
A Methodology for Modeling and Verification of
Cyber-Physical Systems based on Logic Programming∗

Neda Saeedloei
University of Minnesota Duluth

nsaeedlo@d.umn.edu

Gopal Gupta
University of Texas at Dallas

gupta@utdallas.edu

ABSTRACT
Model-based design and development has been applied suc-
cessfully to design and development of complex systems, in-
cluding safety critical systems. It is also a promising ap-
proach for designing cyber-physical systems (CPSs). In this
paper we propose a methodology for model-based design of
CPSs where, logic programming extended with coinduction,
constraints over reals, and coroutining is used for modeling
CPSs. This logic programming realization can be used for
verifying interesting properties as well as generating imple-
mentations of CPSs. We use the reactor temperature control
system as a running example to illustrate the various steps
of our methodology. We present a model of the system using
our framework and verify the safety property of the system.
We also show how parametric analysis can be performed in
our framework.

1. INTRODUCTION
Model-based design has been used as an effective approach

for design, analysis, and verification of complex systems.
The process of designing and developing a complex system
can greatly benefit from building a formal model, i.e., one
that is expressed in a formal language with well-defined se-
mantics. The most important advantage is that, during the
process of modeling, one obtains a deep insight into how the
physical realisation of the system would behave in the real
world.

Once a formal model is built, it can be used as a high-level
“prototype”: it can be experimented with and iteratively
improved. (The cost of doing so is very significantly lower
than that of experimenting with and improving a real imple-
mentation of the system.) Depending on how the model is
constructed, such experimentation usually takes the form of
either formally deriving logical conclusions, or of automatic

∗A preliminary version of this paper was published at ACM
SIGBED Review - Work-in-Progress (WiP) Session of the
2nd International Conference on Cyber Physical Systems,
2011.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

c© 2016 Copyright held by the owner/author(s).

simulation. The overall purpose is to obtain a validated
model, i.e., one whose “behavior” does indeed comply with
the desired behavior of the modeled system. The insight
mentioned in the preceding paragraph arises out of the ne-
cessity of formulating very clear criteria for (or examples of)
desirable and undesirable behavior.

Cyper-physical systems combine computational and phys-
ical elements in tight coordination. In addition to discrete
computation, the presence of physical elements require CPSs
to handle continuous quantities (e.g., time, distance, acceler-
ation, temperature, etc.). Unlike embedded systems, CPSs
are not stand-alone systems. Rather, they are a network of
interacting and concurrently executing elements that have
physical inputs and outputs. In addition, CPSs could possi-
bly run forever [10, 18]. We consider communicating hybrid
automata as the underlying model of CPSs and propose a
framework based on logic programming (LP) extended with
constraints, coinduction and coroutining for modeling them.

Recently, the authors have developed coinductive constraint
logic programming (co-CLP) [28] as a combination of two
powerful programming paradigms: constraint logic program-
ming (CLP) [16, 15] and coinductive logic programming [8,
31, 30]. Co-CLP is a programming language that is suit-
able for modeling infinite (rational) behaviors of infinite ob-
jects with constraints imposed on them. In this paper we
extend the efforts of Gupta et.al [9], and employ the prin-
ciples of co-CLP [28] to propose a framework for modeling
hybrid automata [14]. Then, we use the coroutining fea-
ture of logic programming to model communication among
hybrid automata. Cyber-physical systems, modeled as com-
municating hybrid automata, are thus represented as corou-
tined coinductive constraint logic programs which are sub-
sequently used to verify properties of the systems relating
to safety, liveness and utility. Thus, our approach is based
on using logic programming for modeling computations, con-
straint logic programming for modeling continuous physical
quantities, coinduction for modeling possibly perpetual exe-
cutions and coroutining for modeling concurrency in CPSs.
What is noteworthy in our realization of CPSs is that, in
contrast to other approaches, we do not discretize the phys-
ical quantities involved. Rather these physical quantities are
assumed to range over continuous real values, with relation-
ship between them modeled as constraints over reals.

We use the reactor temperature control system [33] as a
running example to illustrate various aspects of modeling
CPSs. The reactor temperature control system is a tradi-
tional example of a cyber-physical system which is also a
safety critical system: it is, therefore, very important to ob-

tain an accurate model of the system. Such a model is a
timed model, as cyber-physical systems operate under real-
time constraints. Our focus is to model the behavior of the
system related to time and verify real-time properties.

Our framework for modeling and verifying CPSs provides
diagnostic information that can be used in design of the sys-
tem. For instance, if our system fails to satisfy the safety
requirement, it will generate a time trace of events as a
proof of violation of the safety property. Another interest-
ing feature of our framework is its ability to perform precise
parametric analysis. The goal of parametric analysis is to
determine necessary and sufficient constraints on parame-
ters under which correctness requirements are met. Using
our method we were able to compute exact bounds on pa-
rameters of the reactor temperature control system, thereby
improving on the results of Henzinger and Ho [14].

In our previous work [27], we proposed a logic-based frame-
work for modeling CPSs without presenting the necessary
mathematical foundations for our approach. Having devel-
oped the required foundations by combining constraint logic
programming and coinduction [28], in this paper we present
the complete account of our approach for logic programming-
based modeling of CPSs, for the first time.

We first present an overview of coinductive constraint logic
programming. For more details on co-CLP, the reader is
referred to [28].

1.1 co-CLP
Coinductive constraint logic programming [28] is a paradigm

that combines constraint logic programming (CLP) [16, 15]
and coinductive logic programming [8, 31, 30].

