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ABSTRACT
Modern automotive systems incorporate a range of data
from on-board sensors and outside the vehicle. This results
in complex data processing and rising software development
costs. To address these issues, we investigated the adapta-
tion of a general-purpose data stream management system
(DSMS) use in automotive applications. Existing DSMSs
cannot be applied directly in automotive systems, since they
are not designed for stream processing in a distributed envi-
ronment with an architecture of mixed single- and multi-core
processors. This makes it difficult to optimize the placement
of communicating entities on multiple processors when the
parallel processing of massive amounts of streamed data is
required. In this study, we investigated distributed and par-
allel stream processing on mixed single- and multi-core pro-
cessors for an automotive DSMS. To extend the automotive
DSMS in a distributed environment and facilitate the test-
ing of the real-time constraints of stream processing on the
various placements of entities, we designed a framework to
automatically generate execution files on multiple proces-
sors. Our experimental results validated an architecture of
mixed single- and multi-core processors and demonstrated
the effectiveness of the framework.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Multiple Data
Stream Architectures (Multiprocessors)—Parallel processors;
D.3 [Special-purpose and Application-based Systems]:
Real-time and Embedded Systems

General Terms
Design
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1. INTRODUCTION
In recent years, the number of automotive systems using

on-board sensors, such as cameras, accelerometers, lasers,
and radar, has increased. Advanced driver assistance sys-
tems, such as collision warning systems help prevent acci-
dents by alerting the driver to oncoming vehicles or pedestri-
ans, which requires the monitoring of the environment. Au-
tonomous driving systems such as Google driverless car are
also able to determine when to change lanes and can take ap-
propriate actions to avoid obstacles in urban environments.
These automotive systems acquire both own-vehicle infor-
mation and surrounding-vehicle information through numer-
ous sensors embedded in the vehicle.

The use of data acquired through external communica-
tion, such as vehicle-to-vehicle (V2V) and infrastructure-to-
vehicle (I2V) communications, can significantly enhance the
safety of automotive systems [11]. For example, automotive
systems based on V2V communication periodically broad-
cast data from the on-board sensors to the surrounding ve-
hicles. The exchange of data on factors such as position and
speed with surrounding vehicles provides a more comprehen-
sive model of the environment. This allows for more precise
decision-making by the automotive systems, especially at
intersections. Data collected from outside the vehicle can
therefore enable the detection of potentially dangerous sit-
uations, which on-board sensors alone cannot do.

Research has been conducted on adaptation of data stream
management systems (DSMS) for automotive embedded sys-
tems. This is aimed at reducing the complexity of data pro-
cessing and lowering the software development costs while
increasing the amount of data available to the vehicle [21, 9,
12]. In current systems, automotive data from on-board sen-
sors and from outside the vehicle are processed and managed
individually in separate electronic control units (ECUs). The
duplication of data processing over multiple applications
and associated software development costs increase with the
amount of data in the automotive system. To address these
issues, researchers have focused on DSMSs for automotive
system applications that can process streamed data at low
latency using shared data processing over multiple applica-
tions.

Existing DSMSs [3, 4, 10, 5] are designed to run on general-
purpose computer, and mainly target applications in net-
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Figure 1: System model for an automotive DSMS development using our framework.

work monitoring and financial analysis, which require abun-
dant resources for stream processing. Such systems are
challenging to apply in an automotive context, with strict
resources and real-time constraints, which existing DSMSs
were not designed to handle.

The European Telecommunications Standards Institute
(ETSI) specification for a collision warning system using
V2V communication requires that the vehicle is able to re-
ceive and process at least 1,000 data points per second [2].
By processing V2V data, i.e., the position, speed, and direc-
tion of the surrounding vehicles, the automotive DSMS can
compute the probability of collision with each surrounding
vehicle. If this processing could be carried out with a larger
number of surrounding vehicles, the automotive DSMS could
detect an imminent collision at higher precision. However,
processing all these data sufficiently and quickly to prevent
a collision is difficult without increasing the number of pro-
cessors or the frequency of a single-core processor. This is
undesirable in automotive applications. The use of a multi-
core processor is therefore regarded as an effective solution
to parallel stream processing for an automotive DSMS with
modest power consumption and cost.

