

Timing Analysis of P-FRP Systems

Danielle Underwood and Albert M. K. Cheng
Real-Time Systems Laboratory

Department of Computer Science
University of Houston, Texas, USA

dlunderwood@uh.edu, cheng@cs.uh.edu

Abstract—P-FRP systems are relatively new, so little

research has been done on how tasks are best scheduled

using the P-FRP paradigm. This paper provides a

background of the subjects that timing analysis must

cover, and concludes with suggestions for future
research to be done in this field.

I. INTRODUCTION

Real-time systems (RTSs) are of critical
importance in many areas. In fact, one of the most
familiar examples of real-time systems to many is the
anti-lock braking system in modern vehicles: if this
system were to fail, the results could be fatal. As
such, it is worth researching ways to improve RTS
reaction time.

There are several ways researchers have
attempted to improve the response time of these
systems. These include changing the hardware the
RTS uses, changing the way that information is
handled, and improving the estimation of the worst-
case execution (WCET) of the tasks in the system,
which allows for more optimal task scheduling. In
addition, there have also been multiple definitions of
languages suited for real-time programming and
multiple simulation tools used, each claiming some
advantages and disadvantages.

All of these things should be thoroughly
understood in order to make progress. The subject of
FRP languages is covered in Section 2. Hardware
research in RTSs is in Section 3. This is followed by
information about simulation tools in Section 4.
Details about attempts to more tightly bound the
WCET can be found in Section 5. The related topic
of scheduling is in Section 6. Section 7 describes
approaches toward information handling in RTSs,
and is followed by Section 8, in which ways forward
in this domain are proposed. Section 9 concludes the
paper.

*This work is supported in part by the US National Science
Foundation (NSF) under awards No. 0720856 and No. 1219082.
The first author is an NSF-REU undergraduate researcher.
Copyright retained by the authors.

II. LANGUAGE DEFINITIONS

The most widely-used functional language in
real-time systems programming is Haskell. However,
many believe Haskell can and should be altered to
better suit it for RTSs. As such, several embedded
domain-specific languages (EDSLs) have been
proposed to overcome its perceived shortcomings [1,
2, 14]. P-FRP is one of these languages, designed to
avoid priority inversions. The semantics of P-FRP
requires that a running task be aborted when a higher-
priority task arrives and the lower-priority task will
later restart from the beginning as shown in Figure 1.

Figure 1. P-FRP abort-and-restart paradigm.

Haskell’s biggest weakness in terms of RTS

programming is its lack of timing guarantees. As
such, EDSLs designed for these systems usually
provide a limited set of instructions which have
bounded WCETs. Other alterations may also be made
to further customize it to RTS usage.

This is a somewhat specialized subject. Many
researchers not working directly with language
definitions simply sidestep the problem by using C,
since Haskell does not usually compile directly to
machine code, but rather first to an intermediary
language. This makes it easier to analyze since most
timing analyzers are designed to use C code rather
than Haskell or any of its EDSLs.

III. HARDWARE RESEARCH

“Hardware research” here specifically refers to
research in determining the superiority of one type of
hardware to another. The hardware in question is
usually the on-chip memory. This can be either
scratchpad memory (SPM) or cache.

Figure 2. Cache and scratchpad memory.

There is some debate about whether cache or

SPM is superior in RTSs. [8] and [9] say that SPM is
more energy-efficient and requires fewer cycles and
less area. These claims are not as well-supported as
they could be. Both papers model SPM using a subset
of the cache, which means it automatically requires
less area and energy. However, they do not justify
this model very well, and only say that a SPM is
similar enough to a cache without its tagging system
that they believe it is a suitable substitution. While
the model is probably similar enough to real SPM
that the results would not be different, it would be
worth repeating this research with a more exact
simulation.

This belief is supported by the fact that the drastic
improvements in performance found by these papers
were not found in [7]. The authors of [7] found that
SPM and cache were similar enough that neither had

an absolute advantage over and instead found that the
optimal choice depended on the tasks the system was
expected to run. However, [7] is not general enough:
it compares SPM with a specific type of cache using
a specific loading algorithm. It is possible that under
other circumstances the results would be different.

IV. SIMULATION TOOLS

Simulation tools are used for a variety of reasons.
Some are designed exclusively to calculate WCET,
while others calculate ACET. In addition, some tools
may also project the amount of energy consumed by
a system.

Chronos is one of the more widely-used tools. It
simulates lower-level features in the architecture in
order to calculate as tight a WCET bound as possible.
It is described in [4] and [15].

Chronos was based off SimpleScalar, which is
even more popular. According to the tool’s website,
in 2000 more than a third of papers published in
related conferences used SimpleScalar [19]. Like
Chronos, it models microarchitectural features for
tighter bounding. The documentation for
SimpleScalar can be found in [20].

Studies conducted at the University of Dortmund
and the Indian Institute of Technology have used the
CACTI tool made by Intel. This tool is described in
[10] and [11]. The group at the University of
Dortmund has also used aiT. However, this might not
be the best tool for research since it is not open-
source.