Constraint logic programming is a natural and expressive
paradigm which combines two declarative paradigms: logic
programming [20] and constraint solving. CLP’s declarative
semantics is defined in terms of a least fixed-point, i.e., it is
inductive. Therefore, it cannot be directly used for reason-
ing about infinite objects and their properties; one needs to
resort to greatest fixed-point semantics for that purpose.

Coinductive logic programming is an extension of logic
programming which provides an elegant technique for finitely
reasoning about infinite (rational) structures and their prop-
erties [8, 31, 30].

Coinductive LP does not handle constraints, while CLP’s
declarative and operational semantics is inadequate for var-
ious programming techniques which involve infinite compu-
tations besides constraint solving. Such techniques have in-
teresting applications for example in model checking and
in verifying real-time systems, hybrid systems and cyber-
physical systems [18, 11]. Coinductive constraint logic pro-
gramming [28] is a paradigm that bridges this gap. It allows
a special class of formulae (constraints) to be combined with
traditional coinductive logic programming. We next present
a brief overview of co-CLP.

Given a signature Σ, a Σ-structure D consists of a set
D and an assignment of functions and relations on D to
the symbols of Σ which respects the arities of the symbols.
It is assumed that Σ contains the binary predicate symbol
=, interpreted as identity in D, and a special binary rela-
tion =u which is used for unification. ΣD is an extension
of Σ in which there is a constant for every element of D.
Furthermore, ΣDP is the extension of ΣD with the set of all
user-defined functions and predicate symbols in program P .
The set of predicate symbols defined by Σ is denoted by Πc

and the set of predicate symbols defined by program P is
denoted by ΠP . Πc and ΠP are disjoint.

A term is a tree where every leaf node is labeled with a
variable or with some f/0 (constant) and every inner node
with n children, n > 0, is labeled with some f/n. We write
f(t1, . . . , tn) for the term with root f and direct subtrees
t1, . . . , tn. A term t is called finite if all paths in the tree t
are finite, otherwise it is infinite. A term (tree) is rational if
it only contains finitely many different subterms (subtrees).
Terms that are built upon variables and function symbols in
ΣD are denoted by TD.

An atom is a tree p(t1, . . . , tn), where p ∈ Πp and t1, . . . , tn
are rational terms. A primitive constraint is an expression
of the form p(t1, . . . , tn) where t1, . . . , tn are terms from TD

and p is a predicate symbol from Πc. In other words, prim-
itive constraints only contain functors from Σ. This ensures
that the constraint solver will only deal with primitive con-
straints which it can solve. A constraint is a first-order for-
mula built from primitive constraints.

A coinductive constraint logic program is composed of a
collection of clauses of the form: a : −c, b1, . . . , bn. in which
a, and bi,≤ i ≤ n, are user-defined atoms, while c is an
arbitrary conjunction of constraints.

Consider the definition of a stream (list) of numbers given
as program P1 below:

stream([H1, H2 | T]) :-
number(H1), number(H2), {H2-H1 >= 3}, stream(T).

number(0).

number(s(N)) :- number(N).

In standard CLP the query ?- stream(X). fails, since the
model of P1 does not contain any instances of stream/1.
However, the query ?- stream(X). under the co-CLP inter-
pretation of P1 should produce all infinite (rational) streams
such as X = [1, 5 | X], X = [2, 6, 3, 7 | X] , etc., as
answers. The model of P1 does contain instances of stream/1
(but proofs may be of infinite length).

Co-CLP allows programmers to manipulate infinite (ra-
tional) structures in the presence of constraints. As a re-
sult, unification must be extended and the “occurs check”
removed: unification equations such as X = [1 | X] are al-
lowed in co-CLP; in fact, such equations will be used to
represent infinite (rational) structures in a finite manner.

From the semantic point of view, predicates and functions
in Σ and constraints are interpreted using the predefined
interpretation, i.e., the domain of computation D. In par-
ticular, a constraint c is solvable if D |= ∃c, where |= is the
standard entailment relation. A solution θ for c is a mapping
from the variables in c to D, such that D |= cθ. User-defined
functions and predicates will be given the standard interpre-
tation in the Herbrand universe and the Herbrand base [20].

From the procedural point of view, execution of a coinduc-
tive constraint logic program requires the use of constraint
solvers capable of deciding the solvability of each possible
constraint formula1. Resolution is extended in order to em-
bed calls to the constraint solvers. The operational seman-
tics of co-CLP also relies on the coinductive hypothesis rule

1It is common for the programmer to identify only spe-
cial types of constraint formulae, the admissible constraints;
these are the only constraints which are admitted during the
execution of a program. This is because it is not possible to
devise a constraint solver that will solve any arbitrary set of
constraints.

and systematically computes elements of the greatest fixed
point (gfp) of a program via backtracking. The coinductive
hypothesis rule states that during execution, if the current
resolvent R contains a call G′ that unifies with an ancestor
call G and the set of accumulated constraints are satisfied,
then the call G′ succeeds; the new resolvent is R′θ where
θ = mgu(G,G′)2 and R′ is obtained by deleting G′ from
R. If ?−c1, g1, . . . , gn. is a goal, and p: −c2, b1, . . . , bk. is a
clause in the program, then the resolvent of the goal w.r.t.
the given clause is

?−(c1, c2, g1 =u p), b1, . . . , bk, g2, . . . , gn.

as long as D |= E(c1 ∧ c2) where E is the current system of
equations (substitution) which includes unification of argu-
ments of g1 and p. E(c1 ∧ c2) is the result of applying the
substitution E on c1 ∧ c2. The constraint solver is used to
test the validity of the condition on the constraints.