Vehicle software systems comprise multiple ECUs, requir-
ing an automotive DSMS to be deployed on multiple ECUs
when acquiring data from sensors and running application
software. Existing general-purpose DSMSs are mainly im-
plemented on an architecture comprising only single-core
processors or one single multi-core processor. Accordingly,
it is impossible to determine which processor architecture
would enable the optimum collision probability computation
in an automotive DSMS.

The developers of automotive DSMSs run development
phase tests on a range of processor architectures and DSMS
operators corresponding to communicating entities to en-
sure that the stream processing can function reliably and
the performance is maximized. Stream processing is real-
ized by executing operators that compute using tuples and
appending the resulting tuples into one or more subsequent
streams. When an operator needs to use data generated by
a precedent operator, the communication required between
the two operators is either an intra-ECU communication or
an inter-ECU communication. A developer must consider
the placement of the two consecutive operators, because the
communication method needed will depend on the opera-
tor placement. Thus, writing the codes while considering
the operator placement patterns on multiple ECUs requires
substantial manual input.

In this study, we adapted an automotive DSMS in a dis-
tributed environment of mixed single- and multi-core pro-
cessors. We compared the stream processing performance in
terms of average execution time with an architecture com-

prised only single-core processors. In addition, we developed
CM-ADSMS, a framework that generates a proper commu-
nication module between the two operators for the automo-
tive DSMS using TOPPERS Embedded Component System
(TECS) [6, 7]. TECS provides auto-generation functional-
ity, and a module that can easily be inserted between the
two operators. This can facilitate the implementation of a
communication module between the two operators, consid-
ering the location of the operators on the ECUs.

Contribution:
• We investigated the application of multi-core processors

to an automotive DSMS in which stream processing was dis-
tributed accross multiple ECUs with single-core processors.
This can help tackle the challenge of operator placement in
a distributed architecture of mixed single- and multi-core
processors.

• We adapted the automotive DSMS to a distributed envi-
ronment using CM-ADSMS to automatically generate com-
munication modules and execution files. This allowed the
automotive DSMS to test real-time constraints on multiple
ECUs with various operator placement patterns.

Organization: The remainder of this study is organized
as follows. Section 2 presents the basic technologies of our
system. The distributed automotive DSMS is described in
Section 3. Section 4 evaluates the effectiveness of the pro-
posed architecture with a mix of single- and multi-core pro-
cessors. Related work is discussed in Section 5, and our
conclusions are reported in Section 6.

2. SYSTEM MODEL
This paper targets a data stream management system for

automotive systems (Automotive DSMS). A development of
the automotive DSMS using our framework shown in Figure
1 takes the following steps: (i) A large number of communi-
cating entities (called operators) in a query are distributed
on multiple ECUs. The automotive DSMS developers need
to decide the operator placement on ECUs, that enables to
meet real-time constraints (e.g., meeting all stream process-
ing with their end-to-end deadlines, processing at least 500
stream data from outside the vehicle in one second, and so
on), and the operator distribution information is written in
the query file. (ii) Using our framework described in Sec-
tion 3, the query file is transformed into source codes and
inserts adequate communication modules (e.g., Inner-ECU
or Inter-ECU comm. module) between two operators au-
tomatically according to a relationship between them. One
or more than one execution file for each ECU are outputed,
and (iii) execution files generated in Step (ii) are installed on
ECUs that execute stream processing. (iv) The automotive
DSMS developers perform stream processing test in terms of
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Figure 2: Adapting DSMS to automotive systems
and sample query for stream processing.

real-time constraints. This development cycle (i)∼(iv) may
be repeated until the optimum operator placement is found.

2.1 Automotive DSMS
Here, the automotive DSMS using an DSMS for automo-

tive embedded systems (eDSMS) [20, 12] is described.

