design and implementation issues of the virtio
front-end driver for RTOS.

3. VIRTIO DRIVER FOR RTEMS
In this section, we suggest the design of virtio front-end
driver for RTEMS. Our design can efficiently handle hard-
ware events generated by the back-end driver and mitigate
memory consumption for network buffers. We have imple-
mented the suggested design on the experimental system
that runs RTEMS (version 4.10.2) over the KVM hypervi-
sor as described in Section 4.1, but it is general enough to
apply to other system setups.

3.1 Initialization
The virtio network device is implemented as a PCI device.
Thus, the front-end driver obtains the information of the vir-
tual network device through virtual PCI configuration space.
Once the registers of the virtio device are found in the con-
figuration space, the driver can access the I/O memory of



Figure 2: virtio header in I/O memory.

the virtio device by using the Base Address Register (BAR).
The virtio header shown in Fig. 2 locates in that I/O mem-
ory region and is used for initialization.

Our front-end driver initializes the virtio device through the
virtio header as specified in the standard. For example,
the driver decides the size of the virtqueues by reading the
value in Queue Size region. Then the driver allocates the
virtqueues in the guest memory area and lets the back-end
driver know the base addresses of the virtqueues by writing
these to the Queue Address region. Thus, both front-end
and back-end drivers can directly access the virtqueues by
means of memory referencing without expensive hardware
emulation.

The front-end driver also initializes the function pointers of
the general network driver layer of RTEMS with the actual
network I/O functions implemented by the front-end driver.
For example, the if_start pointer is initialized by the func-
tion that transmits a message through the virtio device.
This function adds a send descriptor to the TX virtqueue
and notifies it to the back-end driver. If the TX virtqueue
is full, this function intermediately queues the descriptor to
the interface queue described in Section 3.2.

3.2 Event Handling
The interrupt handler is responsible for hardware events.
However, since the interrupt handler is expected to finish
immediately relinquishing the CPU resources as soon as pos-
sible, the actual processing of hardware events usually takes
place later. In general-purpose operating systems, such de-
layed event handling is performed by the bottom half that
executes in interrupt context with a lower priority than the
interrupt handler. In regard to network I/O, demultiplex-
ing of incoming messages and handling of acknowledgment
packets are the examples that the bottom half performs.
However, RTOS usually do not implement a framework for
bottom half; thus, we have to use a high-priority thread as
a bottom half. The interrupt handler sends a signal to this
thread to request the actual event handling, where there
is a tradeoff between signaling overhead and size of inter-
rupt handler. If the bottom half thread handles every hard-
ware event aiming for a small interrupt handler, the signal-
ing overhead can increase in proportional to the number of
interrupts. For example, it takes more than 70 µs per in-

Figure 3: Hardware event handling.

terrupt in RTEMS for signaling and scheduling between a
thread and an interrupt handler on our experimental system
described in Section 4.1. On the other hand, if the interrupt
handler takes care of most of events to reduce the signaling
overhead, the system throughput can be degraded, because
interrupt handlers usually disable interrupts during its exe-
cution.

In our design, the interrupt handler is only responsible for
moving the send/receive descriptors between interface queues
and virtqueues when the state of virtqueues changes. Fig. 3
shows the sequence of event handling, where the interface
queues are provided by RTEMS and used to pass network
messages between the device driver and upper-layer proto-
cols. When a hardware interrupt is triggered by the back-
end driver, the interrupt handler first checks if the TX virt-
queue has available slots for more requests, and moves the
send descriptor that is stored in the interface queue waiting
for the TX virtqueue to become available (steps 1 and 2 in
Fig. 3). Then the interrupt handler sees whether the RX
virtqueue has the used descriptors for incoming messages,
and moves these to the interface queue (steps 3 and 4 in
Fig. 3). Finally, the interrupt handler sends a signal to the
bottom half thread (step 5 in Fig. 3) so that the actual pro-
cessing for received messages can be processed later (step 6
in Fig. 3). It is noteworthy that the interrupt handler han-
dles multiple descriptors at a time to reduce the number of
signals. In addition, we suppress the interrupts with the aid
from the back-end driver.