Regular constraint logic programming execution extended
with the coinductive hypothesis rule is termed co-constraint
logic programming (or co-CLP)[28]. The coinductive hy-
pothesis rule works for only those infinite proofs that are
regular (or rational), i.e., infinite behavior is obtained by a
finite number of finite behaviors interleaved an infinite num-
ber of times. Even with the restriction to rational proofs,
there are many applications of co-CLP. These include model
checking, modeling ω-automata, etc.

2. A LP-BASED METHODOLOGY
FOR MODELING CPSS

Cyber-physical systems have typically the following four
characteristics [10, 18]: (i) they perform discrete computa-
tions, (ii) they deal with continuous quantities, (iii) they are
concurrent, and (iv) they (possibly) run forever. Using the
reactor temperature control system as an illustration, we
next discuss the steps involved in modeling CPSs, and show
how these characteristics are handled in our framework. We
use the reactor temperature control system to illustrate var-
ious aspects of our framework.

The reactor temperature control system consists of a re-
actor core and two control rods whose task is to keep the
temperature of the reactor core between two thresholds: θm
and θM . If the temperature reaches θM , then it should be
decreased by introducing one of the control rods into the re-
actor core. Figure 1 shows a model of the system based on
hybrid automata. The hybrid automaton in left hand side
models the core; while, the two hybrid automata in right
hand side model two rods. In this model, θ represents the
temperature, variables r1 and r2 measure the time that has
elapsed since Rod1 and Rod2 were removed from the reactor
core, respectively. Variables c1 and c2 are used to model the
two clocks of the core. Initially θ is θm and both control rods
are outside of the reactor core. This corresponds to state
no rod, in which θ rises according to the differential equa-
tion θ̇ = θ

10
− 50. In states rod1 and rod2, the temperature

decreases according to the differential equations θ̇ = θ
10
−56

and θ̇ = θ
10
− 60, respectively. A control rod may be used

again, if T ≥ 0 units of time have elapsed since it was last
removed. If θ cannot be decreased because no control rod is
available, then shut down of the reactor is necessary. The
goal of the system is to calculate parameter T such that the

2mgu is a shorthand for “most general unifier”.

system is never shut down.
Obtaining accurate requirements of the system: The start-

ing point in building a model of a system is the requirements.
The requirements are usually expressed either in natural lan-
guage or in some formal language.

It is a fact of life that complete requirements of systems
often do not exist or, if they do exist, are incomplete, am-
biguous or very low level. As a result, some parameters
and functionalities might be missing and must be guessed.
When dealing with CPSs, such incomplete requirements are
inadequate, as CPSs are often safety-critical systems and
unspecified behaviors and missing cases cannot be tolerated.
Ambiguous requirements are also of limited use, as they are
very hard to analyze and model. Finally, very low level
requirements specifications are difficult to understand and
reason about and hardly useful for modeling purposes. It is
exactly the unavailability of satisfactory requirements speci-
fications that makes modeling such an important step in the
process of constructing a system.

In our framework, we assume that the requirements of the
system are specified by hybrid automata. Hybrid automata
have well-defined semantics and provide a high level, un-
ambiguous framework for specifying systems requirements.
Moreover, semantics of hybrid automata are defined over
real-time state sequences, which makes them ideal for de-
scribing CPSs.

Modeling the environment and deciding the domains of
physical quantities: Analyzing and modeling the environ-
ment in which a cyber-physical system operates is the next
step in building a formal model of the system. This phase
is particularly important, as CPSs constantly interact with
their environment. This interaction is through feedback
loops where, physical processes influence computations, and
vice versa. The task of modeling the environment includes
first, identifying such physical processes and second, speci-
fying them formally.

The physical processes that are involved in CPSs are con-
tinuous in nature. Modeling such quantities as discrete vari-
ables could simplify the models, but it could adversely affect
the accuracy of the model, and hence the correctness of the
system. For instance, modeling time as a discrete quantity
can result in a useful abstraction of the system and possibly
a simpler model, one which can be verified reasonably fast
using model checkers. But our studies show that a model
based on the discrete model of time could behave differently
than the one built based on the continuous model of time
[25]. While time is just one example of a naturally contin-
uous quantity, CPSs often deal with other such quantities,
e.g., pressure, temperature, density, weight, etc. Modeling
time and other physical quantities has been reported as one
of the challenges in modeling CPSs [19, 11].

Coming back to our example of the reactor temperature
control system, calculating the temperature is clearly central
to the design and modeling of the system. Therefore, it is
necessary to identify all the quantities that influence it. It is
also important to model such quantities as continuous quan-
tities, rather than discretizing them. In the reactor system
the temperature is specified using differential equations over
time. Therefore, “time” is the only quantity that influences
the temperature.

In our framework based on constraint logic programming
over reals (CLP(R)) [17] we model all physical continuous
quantities as real-value variables and the relation between

Figure 1: The Reactor Temperature Control System

them as constraints over reals. These variables take part in
the internal computations, thereby updating the dynamics
of the system. As such, these variables also represent the
externally visible behavior of the system.

Modeling time: In a real-time or a cyber-physical system,
the correctness of the system depends on not only the ac-
tions that the system takes, but also the times at which
the actions are taken. Thus, the model of a cyber-physical
system is a timed model and the properties that the sys-
tem must satisfy are often behavioral properties with timing
constraints. Therefore, being able to model continuous time
and reason about it is an important step in the process of
modeling CPSs. Our framework based on communicating
hybrid automata uses real-valued clocks for modeling time,
where timing requirements are expressed as constraints on
clocks. Therefore, time is modeled as a continuous quantity
and timing requirements are modeled as constraints over re-
als. Moreover, the following capabilities which are necessary
for proper modeling of time are supported:

• modeling passage of time,

• remembering the time at which a particular event takes
place,

• ability to measure the time that has elapsed since a
particular event takes place,

• ability to specify the time requirements,

• providing the means to formally prove the satisfiability
of timing requirements.