2.1.1 Basic Concept of Stream Processing
A data stream management system (DSMS), a stream

processing system, processes stream data which are gen-
erated continuously in large volumes in real-time using a
query. The query is registered with the system and exe-
cutes continuously as new stream data arrives. A query is
composed of one or more operators, and two consecutive op-
erators are connected with a stream queue. An operator
is a communicating entity which computes using a tuple and
outputs the result tuples to the next stream queue. A tuple
is a set of data values. For instance, a circle colored in yel-
low and an arrow in a query file as shown in Figures 1 and
2 indicates an operator and a stream queue, respectively.

In stream processing, a precedent operator executes and
produces one or more result tuples using input tuples. The
result tuples are delivered into a subsequent operator or
an application through a stream queue. Operators, such
as Map, Filter, Join, and Aggregate, used for automotive
DSMS are based on operators of Borealis which is a general-
purpose DSMS [3]. The functionalities of operators and
other details are described in [21, 12].

2.1.2 Data Integration Architecture Based on DSMS
In current architecture of automotive systems, data re-

trieved from on-board sensors and outside the vehicle is pro-
cessed individually in each application program embedded
in software on ECU. It is because that automotive suppli-
ers provide a product as a set of software and the related
sensor. Therefore, similar data processing can be duplicated
over multiple applications located in different ECUs. Fur-
thermore, in the case that if system properties (e.g., a type
of sensor device) are needed to be changed, large parts of
the application programs are required to be modified. To
tackle these issues, the automotive DSMS has been devel-
oped on the basis of the data integration architecture [21,
12] shown in Figure 2. Applications can be separated from
sensor device part because data processing using a variety of
sensors are defined in the automotive DSMS instead. Data
processed in the automotive DSMS can be accessible in a
location-transparent manner from multiple applications. In
addition, changing system properties becomes easier than
the current architecture since application programs are in-
dependent from specific sensors; thus, the cost of automotive
software development can be reduced.
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1 [to_through(rB,Plugin,"Args"),linkunit]
2 region rA {
3 cell tCaller Caller {
4 cCall[0] = Callee.eEntry;
5 cCall[1] = rB::Callee2.eEntry; };
6 cell tCallee Callee { };
7 };
8 region rB {
9 cell tCallee Callee2 { };
10 };

Figure 4: Example of a build description.

2.2 TECS
We use TECS (TOPPERS Embedded Component Sys-

tem) [6, 7] for the development of a framework of CM-
ADSMS described in Section 3.

2.2.1 Basic Concept
A cell is a component instance in TECS, and it has one or

more than one entry port and call port in respectively. The
entry port of a cell is an interface to provide its function
to other cells. The call port of a cell is an interface to use
a function defined in other cells. The signature, a set of
function declarations, is allocated to the entry port and call
port. A celltype is the definition of a cell. For instance,
the Caller cell is the cell of the tCaller celltype, and the
Callee cell is the cell of the tCallee celltype in Figure 3.
Figure 4 shows an example of the Caller cell connected to
the Callee cell located in the same region with the Caller
cell, and the Callee2 cell located in a different region as the
Caller cell. The region corresponds to a partition where
cells are allocated in TECS. For instance, an rA and an
rB are the names of the regions and are defined with the
“region” keyword. To use the function defined in the Callee
cell from the Caller cell, cCall[0] of the Caller cell needs to
be connected to eEntry of the Callee cell (Line 4).

2.2.2 Through Plugin
TECS through plugin [6] is used for inserting a cell between

two cells. In addition, in the case that two cells are allocated
to different regions, TECS provides to through plugin which
is one kind of through plugin. We can adapt the to through
plugin to the TECS generator by writing the “to through”
keyword in a TECS component description file (.cdl).

For instance, Figure 4 shows an example of a case where
cCall[1] of the Caller cell in region rA is connected to eEn-
try of the Callee2 cell in region rB. A component, such as a
component to print log messages, between the Caller cell and
the Callee2 cell can be inserted by writing the “to through”
keyword before the description of a region rA (Line 1). “Plu-
gin” in Line 1 indicates a type of plugin which defines the
inserted cell, and we can set the argument for the plugin if
it is needed (“Arg” in Line 1).