3.3 Network Buffer Allocation
On the sender side, the network messages are intermediately
buffered in the kernel due to the TCP congestion and flow
controls. As the TCP window moves, the buffered messages
are sent as many as the TCP window allows. Thus, a larger
number of buffered messages can easily fill the window size
and can achieve higher bandwidth. On the receiver side,
received messages are also buffered in the kernel until the
destination task becomes ready. A larger memory space to
keep the received messages also can enhance the network
bandwidth, because it increases the advertised window size
in flow control. Although a larger TCP buffer size is benefi-
cial for network bandwidth, the operating system limits the
total size of messages buffered in the kernel to prevent the
messages from exhausting memory resources. However, we
have observed that the default TCP buffer size of 16 KByte



Figure 4: Controlling the number of preallocated
receive buffers.

in RTEMS is not sufficient to fully utilize the bandwidth
provided by Gigabit Ethernet. Therefore, in Section 4.2,
we heuristically search the optimal size of the TCP buffer
that promises high bandwidth without excessively wasting
memory resources.

Moreover, we control the number of preallocated receive
buffers (i.e., mbuf ). The virtio front-end driver is supposed
to preallocate a number of receive buffers that matches the
RX virtqueue, each of which occupies 2 KByte of memory.
The descriptors of the preallocated buffers are enqueued into
the RX virtqueue at the initialization phase so that the back-
end driver can directly place incoming messages in those
buffers. This can improve the network bandwidth by reduc-
ing the number of interrupts, but reserved memory areas can
waste memory resources. Therefore, it is desirable to size
the RX virtqueue based on the throughput of the front and
back-end drivers. If the front-end driver can process more
messages received than the back-end driver, we do not need
a large number of preallocated receive buffers. However, we
need a sufficient number of preallocated receive buffers if the
front-end driver slower than the back-end driver. The back-
end driver of KVM requires 256 preallocated receive buffers,
but we have discovered that 256 buffers are excessively large
for Gigabit Ethernet as discussed in Section 4.2.

Fig. 4 shows how we control the number of preallocated re-
ceive buffers. The typical RX virtqueue has the used ring
and available ring areas, which store descriptors for used
and unused preallocated buffers, respectively. Our front-end
driver introduces the empty ring area to the RX virtqueue
in order to limit the number of preallocated buffers. At the
initialization phase, we fill the descriptors with preallocated
buffers until desc_head_idx reaches to the threshold defined
as sizeof(virtqueue)−sizeof(empty ring). Then, whenever
the interrupt handler is invoked, it enqueues the descriptors
of new preallocated buffers as many as vring_used.idx −
used_cons_idx (i.e., size of used ring). The descriptors in
the used ring are retrieved by the interrupt handler as men-
tioned in Section 3.2. Thus, the size of empty ring is con-
stant. We show the detail analysis of tradeoff between the
RX virtqueue size and network bandwidth in Section 4.2.

4. PERFORMANCE EVALUATION
In this section, we analyze the performance of our design
suggested in the previous section. First, we measure the im-
pact of network buffer size on network bandwidth. Then, we

Figure 5: Experimental System Setup.

compare the bandwidth and latency of our implementation
with those of Linux.

4.1 Experimental System Setup
We implemented the suggested design in RTEMS version
4.10.2. The mbuf space was configured in huge mode so that
it is capable of preallocating 256 mbufs for the RX virtqueue.
We measured the performance of the virtio on two nodes
shown in Figure 5. The nodes were equipped with Intel i5
and i3 processors, respectively. The Linux version 3.13.0 was
installed to the former, and we installed the Linux version
3.16.6 on the other node. The two nodes are connected
directly through Gigabit Ethernet.

We ran the ttcp benchmarking tool to measure the network
bandwidth with 1448 Byte messages, which is the maximum
user message size that can fit into one TCP segment over
Ethernet. We separately measured the send bandwidth and
receive bandwidth of our virtio by running a virtual machine
only on the i5 node with KVM. We reported the bandwidth
on the i3 node that ran Linux without virtualization. The
intention behind such experimental setup is to measure the
performance with the real timer because the virtual timer
in virtual machines is not accurate [10].

