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Abstract—P-FRP systems are relatively new, so little 

research has been done on how tasks are best scheduled 

using the P-FRP paradigm. This paper provides a 

background of the subjects that timing analysis must 

cover, and concludes with suggestions for future 
research to be done in this field. 

I. INTRODUCTION 

Real-time systems (RTSs) are of critical 
importance in many areas. In fact, one of the most 
familiar examples of real-time systems to many is the 
anti-lock braking system in modern vehicles: if this 
system were to fail, the results could be fatal. As 
such, it is worth researching ways to improve RTS 
reaction time. 

There are several ways researchers have 
attempted to improve the response time of these 
systems. These include changing the hardware the 
RTS uses, changing the way that information is 
handled, and improving the estimation of the worst-
case execution (WCET) of the tasks in the system, 
which allows for more optimal task scheduling. In 
addition, there have also been multiple definitions of 
languages suited for real-time programming and 
multiple simulation tools used, each claiming some 
advantages and disadvantages. 

All of these things should be thoroughly 
understood in order to make progress. The subject of 
FRP languages is covered in Section 2. Hardware 
research in RTSs is in Section 3. This is followed by 
information about simulation tools in Section 4. 
Details about attempts to more tightly bound the 
WCET can be found in Section 5. The related topic 
of scheduling is in Section 6. Section 7 describes 
approaches toward information handling in RTSs, 
and is followed by Section 8, in which ways forward 
in this domain are proposed. Section 9 concludes the 
paper. 
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II. LANGUAGE DEFINITIONS 

The most widely-used functional language in 
real-time systems programming is Haskell. However, 
many believe Haskell can and should be altered to 
better suit it for RTSs. As such, several embedded 
domain-specific languages (EDSLs) have been 
proposed to overcome its perceived shortcomings [1, 
2, 14]. P-FRP is one of these languages, designed to 
avoid priority inversions. The semantics of P-FRP 
requires that a running task be aborted when a higher-
priority task arrives and the lower-priority task will 
later restart from the beginning as shown in Figure 1. 
 
 

 

 
 

Figure 1. P-FRP abort-and-restart paradigm. 
 

 
Haskell’s biggest weakness in terms of RTS 

programming is its lack of timing guarantees. As 
such, EDSLs designed for these systems usually 
provide a limited set of instructions which have 
bounded WCETs. Other alterations may also be made 
to further customize it to RTS usage. 

 
 
 
 
  



 

This is a somewhat specialized subject. Many 
researchers not working directly with language 
definitions simply sidestep the problem by using C, 
since Haskell does not usually compile directly to 
machine code, but rather first to an intermediary 
language. This makes it easier to analyze since most 
timing analyzers are designed to use C code rather 
than Haskell or any of its EDSLs.  

 

III. HARDWARE RESEARCH 

“Hardware research” here specifically refers to 
research in determining the superiority of one type of 
hardware to another. The hardware in question is 
usually the on-chip memory. This can be either 
scratchpad memory (SPM) or cache.  

 
 
 

 
 

Figure 2. Cache and scratchpad memory. 
 
 
There is some debate about whether cache or 

SPM is superior in RTSs. [8] and [9] say that SPM is 
more energy-efficient and requires fewer cycles and 
less area. These claims are not as well-supported as 
they could be. Both papers model SPM using a subset 
of the cache, which means it automatically requires 
less area and energy. However, they do not justify 
this model very well, and only say that a SPM is 
similar enough to a cache without its tagging system 
that they believe it is a suitable substitution. While 
the model is probably similar enough to real SPM 
that the results would not be different, it would be 
worth repeating this research with a more exact 
simulation. 

This belief is supported by the fact that the drastic 
improvements in performance found by these papers 
were not found in [7]. The authors of [7] found that 
SPM and cache were similar enough that neither had 

an absolute advantage over and instead found that the 
optimal choice depended on the tasks the system was 
expected to run. However, [7] is not general enough: 
it compares SPM with a specific type of cache using 
a specific loading algorithm. It is possible that under 
other circumstances the results would be different. 

 

IV. SIMULATION TOOLS 

Simulation tools are used for a variety of reasons. 
Some are designed exclusively to calculate WCET, 
while others calculate ACET. In addition, some tools 
may also project the amount of energy consumed by 
a system. 

Chronos is one of the more widely-used tools. It 
simulates lower-level features in the architecture in 
order to calculate as tight a WCET bound as possible. 
It is described in [4] and [15].  

Chronos was based off SimpleScalar, which is 
even more popular. According to the tool’s website, 
in 2000 more than a third of papers published in 
related conferences used SimpleScalar [19]. Like 
Chronos, it models microarchitectural features for 
tighter bounding. The documentation for 
SimpleScalar can be found in [20].  

Studies conducted at the University of Dortmund 
and the Indian Institute of Technology have used the 
CACTI tool made by Intel. This tool is described in 
[10] and [11]. The group at the University of 
Dortmund has also used aiT. However, this might not 
be the best tool for research since it is not open-
source. 

Unfortunately, none of these tools but aiT 
natively support SPM analysis. However, a group at 
the National University of Defense Technology 
created a tool called Sim-spm that extends 
SimpleScalar so that it will also analyze SPM [21], 
though this does not appear to be available online.  

 

V. BOUNDING WCET 

The response time of a task in a hard RTS cannot 
exceed a theoretical maximum without risking a 
missed deadline and resulting catastrophic failure. On 
the other hand, the theoretical maximum should be as 
low as possible to allow for optimal scheduling, 
which will allow the system the best total response 
time. Research in this area is usually done by creating 
equations to describe the memory latency of a system 
using ILP and then comparing the results obtained 
from a simulator with the expected values generated 
by the ILP equation.  