3. DISTRIBUTED AUTOMOTIVE DSMS
This section describes the data stream processing required

for parallel execution in the automotive DSMS and three
architectures for parallel processing. We present a proposed
framework for an automotive DSMS, the CM-ADSMS, and
the development flow using CM-ADSMS.

3.1 Example of Parallel Stream Processing
Figure 2 presents a data processing query shared by a col-

lision warning system and a navigation system. To avoid a
crash, it is necessary to predict the positions of both the ve-
hicle and the surrounding vehicles before the time to collision
(TTC). In this query, the vehicle calculates its own position
using data from its on-board sensors and a map database,
and the position of surrounding vehicles is calculated using
data from V2V communication and a map database. By
comparing its position and the position of the surrounding
vehicles at a future time (Join4), the automotive DSMS can
compute the probability of collision with each surrounding
vehicle. Only the information about a vehicle with a high
collision probability is provided to the collision warning sys-
tem using Map6.

To avoid collision with surrounding vehicles, the collision
probabilities must be processed from all the streamed data
received from the V2V communication, before the TTC.
However, following the ETSI specification [2] for a collision
warning system utilizing V2V communication, the vehicle
must be able to receive and process at least 1,000 data points
per second. This makes it difficult to complete the calcula-
tion of collision probability within the time constraints with-
out increasing the number of processors. The prediction of
surrounding vehicle positions at a future time (Map4, Ag-
gregate, Map5 in Figure 2) must therefore be executed in
parallel in the automotive DSMS.

3.2 Architecture for Parallel Processing
Automotive systems require stream processing in which

the query is distributed and executed across multiple ECUs,
because the on-board sensors and application software run
on several ECUs connected with a network bus. Operators
and stream queues in the query must be allocated to multiple
ECUs to satisfy the requirements for parallel processing and
end-to-end timing constraints while considering the limited
resources available.

The parallel processing of stream data can be achieved
using an architecture consisting only of single-core proces-
sors, or one that uses a multi-core processor mixed with
single-core processors. The query shown in Figure 2 must
be divided into multiple sub-queries, and each sub-query is
allocated to one of the multiple ECUs. Operators, stream
queues, and applications must therefore be distributed across
the ECUs. To allow the parallel execution of stream process-
ing, Figure 5 shows the three possible placement patterns of
the operators and applications. Many other operator place-
ment patterns would be possible, but we selected these three
patterns to investigate whether network latency between the
processors or the latency in processing burst stream data in
the single network controller of a multi-core processor had
a larger influence on the performance of the parallel stream
processing. Each placement pattern was investigated using
the example of predicting the position of a surrounding ve-
hicle (P1 in Figure 2).

The operators for stream processing to be executed in par-
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Figure 5: Three patterns for distributed stream pro-
cessing.

allel were allocated to each single-core processor. For exam-
ple, P1 could be executed in parallel using four single-core
processors as shown in Figure 5 (A). This is a simple place-
ment pattern, in which the operators required to be executed
in parallel are allocated on each single-core processor (i.g.,
ECU2 and ECU3). However, increasing the number of ECUs
is undesirable in the automotive field since this can lead to
significant cost increases and longer development time.

Second, the operators for combining the tuples from each
operator being executed in parallel were allocated to either
of the single-core processors. For example, the processing
required to compare with the vehicle’s own position and with
those of the surrounding vehicles (P2 in Figure 2) could
be co-located with the application on ECU2, as shown in
Figure 5 (B). Only three single-core processors were needed,
fewer than those in pattern (A). The processing time for each
ECU2 and ECU3 was different, because P1 and P2 were co-
located in ECU2. To execute P1 in parallel when allocated
to ECU2 and ECU3, the number of input tuples generated
from Join2 and provided to Map4 on each ECU2 and ECU3
must be considered.

Third, the operators required for the processing to be ex-
ecuted in parallel with the application were co-located in a
multi-core processor, as shown in Figure 5 (C). For exam-
ple, P1 had to be allocated to each core of the multi-core
processor, while P2 was allocated to either core. Using an
architecture that utilizes the multi-core processor allowed
the number of ECUs and software development cost to be
reduced compared with those in patterns (A) and (B).