Unfortunately, none of these tools but aiT
natively support SPM analysis. However, a group at
the National University of Defense Technology
created a tool called Sim-spm that extends
SimpleScalar so that it will also analyze SPM [21],
though this does not appear to be available online.

V. BOUNDING WCET

The response time of a task in a hard RTS cannot
exceed a theoretical maximum without risking a
missed deadline and resulting catastrophic failure. On
the other hand, the theoretical maximum should be as
low as possible to allow for optimal scheduling,
which will allow the system the best total response
time. Research in this area is usually done by creating
equations to describe the memory latency of a system
using ILP and then comparing the results obtained
from a simulator with the expected values generated
by the ILP equation.

Attempts to bound WCET in caches are
complicated by the low-level features of the hardware
introduced to try and reduce the ACET. Special
software has been written in an attempt to make

timing analysis of caches easier, but WCET
estimation for caches remains difficult [4, 5, 15, 16].

One problem mentioned in Section 4 is relevant
again here. No software exists that is specially made
to bound WCET in SPM, despite the fact it is
theoretically easier since SPM lacks the
microarchitectural features that cache has. However,
Chronos and aiT have both been used to model SPM
and bound the WCET, and the Sim-spm extension for
SimpleScalar was written expressly for this purpose.

VI. SCHEDULING

Scheduling improvements can be a product of
research for that goal or a side effect of other studies.
That is, research can be used to find the best
scheduling algorithm, but in hard RTSs the best
scheduling can only be achieved by having a tightly
bounded WCET.

An example of scheduling improvement for its
own sake can be found in [17]. Different scheduling
algorithms are discussed and compared. Dynamic-
priority schedulers (that is, those that can assign
different priorities to different instances of the same
task) are found to be superior because they only fail
when any other scheduler would also fail.

Scheduling improvement as a result of something
else can be seen in [18], which formalizes the
definition of a priority inversion. Since scheduling
relies on making sure priority inversions are rectified
as soon as possible, this is important without actually
being specifically about scheduling.

VII. INFORMATION HANDLING

Different researchers have had different ideas of
how best to process instructions and data. Some have
only moved either instructions [9] or data [3] onto the
on-chip memory. [4] seems to suggest that the best
results are obtained when both instructions and data
can be copied to the on-chip memory; however, their
experiment uses only cache and not SPM. Some have
written to the memory dynamically [3] while others
have written statically [9]. Of the two, dynamic
allocation appears to be the better choice [7].

SPM specifically requires a focus on information
handling. While cache loading is handled by
hardware, SPM loading is handled by software and so
the program needs to be annotated at points so the
compiler knows what the basic blocks of the program
are that can be individually loaded into the SPM.

There are several ways to generate these
annotations. Some do it manually; however, this
allows programmer-introduced errors to enter. To
remedy this, algorithms to decide where to best
annotate the program have been created.

[6], [7], [12], and [13] each have a way of
deciding at what points to break up the program. [12]
is an early work and just discusses one way to
automate the process. The rest are designed to be
superior in just one aspect. The algorithm in [6] is
designed to maximize SPM usage. That of [7] is
intended to minimize energy usage. The algorithm in
[13] is intended for systems with both cache and
SPM. Many more specialized algorithms could also
be designed.

VIII. MOVING FORWARD

Kazemi and Cheng’s work [3] can be enhanced in
several ways. Their work fulfills the P-FRP paradigm
by dynamically allocating information to the SPM
and only writing the SPM to the main memory when
a commit instruction is received. This avoids the
costs associated with rollback when a task is
preempted [3]. However, it has no way of handling a
task that uses more data than can be contained in the
SPM.

One way of dealing with this is to create a type of
virtual memory in the system. While virtual memory
is usually compensating for a lack of RAM, in this
case it would be compensating for a lack of cache or
SPM. Instead of temporarily storing information on a
hard drive, it would temporarily store it in the RAM.
This would not improve performance over Kazemi
and Cheng’s work, but it would make it more
general.

The execution should be simple. The compiler
should allocate information to the SPM as it is
needed. When the SPM is full, the LRU data should
be paged out to the RAM and replaced with whatever
new data is needed. Replacing the LRU data should
allow for some performance improvement over
putting all data accessed after the SPM is full in the
off-chip memory. After a task is complete, the part of
the off-chip memory used to temporarily store the
data set should be marked as unused to prevent
memory leakage.

This method still has some drawbacks. As
mentioned, it does nothing to improve WCET; in
fact, it will probably worsen performance due to both
the time taken to page out information and the need
to account for marking the virtual memory as unused
after every task. This method only makes it possible
to use Kazemi and Cheng’s method in more cases. In
addition, this method can still only handle so much
data: if a data set is large enough to take up the SPM
and more empty space than is left on the RAM by the
program, it cannot be handled in this way. A solution
to either problem is not readily apparent.