Later in this section we discuss our techniques for modeling
these capabilities, in details.

Building the formal model of the system: A model of a
cyber-physical system usually consists of two or more in-
tegrated sub-models: the model of the system to be con-
structed, and the model(s) of the relevant physical pro-
cess(es). The sub-models affect each other through closed
feedback loops: the physical processes influence the com-
putations, and the results of the computations impact the
physical processes.

Having (1) identified and modeled the environment, and
(2) decided how to model time (and other physical quanti-
ties), we must now formally describe how the dynamics of
the system change.

Cyber-physical systems are often very complex and anal-
ysis of their dynamics can be difficult. Apart from that,
there are also difficulties specific to the task of building a
model. First, the models can be only as good as the tools
(and their underlying semantics) with which they are built:
using tools that lack formal semantics [6, 3, 24] may result in
models that are erroneous, ambiguous, incomplete, or non-
deterministic. Second, different components of the system
are often modeled with different models of computation: it
is not always clear how to compose these into a single model
[5] without losing correctness or introducing ambiguity.

Encoding hybrid automata as co-CLP programs: A hy-
brid automaton [1] is a tuple H = 〈Σ, Q, V, C,E,A, I, Init〉,
where

• Σ is a finite alphabet or synchronization labels;

• Q is the (finite) set of locations;

• V is a finite set of real-valued variables. A valuation ν
for the variables is a function that assigns a real-value
ν(x) ∈ R to each variable x ∈ V . We write V for the
set of valuations;

• C ⊆ V is a finite set of real-valued variables, called
clocks;

• E ⊆ Q × Σ × Q × φ(V) × 2C gives the set of tran-
sitions. An edge 〈q, a, q′, δ, γ〉 represents a transition
from location q to location q′ on synchronization label
a. The transition is guarded by conjunctions of linear
constraints δ; the set γ ⊆ C gives the clocks to be reset
with this transition. The variables in δ range over V ;

• A is a labelling function that assigns to each location
q ∈ Q a set of flow conditions or evolution laws, which
are specified as differential equations. The free vari-
ables of A range over variables in V and their first
derivatives;

• I is a labeling function that assigns to each location
q ∈ Q an invariant I(q) ⊆ V. The free variables of I
range over variables in V ;

• Init is a function that assigns to each location a set of
initial conditions. An automaton can start in a partic-
ular location q only if Init(q) holds.

Figure 2: A Typical Thermostat

A state, s, is a pair (q, ν), where q is a location in Q and ν is
a valuation in V. A state of a hybrid automaton can change
in two ways:

• By a discrete and instantaneous transition that changes
both the control location and the values of the vari-
ables according to the transition relation;

• By a time delay that changes only the values of the
variables according to the evolution laws of the current
location.

The automaton may stay in a location as long as the location
invariant is true; that is, some discrete transition must be
taken before the invariant becomes false. Figure 2 shows a
typical thermostat modeled as a hybrid automaton.

Our approach for modeling hybrid automata is a direct
translation of transitions of hybrid automata to logic pro-
gramming rules, where each rule is extended with a set of
constraints. The general method of converting hybrid au-
tomata to coinductive constraint logic programs over reals
is presented next. The hybrid automaton of Figure 2 is used
to demonstrate the modeling technique. We define the fol-
lowing predicates to represent a hybrid automaton:

• invariant/2 ⊂ Q× I, which associates a set of invari-
ants with states of a hybrid automaton;

• evolution/2 ⊂ Q × A, which associates a set of evo-
lution laws with states of a hybrid automaton;

• transitions/5 ⊂ Q×Σ×Q×∆×Γ, which represents
the transitions of the hybrid automaton, where ∆ is a
list of linear constraints in φ(V) and Γ is a list of clock
resets;

• init/2 ⊂ Q × Init, which associates a set of initial
conditions with states of a hybrid automaton.

For instance, the hybrid automaton of Figure 2 is specified
by the following logic programming facts:

invariant(on, 1 =< x =< 3).
invariant(off, 1 =< x =< 3).

evolution(on, x’ = -x+5).
evolution(off, x’ = -x).

transition(on, turn-off, off, [x=3], [c:=0]).
transition(off, turn-on, on, [x=1], [c:=0]).

init(on, [x=1]).
init(off, [x=3]).

Given this representation of a hybrid automaton, the method,
first, generates a set of CLP(R) rules (one rule per transi-
tion of the automaton), where each rule is extended with
constraints. Table 1 shows our notations for translating a
hybrid automaton to a logic program. A pair of arguments

location q Q
state variables x1, ..., xn X1, ..., Xn
clocks c1, ..., cm C1, ..., Cm
value of variable xk
before and after transitions, k = 1, ..., n Xik, Xok
last (wall clock) time ck was reset Cik
value of ck after transitions, k = 1, ...,m Cok
current time W
resetting clock ck, k = 1, ...,m Cok = W
clock constraint ck ∼ δ W − Cik ∼ δ

Table 1: Translating Hybrid Automata to CLP

Xi and Xo is used for every variable x of the automaton: Xi

represents the value of x before the transition, and Xo is the
value of x after the transition. The clock c is modeled using
a pair of arguments: Ci and Co: Ci is used to remember
the last (wall clock) time c was reset, while Co is used to
pass on this clock’s value to the next transition. Resetting
c represented by c := 0, is modeled by the constraint Co =

W, where W is the current wall clock time. A clock constraint
of the form c ∼ a, in which ∼∈ {=, <,>,≤,≥} and a is a
constant, is modeled by the constraint W - Ci ∼ a, where
Ci is the last (wall clock) time c was reset.