3.3 Design of CM-ADSMS
To adapt the automotive DSMS in the distributed envi-

ronment and to reduce the developers’ efforts, we have de-
signed and developed the framework of CM-ADSMS which
automatically generates the communication modules between
operators and execution files for the automotive DSMS. We
used TECS for devoloping the framework because TECS
provides auto-insert functionality between two components,
and we can improve the reusability of the communication
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Figure 6: Design of local and network component
communication.

modules by defining these modules as components.

3.3.1 Local Component Communication
It is the communication for transmitting a tuple between

operators that are allocated to the same ECU. The local
component communication is realized by using a Manage-
Buffer cell. The ManageBuffer cell is a component which
manages a stream queue, and the stream queue is comprised
of a ring buffer to maintain recent data. The ManageBuffer
cell provides two functions to enqueue a tuple into a stream
queue and to dequeue a tuple from the stream queue.

The local component communication can be designed in
four patterns as shown in Figure 6. In the relation between
one operator and another operator, one ManageBuffer cell
is placed between two operators (Figure 6(A)-(1)). In the
case of a result tuple from one operator is shared among two
operators, one ManageBuffer cell is located between these
operators, and the result tuple is copied to be provided for
two operators (Figure 6(A)-(2)). When an operator such as
a filter produces two different tuples according to a condition
and each tuple is provided for two subsequent operators, two
ManageBuffer cells are required for each stream queue to
manage each result tuple (Figure 6(A)-(3)). If an operator
such as Join combines two input stream data into one stream
data, two ManageBuffer cells are placed and an operator
which combines two input stream data dequeues from the
two ManageBuffer cells (Figure 6(A)-(4)).

3.3.2 Network Component Communication
It is for transmitting a tuple from an operator to an an-

other operator, where these operators are allocated on the
different ECUs. The network component communication is
realized by using three components: the StreamSender cell,
the StreamReceiver cell, and the ManageBuffer cell. The
StreamSender cell is the component which provides func-
tions for sending a tuple to a target ECU by each TCP and
UDP mode. In the StreamReceiver cell, functions for receiv-
ing a tuple from a specific port by each TCP and UDP mode
are provided. For the network component communication,
we implement the components using TCP/IP and UDP/IP,
because automotive Ethernet is currently being discussed
and researched for a next generation in-vehicle networking
standard within the automotive domain [14]. Meanwhile,
CAN and FlexRay, which are commonly employed as the
in-vehicle network, can also be implemented by switching
into a communication component using TECS.

The network component communication can also be de-
signed in four patterns as shown in Figure 6. In the rela-

1 [to_through(rECU2,NetworkPlugin,"targetAddr=192.168.
227.120,portNo=9000,connectType=TCP),linkunit]
2 region rECU1 {
3 cell tMAPOperator MAPOperator {
4 cReadBuffer = ManageBuffer1.eReadBuffer;
5 cWriteBuffer = rECU2::ManageBuffer2.eWriteBuffer;
6 };

Figure 7: Example of the to through keyword.

tion between one operator and another operator, the Stream-
Sender cell needs to be placed on the sender side ECU, and
the StreamReceiver cell and the ManageBuffer cell is placed
on the receiver-side ECU. The received tuples from Stream-
Receiver cell are enqueued into a stream queue managed in
the ManageBuffer (Figure 6(B)-(1)). The rest cases are
designed in the same manner of the local component com-
munication .

3.3.3 Auto-generation Functionality
The ManageBuffer cell is inserted between every two con-

secutive operators regardless to whether the local compo-
nent communication or the network component communi-
cation is needed. In the case that an operator sends a tuple
through the network communication to a subsequent op-
erator, the StreamSender cell and the StreamReceiver cell
are required to be inserted between them. We developed
a NetworkPlugin which is one kind of to through plugin in
TECS, and it is used in (ii) Step of Figure 1. The Net-
workPlugin automatically inserts the StreamSender cell and
the StreamReceiver cell between two operators placed on the
different ECUs. Figure 7 shows an example of inserting the
StreamSender cell and StreamReceiver cell automatically us-
ing to through keyword (Line 1).