Attempts to bound WCET in caches are 
complicated by the low-level features of the hardware 
introduced to try and reduce the ACET. Special 
software has been written in an attempt to make 



 

timing analysis of caches easier, but WCET 
estimation for caches remains difficult [4, 5, 15, 16]. 

One problem mentioned in Section 4 is relevant 
again here. No software exists that is specially made 
to bound WCET in SPM, despite the fact it is 
theoretically easier since SPM lacks the 
microarchitectural features that cache has. However, 
Chronos and aiT have both been used to model SPM 
and bound the WCET, and the Sim-spm extension for 
SimpleScalar was written expressly for this purpose. 

 

VI. SCHEDULING 

Scheduling improvements can be a product of 
research for that goal or a side effect of other studies. 
That is, research can be used to find the best 
scheduling algorithm, but in hard RTSs the best 
scheduling can only be achieved by having a tightly 
bounded WCET. 

An example of scheduling improvement for its 
own sake can be found in [17]. Different scheduling 
algorithms are discussed and compared. Dynamic-
priority schedulers (that is, those that can assign 
different priorities to different instances of the same 
task) are found to be superior because they only fail 
when any other scheduler would also fail.  

Scheduling improvement as a result of something 
else can be seen in [18], which formalizes the 
definition of a priority inversion. Since scheduling 
relies on making sure priority inversions are rectified 
as soon as possible, this is important without actually 
being specifically about scheduling. 

 

VII. INFORMATION HANDLING 

Different researchers have had different ideas of 
how best to process instructions and data. Some have 
only moved either instructions [9] or data [3] onto the 
on-chip memory. [4] seems to suggest that the best 
results are obtained when both instructions and data 
can be copied to the on-chip memory; however, their 
experiment uses only cache and not SPM. Some have 
written to the memory dynamically [3] while others 
have written statically [9]. Of the two, dynamic 
allocation appears to be the better choice [7]. 

SPM specifically requires a focus on information 
handling. While cache loading is handled by 
hardware, SPM loading is handled by software and so 
the program needs to be annotated at points so the 
compiler knows what the basic blocks of the program 
are that can be individually loaded into the SPM. 

There are several ways to generate these 
annotations. Some do it manually; however, this 
allows programmer-introduced errors to enter. To 
remedy this, algorithms to decide where to best 
annotate the program have been created.  

[6], [7], [12], and [13] each have a way of 
deciding at what points to break up the program. [12] 
is an early work and just discusses one way to 
automate the process. The rest are designed to be 
superior in just one aspect. The algorithm in [6] is 
designed to maximize SPM usage. That of [7] is 
intended to minimize energy usage. The algorithm in 
[13] is intended for systems with both cache and 
SPM. Many more specialized algorithms could also 
be designed. 

 

VIII. MOVING FORWARD 

Kazemi and Cheng’s work [3] can be enhanced in 
several ways. Their work fulfills the P-FRP paradigm 
by dynamically allocating information to the SPM 
and only writing the SPM to the main memory when 
a commit instruction is received. This avoids the 
costs associated with rollback when a task is 
preempted [3]. However, it has no way of handling a 
task that uses more data than can be contained in the 
SPM. 

One way of dealing with this is to create a type of 
virtual memory in the system. While virtual memory 
is usually compensating for a lack of RAM, in this 
case it would be compensating for a lack of cache or 
SPM. Instead of temporarily storing information on a 
hard drive, it would temporarily store it in the RAM. 
This would not improve performance over Kazemi 
and Cheng’s work, but it would make it more 
general. 

The execution should be simple. The compiler 
should allocate information to the SPM as it is 
needed. When the SPM is full, the LRU data should 
be paged out to the RAM and replaced with whatever 
new data is needed. Replacing the LRU data should 
allow for some performance improvement over 
putting all data accessed after the SPM is full in the 
off-chip memory. After a task is complete, the part of 
the off-chip memory used to temporarily store the 
data set should be marked as unused to prevent 
memory leakage.  

This method still has some drawbacks. As 
mentioned, it does nothing to improve WCET; in 
fact, it will probably worsen performance due to both 
the time taken to page out information and the need 
to account for marking the virtual memory as unused 
after every task. This method only makes it possible 
to use Kazemi and Cheng’s method in more cases. In 
addition, this method can still only handle so much 
data: if a data set is large enough to take up the SPM 
and more empty space than is left on the RAM by the 
program, it cannot be handled in this way. A solution 
to either problem is not readily apparent. 

Another way forward is to adapt Kazemi and 
Cheng’s work for cache. This, too, should be fairly 



 

easy to do. The cache must use a write-back policy in 
order to avoid data being written before a commit 
instruction is received. Upon receiving an abort 
instruction, the status bits in the cache should be 
cleared in order to let the memory to be used again. If 
a commit instruction is received, 0s should be copied 
to the cache in order to get it to write the data to the 
main memory, and then the status bits should be 
cleared. 

This has the same problem as before: only so 
much can be loaded into the cache without accidental 
writes occurring. To avoid this, an abort should be 
performed if all the status bits are dirty. There is also 
no guarantee that the estimated WCET will decrease 
or be closer to the actual WCET. However, as 
mentioned in Section 3, there is some evidence to 
suggest that cache may be better than SPM in some 
cases. 

 

IX. CONCLUSION 

There are many areas in which real-time systems 
implemented in P-FRP can improve. Their hardware, 
the tightness of the WCET bound derivation, the 
scheduling, and the way the system handles 
information all have room for optimization. In 
addition, new execution models and analytical tools 
can be created to make them even better. 
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