4.2 Impact of Network Buffer Size
As mentioned in Section 3.3, we analyzed the impact of net-
work buffer size on network bandwidth. Fig. 6 shows the
variation of send bandwidth with different sizes of the TCP
buffer. We can observe that the bandwidth increases as
the kernel buffer size increases. However, the bandwidth
does not increase anymore after 68 KByte of TCP buffer
size, because 68 KByte is sufficient to fill the network pipe
of Gigabit Ethernet. Fig. 7 shows the experimental results
for receive bandwidth, which also suggests 68 KByte as the
minimum buffer size for the maximum receive bandwidth.
Thus, we increased the TCP buffer size from 16 KByte to
68 KByte for our virtio.

We also measured the network bandwidth varying the size of
the RX virtqueue as shown in Fig. 8. This figure shows that
the network bandwidth increases only until the virtqueue
size becomes 8. Thus, we do not need more than 8 pre-
allocated buffers for Gigabit Ethernet though the default
virtqueue size is 256.

In summary, we increased the in-kernel send and receive
TCP buffer sizes from 16 KByte to 68 KByte, which requires
additional memory resources of 104 KByte (= (68 KByte −
16 KByte)× 2) for higher network bandwidth. However, we
reduced the number of preallocated receive buffers from 256



Figure 6: Tradeoff between TCP buffer size and send
bandwidth.

Figure 7: Tradeoff between TCP buffer size and re-
ceive bandwidth.

to 8 without sacrificing the network bandwidth, which saved
496 KByte (= 256 × 2 KByte − 8 × 2 KByte) of memory,
where the size of mbuf is 2 KByte as mentioned in Section
3.3. Thus, we saved 392 KByte (= 496 KByte−104 KByte)
in total while achieving the maximum available bandwidth
over Gigabit Ethernet.

4.3 Comparison with Linux
We compared the performance of RTEMS-virtio with that of
Linux-virtio to see if our virtio can achieve comparable per-
formance to the optimized one for general-purpose operating
system. As shown in Fig. 9, the unidirectional bandwidth
of RTEMS-virtio is almost the same with that of Linux-
virtio, which is near the maximum bandwidth the physical
hardware can provide in one direction. Thus, these results
show that our implementation can provide quite reasonable
performance with respect to bandwidth.

We also measured the round-trip latency in a way that two
nodes send and receive the same size message in a ping-
pong manner repeatedly for a given number of iterations.
We reported the average, maximum, and minimum laten-
cies for 10,000 iterations. Fig. 10 shows the measurement
results for 1 Byte and 1448 Byte messages. As we can see in
the figure, the average and minimum latencies of RTEMS-

Figure 8: Tradeoff between RX virtqueue size and
receive bandwidth.

Figure 9: Comparison of bandwidth.

virtio are comparable to those of Linux-virtio. However, the
maximum latency of RTEMS-virtio is significantly smaller
than that of Linux-virtio (the y-axis is a log scale) meaning
RTEMS-virtio has a lower jitter. We always observed the
maximum latency in the first iteration of every measure-
ment for both RTEMS and Linux. Thus, we presume that
the lower maximum latency of RTMES is due to its smaller
working set.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have suggested the design of the virtio
front-end driver for RTEMS. The suggested device driver
can be portable across different Virtual Machine Monitors
(VMMs) because our implementation is compliant with the
virtio standard. The suggested design can efficiently han-
dle hardware events generated by the back-end driver and
can reduce memory consumption for network buffers, while
achieving the maximum available network bandwidth over
Gigabit Ethernet. The measurement results have showed
that our implementation can save 392 KByte of memory
and can achieve comparable performance to the virtio im-
plemented in Linux. Our implementation also has a smaller
jitter of latency than Linux thanks to smaller working set of
RTEMS. In conclusion, this study can provide insights into
virtio from the viewpoint of the RTOS. Furthermore, the



Figure 10: Comparison of latency.

discussions in this paper can be extended to apply to other
RTOS running in virtual machine to improve the network
performance and portability.

As future work, we plan to measure the performance of our
virtio on a different VMM, such as VirtualBox, to show that
our implementation is portable across different VMMs. In
addition, we intend to extend our design for dynamic net-
work buffer sizing and measure the performance on real-time
Ethernet, such as AVB.
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