We assume the existence of a solver for differential equa-
tions: given a linear differential equation and an initial con-
dition the solver finds the solution. Then, the predicate
clp/1 translates the resulted solution into a CLP constraint
in a straightforward way.
trans(Q1,Σ, Q2,W, [Xi1, ..., Xin, Ci1, ..., Cim],

[Xo1, ..., Xon, Co1, ..., Com]) :-

transition(Q1,Σ, Q2,W, [X1 = v1, ..., Xk = vk],
[C1 := 0, ..., Cj := 0]),

evolution(Q1, E1),

init(Q1, Init1),
solution(E1, Init1, S1),

clp(S1),

invariant(Q1, I1),
{I1{Xi1/x1, ..., Xin/xn}},
{Xo1 = v1, ..., Xok = vk, Xok+1 = Xik+1, ..., Xon = Xin},
{Co1 = W, ..., Coj = W,Coj+1 = Cij+1, ..., Com = Cim}.
The body of each rule for trans/6 is composed of invariants,
evolution laws, assignments and guards, which are specified
using CLP(R) constraints. The CLP(R) constraints are en-
closed within the curly braces, as it is the convention in most
Prolog systems. The first four arguments of trans/6 are the
current state, the input or the synchronization label, the re-
sulting state, and the wall clock time, respectively. The last
two arguments are the value of variables before and after
the transition.

Using the definition of trans/6 above, the transitions of
the automaton in Figure 2 are generated as follows. The two
equations 5− 3/et and 3/et are solutions to the differential
equations in states on and off, respectively.

trans(on, turn_off, off, W, [Xi, Ci], [Xo, Co]) :-
{5 - 3/exp(e, (W-Ci)) = 3, Xo = 3, Co = W}.

trans(off, turn_on, on, W, [Xi, Ci], [Xo, Co]) :-
{3/exp(e, (W-Ci)) = 1, Xo = 1, Co = W}.

Note that the set of constraints used for modeling clocks
along with constraints corresponding to the invariants, evo-
lution laws, and guards on the transitions are directly han-

dled in CLP(R)3. Therefore, transitions of hybrid automata
are modeled as logic programs [20, 32], physical quantities
are represented as continuous quantities (i.e., not discretized)
and the constraints imposed on them by transitions are mod-
eled with constraint logic programming over reals [16].

Using this approach, the set of transition rules for core,
Rod1 and Rod2 of the reactor temperature control system
can be obtained similarly:

rod1(out1,add1, in1, W,[Ci],[Co]) :- {W-Ci>=T, Co=Ci}.
rod1(in1, remove1,out1,W,[Ci],[Co]) :- {Co=W}.

rod2(out2,add2, in2, W,[Ci],[Co]) :- {W-Ci>=T, Co=Ci}.
rod2(in2, remove2,out2,W,[Ci],[Co]) :- {Co=W}.

core(norod,add1,rod1,W,[Pi,Ci1,Ci2],[Po,Co1,Co2],F) :-
(F==1 -> Ci=Ci1; Ci=Ci2),
{ Pi<550, 10*exp(e, (W-Ci)/10)=50,
Po=550, Co1=W, Co2=Ci2 }.

core(rod1,remove1,norod,W,[Pi,Ci1,Ci2],[Po,Co1,Co2],F) :-
{ Pi>510, 10*exp(e, (W-Ci1)/10)=50,

Po=510, Co1=W, Co2=Ci2 }.

core(norod,add2,rod2,W,[Pi,Ci1,Ci2],[Po,Co1,Co2],F) :-
(F==1 -> Ci=Ci1; Ci=Ci2),
{ Pi<550, 10*exp(e, (W-Ci)/10)=50,

Po=550, Co1=Ci1, Co2=W }.

core(rod2,remove2,norod,W,[Pi,Ci1,Ci2],[Po,Co1,Co2],F) :-
{ Pi>510, 50*exp(e, (W-Ci2)/10)=90,

Po=510, Co1=Ci1, Co2=W }.

core(norod,_,shutdown,W,[Pi,Ci1,Ci2],[Po,Co1,Co2],F) :-
(F==1 -> Ci=Ci1; Ci=Ci2),
{ Pi<550, 10*exp(e, (W-Ci)/10)=50,

Po=550, Co1=Ci1, Co2=Ci2 }.

Having modeled the transitions of an automaton as a CLP(R)
program, the second step of our framework generates a coin-
ductive predicate4 that runs the automaton by calling tran-
sition rules of the automaton repeatedly, and advancing the
wall clock time after each transition. If a system is composed
of more than one automaton, the concurrent execution of all
hybrid automata is modeled by allowing coroutining (real-
ized via delay declarations of Prolog [32] in our subsequent
implementation) within logic programming computations.

The coroutining facility of LP (in particular Prolog) is
realized via built-in predicates such as freeze, when, etc.
Coroutining deals with having Prolog goals scheduled for
execution as soon as some conditions are fulfilled. In Pro-
log the most commonly used condition is the instantiation
(binding) of a variable. Scheduling a goal to be executed
immediately after a variable is bound can be used to model
the transitions taken on synchronization symbols.

For instance, the coroutined coinductive predicate run-
core/7 which realizes the core automaton sends synchro-
nization symbols to runrod1/6 and runrod2/6. The corou-
tined coinductive predicates runrod1/6 and runrod2/6 will
postpone running rod1 and rod2 until the synchronization
symbols sent by runcore/7 are received by them.