Another way forward is to adapt Kazemi and
Cheng’s work for cache. This, too, should be fairly

easy to do. The cache must use a write-back policy in
order to avoid data being written before a commit
instruction is received. Upon receiving an abort
instruction, the status bits in the cache should be
cleared in order to let the memory to be used again. If
a commit instruction is received, 0s should be copied
to the cache in order to get it to write the data to the
main memory, and then the status bits should be
cleared.

This has the same problem as before: only so
much can be loaded into the cache without accidental
writes occurring. To avoid this, an abort should be
performed if all the status bits are dirty. There is also
no guarantee that the estimated WCET will decrease
or be closer to the actual WCET. However, as
mentioned in Section 3, there is some evidence to
suggest that cache may be better than SPM in some
cases.

IX. CONCLUSION

There are many areas in which real-time systems
implemented in P-FRP can improve. Their hardware,
the tightness of the WCET bound derivation, the
scheduling, and the way the system handles
information all have room for optimization. In
addition, new execution models and analytical tools
can be created to make them even better.

References

[1] Roumen Kaiabachev, Walid Taha, and Angela Yun Zhu. E-

FRP with Priorities, EMSOFT'07, pp. 221-230, 2007.

[2] Chaitanya Belwal and Albert M. K. Cheng. Determining
Actual Response Time in P-FRP, Proc. Thirteenth
International Symposium on Practical Aspects of Declarative
Languages (PADL), Austin, Texas, USA, January 24-25,
2011.

[3] Zeinab Kazemi Alamouti and Albert M. K. Cheng, ``A
Scratchpad Memory-Based Execution Platform for
Functional Reactive Systems and its Static Timing Analysis,''
21th IEEE-CS Real-Time and Embedded Technology and
Applications Symposium (RTAS) WIP, Seattle, Washington,
April 14-16, 2015.

[4] Sudpita Chattopadhyay and Abhik Roychoudry. Unified
Cache Modeling for WCET Analysis and Layout
Optimizations, RTSS, 2013.

[5] Lars Wehmeyer and Peter Marwedel. Influence of Onchip
Scratchpad Memories on WCET Prediction, 2004.

[6] Manish Verma, Stefan Steinke, and Peter Marwedel. Data
Partitioning for Maximal Scratchpad Usage, ASPDAC, 2003.

[7] Stefan Steinke, Nils Grnwald, Lars Wehmeyer, Rajeshwari
Banakar, M. Balakrishnan, and Peter Marwedel. Reducing
Energy Consumption by Dynamic Copying of Instructions
onto Onchip Memory, ISSS, 2002.

[8] Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter
Marwedel. Assigning Program and Data Objects to
Scratchpad for Energy Reduction, DATE, 2002.

[9] Isabelle Puaut and Christophe Pais. Scratchpad Memories Vs.
Locked Caches in Hard Real-Time Systems: A Quantitative
Comparison, DATE, 2007.

[10] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm
Jouppi. Optimizing NUCA Organizations and Wiring
Alternatives for Large Caches with CACTI 6.0, IEEE/ACM
Intl. Symp. On Microarchitecture, 2007.

[11] Naveen Muralimanohar, Rajeev Balasubramonian, and
Norman P. Jouppi. CACTI 6.0: A Tool to Understand Large
Caches, TR 2009.

[12] Andreas Ermedahl and Jan Gustafsson. Deriving Annotations
for Tight Calculation of Execution Time, Euro-Par, 1997.

[13] Manish Verma, Lars Wehrmeyer, and Peter Marwedel.
Cache-Aware Scratchpad Allocation Algorithm, DATE,
2004.

[14] Zhanyong Wan, Walid Taha, and Paul Hudak. Real-Time
FRP, ICFP, 2001.

[15] Xianfeng Le, Abhik Roychoudhury, and Tulika Mitra.
Modeling Out-of-Order Processors for WCET Analysis,
RTSS, 2004.

[16] Friedhelm Stappert and Peter Altenbernd. Complete Worst-
Case Execution Time Analysis of Straight-Line Hard Real-
Time Programs, Journal of Systems Architecture, 1997.

[17] Albert M. K. Cheng. Real-Time Systems: Scheduling,
Analysis, and Verification, Wiley, 2002 and 2005.

[18] Özalp Babaoğlu, Keith Marzullo, and Fred B. Schneider. A
Formalization of Priority Inversion, 1993.

[19] SimpleScalar Overview [Online]. Available:
http://www.simplescalar.com/overview.html, 2004.

[20] SimpleScalar Documentation [Online]. Available:
http://www.simplescalar.com/docs.html, 2004.

[21] Xiaoguang Ren, Yuhua Tang, Tao Tang, Sen Ye, Huiquan
Wang, and Jing Zhou. Sim-spm: A SimpleScalar-based
Simulator for multi-level SPM Memory Hierarchy
Architecture, HPCC, 2010.