:- coinductive runcore(+, +, +, -, -, -, -).
runcore(Si, Pi, Fi, X, W, Ci1, Ci2) :-

(H=add1; H=remove1; H=add2; H=remove2; H=shutdown),
{ W2>W },

3In general, one must use an appropriate solver in order
to solve the set of constraints; in our framework we use
CLP(R).
4The outline of this system is presented in [26].

freeze(X, runcore(So, Po, Fo, Xs, W2, Co1, Co2)),
core(Si, H, So, W, [Pi,Ci1,Ci2], [Po,Co1,Co2], Fi),
(
(H=add1; H=remove1)

->
Fo=1

;
Fo=2),

(
(H=add1; H=remove1; H=add2; H=remove2)

->
X = [(H, W)| Xs]

;
X = [(H, W)]).

:- coinductive runrod1(+, +, +, -, -, -).
runrod1(Si1, Si2, T, [(H, W)| Xs], Ci1, Ci2) :-
(
(H=add1; H=remove1)

->
(H=add1
->

freeze(Xs, runrod1(So1, Si2, T, Xs, Co1, Ci2))
;

freeze(Xs, runrod1(So1, Si2, T, Xs, Co1, Ci2)
;runrod2(So1, Si2, T, Xs, Co1, Ci2))

),
rod1(Si1, H, So1, W, [Ci1], [Co1])

;
H=shutdown, { W-Ci1<T, W-Ci2<T}).

:- coinductive runrod2(+, +, +, -, -, -).
runrod2(Si1, Si2, T, [(H, W)| Xs], Ci1, Ci2) :-
(
(H=add2; H=remove2)

->
(H=add2
->

freeze(Xs, runrod2(Si1, So2, T, Xs, Ci1, Co2))
;

freeze(Xs, runrod1(Si1, So2, T, Xs, Ci1, Co2)
;runrod2(Si1, So2, T, Xs, Ci1, Co2))

),
rod2(Si2, H, So2, W, [Ci2], [Co2])

;
H=shutdown, { W-Ci1<T, W-Ci2<T}).

Note that runcore/7 is declared as coinductive only on the
first three arguments [26]; i.e., time will be ignored to check if
runcore/7 is cyclical. Similarly, the coinductive termination
of runrod1/6 and runrod2/6 will depend on the first three
non-time-related arguments.

Finally the main/3 predicate represents the concurrent ex-
ecution of all the components of the system. The first argu-
ment of main/3 is the list of synchronization symbols along
with their time-stamps, which is generated by the core and
sent to two rods (non-deterministically). The time-stamps
are not concrete, but related by set of constraints. There-
fore, the solutions that are obtained by our system are more
general than what one might expect. The second argument
is the initial wall clock time, and T is the parameter of the
system explained earlier. The condition that both rods are
available initially, is specified using the set of constraints {W
- Tr1 = T, W - Tr2 = T}, where Tr1 and Tr2 are clocks of
Rod1 and Rod2, respectively. Similarly, Tc1 and Tc2 are the
two clocks of the reactor core.

main(S, W, T) :- { W - Tr1 = T, W - Tr2 = T },
(runrod1(s0, s0, T, S, Tr1, Tr2)
;runrod2(s0, s0, T, S, Tr1, Tr2)),
runcore(s0, 510, 1, S, W, Tc1, Tc2).

Verifying desired properties and parametric analysis: Once
a model of a system is obtained, the next step is to formally

prove that the model satisfies properties of interest. For
cyber-physical systems, these properties are often behavioral
properties which are related to time (e.g., liveness).

To prove the properties, we need support (e.g., a model
checker or a theorem prover) for formal verification of such
properties. This support can be directly integrated into the
modeling tool, or provided by separate verification tools:
in the latter case they must be able to act on input ex-
pressed in our modeling language. Since logic programming
is grounded in theorem proving, it can be used directly both
as a specification language and also as a theorem prover.

Once a cyber-physical system is modeled as a coroutined
co-CLP(R) program, the model can be used to verify inter-
esting properties of the system by posing queries. Here we
exploit the natural ability of logic/constraint programming
systems to explore the entire state space of a program, via
backtracking. Given a property Q to be verified, we spec-
ify its negation as a logic program, with top level predicate
notQ. If the query notQ fails w.r.t. the logic program that
models the system, the property Q holds. If the query notQ

succeeds, the answer provides a counter example to why Q

does not hold.
For the reactor temperature control system, the goal is to

find the value of parameter T that guarantees the safety of
the system, that is, the reactor is never shut down. Call-
ing main, with T as an unknown parameter, we obtain T≤
38.0666, which is a necessary and sufficient condition on the
parameter T that prevents the reactor from shut down. The
verification requires 0.010 seconds on an Intel dual core 3.16
GHz processor with 4.00 GB of RAM.

To prove the safety property, we define the unsafe/3
predicate which looks for an accepting timed trace that con-
tains a shutdown event. Calling unsafe/3 for any values of
W> 0 (the initial wall clock time is zero) and any value of
T≤ 38.0666 fails, which indicates the safety of the system.

unsafe(S, W, T) :-
main(S, W, T), member((shutdown, _Ts), S).

3. RELATED WORK
Model-based design and model-driven development [13] of

complex real-time systems (and, more recently, CPSs) have
long been very active areas of research. These efforts have
resulted in many powerful tools and techniques for building
formal models, validating the models, proving the properties
of the models, and more recently automatically generating
source code from the models.

Simulink, Stateflow, and MATLAB have been used widely
for simulation and model-based design of embedded systems
and complex systems. Simulink provides a graphical editor
for specifying and modeling systems. It also supports simu-
lation, automatic code generation, and continuous test and
verification. Stateflow [22] allows the user to combine graph-
ical and tabular representations, including state transition
diagrams, flow charts, state transition tables, and truth ta-
bles, in order to model how the system reacts to events, time-
based conditions, and external input signals. However, the
fact that all these tools lack a formal semantics, makes the
models built with them untrustworthy, especially for code
synthesis purposes.

Ptolemy II [5, 6] is another tool used mainly in academia
for modeling and simulation of heterogeneous systems. It
uses an actor-oriented design approach to model compo-
nents that communicate via ports. The interactions between

actors are governed by a set of rules that are defined by
various models of computation. These models of compu-
tation include discrete events, continuous time, finite state
machines, synchronous reactive, etc. Ptolemy II modeling
language also lacks a formal semantics. In particular, it is
not clear how to combine the various models of computation
to build a unified model.

UML 2 [3] is another tool, widely used for modeling soft-
ware systems. SysML [24], an extension of a subset of
UML, offers noteworthy improvements over UML and has
many useful features for modeling CPSs. SysML’s language
is based on using three groups of diagrams: structure dia-
grams, dynamic diagrams and requirements diagrams, each
of which may be composed of other diagrams such as inter-
nal block diagrams, behavior diagrams, sequence diagrams,
activity diagrams, etc. Flow ports are used in SysML to rep-
resent what can go through a block (in and/or out), whether
it is data, matter, or energy. While SysML defines the syn-
tax of all these different diagrams, it does not provide a se-
mantics for them. In other words, a SysML diagram could
be interpreted differently by different users.

MARTE (Modeling and Analysis of Real Time and Em-
bedded systems) [23, 21] is another tool for modeling and
analyzing real-time and embedded systems. It provides fa-
cilities to annotate models with information required to per-
form specific analysis such as performance and schedulabil-
ity analysis and also quantitative analysis. Unfortunately,
MARTE also does not provide formal semantics for models.

Statecharts [12] has been also widely used as a behavioral
modeling language for complex discrete-event systems and
reactive systems. It provides a compact and expressive way
of specifying complex systems. However, the lack of formal
semantics makes it difficult to analyze the systems that are
specified using this formalism.

Timed concurrent constraint (TCC) programming [29] comes
close to our work. Timed concurrent constraint program-
ming has been considered for verification [7]; however, per-
petual computations cannot be considered in TCC, as it
works with least fixed points of programs only. Our work
can be regarded as a practical realization of TCC as well as
its extension with coinduction to handle perpetual compu-
tations.

HyTech is a symbolic model checker for linear hybrid au-
tomata [14], where physical quantities exhibit constant deriva-
tives. When dealing with non-linear hybrid automata, two
methods: rate translation and clock translation, are em-
ployed by HyTech for approximating the non-linear hybrid
automata with linear hybrid automata.

Henzinger and Ho have also analyzed the reactor temper-
ature control system with HyTech. Since the hybrid au-
tomaton for the core involves non-constant derivatives, rate
translation and clock translation are employed to convert it
to a linear hybrid automaton. Using rate translation, the
derivative of the temperature is approximated by rate inter-
vals of [−5,−1], [−9,−5] and [1, 5] for states rod1, rod2 and
no rod, respectively. The analysis of this converted hybrid
automaton by HyTech results in T< 20.44 as a necessary
and sufficient condition on parameter T to prevent the reac-
tor from shut down. Using our system, we found out that
this requirement on parameter T is indeed a sufficient condi-
tion; however, it is not a necessary condition, since for any
value of T where T≤ 38.0666 the system is still safe.

Clock translation involves two steps: in the first step, the

non-linear variable θ is replaced by a clock variable tθ; in
the second step, the resulting automaton is over approxi-
mated by a linear automaton with the invariants 10tθ ≤ 161,
10tθ ≤ 89, and true in states rod1, rod2 and no rod, re-
spectively. The original differential equations are also re-
placed by ṫθ = 1 in all the states of the core. The analysis
of this converted hybrid automaton by HyTech results in
T< 37.8 as a weaker condition on parameter T. This result
is closer to the result generated by our system. However,
in our approach, these parameters are computed with exact
precision, as our framework for modeling hybrid automata
directly handles the physical quantities constrained by non-
constant derivatives. In other words, we are not using any
translation and approximation method for converting non-
linear derivatives to linear derivatives; therefore, our system
computes the parameter bounds exactly, and is free of pos-
sible imprecision that might be introduced if approximation
methods are used.

A variant of the reactor temperature control system is
also analyzed using KRONOS [4], another symbolic model
checker for timed and hybrid automata. In this variant of
the system, temperature rises and decreases at fixed rates
also; hence, it is not faithful to the original problem.

4. CONCLUSIONS
In this paper we presented a general framework for model-

based design and verification of cyber-physical systems based
on logic programming.

Cyber-physical systems are normally composed of set of
processes that run concurrently. The processes interact with
each other by sending and receiving signals and they possibly
run for ever. We modeled CPSs as networks of hybrid au-
tomata [14, 1, 2], where each hybrid automaton is modeled
as a logic program [20] extended with constraints, coroutin-
ing and coinduction. In our framework physical quantities
are faithfully represented as continuous quantities and the
constraints imposed on them by physical interactions are
modeled with constraint logic programming over reals. By
considering coinductive logic programming we are able to
naturally model the non-terminating aspect of CPSs. Fi-
nally, concurrency is handled by allowing coroutining within
logic programming computations.

We illustrated our approach by applying it to modeling
and verification of the reactor temperature control system.
We showed how our technique can be used for verifying the
safety property of the system, as well as performing precise
parametric analysis. In contrast to other approaches, our
approach can handle non-constant derivatives directly, i.e.,
they do not need to be approximated (as long as a solver,
such as the CLP(R) solver, is available that can handle
them).

5. REFERENCES
[1] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H.

Ho. Hybrid automata: An algorithmic approach to the
specification and verification of hybrid systems. In
Hybrid Systems, pages 209–229, 1992.

[2] R. Alur, T. A. Henzinger, and H. Wong-toi. The
algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3–34, 1995.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. Unified
Modeling Language User Guide, The (2Nd Edition)

(Addison-Wesley Object Technology Series).
Addison-Wesley Professional, 2005.

[4] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis,
and S. Yovine. Kronos: A model-checking tool for
real-time systems. In Computer Aided Verification,
10th International Conference, CAV ’98, Vancouver,
BC, Canada, June 28 - July 2, 1998, Proceedings,
pages 546–550, 1998.

[5] C. X. Brooks, E. A. Lee, and S. Tripakis. Exploring
models of computation with ptolemy II. In Proceedings
of the 8th International Conference on
Hardware/Software Codesign and System Synthesis,
CODES+ISSS 2010, part of ESWeek ’10 Sixth
Embedded Systems Week, Scottsdale, AZ, USA,
October 24-28, 2010, pages 331–332, 2010.

[6] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity - the ptolemy approach. In
Proceedings of the IEEE, pages 127–144, 2003.

[7] M. Falaschi and A. Villanueva. Automatic verification
of timed concurrent constraint programs. TPLP,
6(3):265–300, 2006.

[8] G. Gupta, A. Bansal, R. Min, L. Simon, and
A. Mallya. Coinductive logic programming and its
applications. In ICLP, volume 4670 of Lecture Notes
in Computer Science, pages 27–44. Springer, 2007.

[9] G. Gupta and E. Pontelli. A constraint-based
approach for specification and verification of real-time
systems. In IEEE Real-Time Systems Symp, pages
230–239, 1997.

[10] R. Gupta. Programming models and methods for
spatiotemporal actions and reasoning in cyber-physical
systems. In NSF Workshop on CPS, 2006.

[11] R. Gupta. Programming models and methods for
spatiotemporal actions and reasoning in cyber-physical
systems. In NSF Workshop on CPS, 2006.

[12] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, pages
231–274, 8 1987.

[13] C. Heitmeyer, M. Pickett, L. Breslow, D. W. Aha,
J. G. Trafton, and E. I. Leonard. High assurance
human-centric decision systems. In ICSE-13 Workshop
on Realizing Artificial Intelligence Synergies in
Software Engineering, San Francisco, CA, 2013. IEEE
Press, IEEE Press.

[14] T. A. Henzinger and P. Hsin Ho. Hytech: The Cornell
hybrid technology tool. In Hybrid Systems, volume 999
of Lecture Notes in Computer Science, pages 265–293.
Springer-Verlag, 1994.

[15] J. Jaffar and J.-L. Lassez. Constraint logic
programming. In POPL ’87: Proceedings of the 14th
ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 111–119, New York,
NY, USA, 1987. ACM.

[16] J. Jaffar and M. J. Maher. Constraint logic
programming: A survey. J. Log. Program.,
19/20:503–581, 1994.

[17] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C.
Yap. The clp(r) language and system. ACM Trans.
Program. Lang. Syst., 14(3):339–395, May 1992.

[18] E. A. Lee. Cyber physical systems: Design challenges.
In Proceedings of the 2008 11th IEEE Symposium on

Object Oriented Real-Time Distributed Computing,
ISORC ’08, pages 363–369. IEEE Computer Society,
2008.

[19] E. A. Lee. Cyber physical systems: Design challenges.
In IEEE Symposium on Object Oriented Real-Time
Distributed Computing, ISORC ’08, pages 363–369.
IEEE Computer Society, 2008.

[20] J. W. Lloyd. Foundations of logic programming / J.W.
Lloyd. Springer, Berlin, New York, 2nd, extended
edition, 1987.

[21] F. Mallet and R. de Simone. Marte: A profile for rt/e
systems modeling, analysis and simulation. In
Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications,
Networks and Systems & Workshops, pages 43:1–43:8,
2008.

[22] Mathworks. Stateflow - Finite State Machine
Concepts. Mathworks, 2008.

[23] MG. Uml profile for marte: Modeling and analysis of
real-time embedded systems, 2009.

[24] OMG. OMG Systems Modeling Language (OMG
SysML), Version 1.3, 2012.

[25] N. Saeedloei. How the model of time affects model of a
cyber-physical system. In forthcoming.

[26] N. Saeedloei. Modeling and Verification of Real-Time
and Cyber-Physical Systems. PhD thesis, University of
Texas at Dallas, Richardson, Texas, 2011.

[27] N. Saeedloei and G. Gupta. A logic-based modeling
and verification of CPS. SIGBED Review, 8(2):31–34,
2011.

[28] N. Saeedloei and G. Gupta. Coinductive constraint
logic programming. In FLOPS, volume 7294 of Lecture
Notes in Computer Science, pages 243–259. Springer,
2012.

[29] V. A. Saraswat, R. Jagadeesan, and V. Gupta.
Foundations of timed concurrent constraint
programming. In LICS, pages 71–80, 1994.

[30] L. Simon. Coinductive Logic Programming. PhD
thesis, University of Texas at Dallas, Richardson,
Texas, 2006.

[31] L. Simon, A. Bansal, A. Mallya, and G. Gupta.
Co-logic programming: Extending logic programming
with coinduction. In ICALP, volume 4596 of Lecture
Notes in Computer Science, pages 472–483, 2007.

[32] L. Sterling and E. Shapiro. The art of Prolog (2nd
ed.): advanced programming techniques. MIT Press,
Cambridge, MA, USA, 1994.

[33] X. Nicollin et al. An approach to the description and
analysis of hybrid systems. In Hybrid Systems, volume
736 of Lecture Notes in Computer Science, pages
149–178. Springer, 1992.