4. EVALUATION
The performance of the distributed stream processing and

auto-generation code performance of the proposed frame-
work were evaluated. The performance of the distributed
stream processing was conducted by comparing end-to-end
execution times for one single-core processor, the distributed
architecture comprising only single-core processors, and the
distributed architecture with a mix of single- and multi-core
processors. We evaluated CM-ADSMS in terms of the vol-
ume of source codes that were automatically generated.

4.1 Experimental Setup
To compare the distributed stream processing of the three

architectures, we used a simple query with three operators:
Filter, Map, and Join. A result tuple from the Filter oper-
ator was used as an input tuple to the Map operator, and
we assumed that the Map operator was required to be exe-
cuted in parallel. The Join operator outputs a tuple when it
receives a result tuple from either of the two Map operators.

To allow stream processing of the Map operator to be ex-
ecuted in parallel, the query operators were placed on mul-
tiple ECUs following the two patterns shown in Figure 8
described by TECS component description [6]. The two Map
operators to be executed in parallel were placed on each ECU
(ECU2 and ECU3), and the subsequent Map operator, i.e.,
the Join operator, was placed on ECU2 in placement (A).
Two Map operators were placed on each core in ECU2, and
the Join operator was placed on core 1 in placement (B).
We also placed all operators on one single-core processor
and ran experiments to compare end-to-end execution times
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sor.

of the three placements. The execution time for processing
one tuple was the time from inputting a tuple to the Fil-
terOperator in ECU1 to outputting a result tuple from the
JoinOperator1 in ECU2.

The experiments were performed using three processors:
(i) a single-core processor (700 MHz ARM1176JZF-S with
512MB of RAM) and (ii) two dual-core processors (1 GHz
ARM Cortex-A7 with 1GB of RAM), running Linux OS (Fe-
dora). In (A), we used a single-core processor on ECU1 and
a dual-core processor on each ECU2 and ECU3. Since the
specification of each ECU2 and ECU3 must be the same
as ECU2 in (B), the two dual-core processors on ECU2
and ECU3 in (A) were run in single-core processor mode.
Ethernet was used for communication between the ECUs,
since automotive Ethernet is considered as a next genera-
tion in-vehicle network. CAN and FlexRay, the most com-
monly employed in-vehicle networks, can be implemented as
the communication mechanism by switching to their compo-
nents using TECS, as explained in Section 3.

4.2 End-to-end Execution time
We evaluated the average end-to-end execution time with

increasing tuple size from 4KB to 1MB in the three operator
placements described above. 100 tuples were generated and
we calculated their average end-to-end execution times.

As shown in Figure 9, the average end-to-end execution
times in placement (B) were lower than those in the one
single-core processor placement and placement (A) across
the range from 4KB to 1MB. This shows that a distributed
architecture with mixed single- and dual-core processors can
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Figure 10: Execution time of operators.

reduce the end-to-end execution time for each tuple, com-
pared with the other two placements.

When comparing parallel stream processing in placements
(A) and (B), the average end-to-end execution time in place-
ment (B) was shorter than that in placement (A) over all
tuple sizes. For experimental results in the one single-core
processor placement and placement (A), and shorter aver-
age end-to-end execution times were recorded with the one
single-core processor placement than with placement (A) un-
til 16KB. In contrast, placement (A) processed streamed
data with shorter end-to-end execution times than that for
the one single-core processor placement from 64KB to 1MB
of tuple sizes, as shown in Figure 9.

Figure 10 gives the execution time of the four operators,
i.e., Map, Aggregate, Filter, and Join, used in the automotive
DSMS. We implemented a simple calculation for each oper-
ator. Map multiplied a value in the value field of a tuple by
two, and the Aggregate operator calculated an average speed
value from tuples with the same ID. The Filter operator fil-
tered an input tuple according to its even or odd ID number,
while Join operator combined the fields of two input tuples
and outputs one combined tuple into a stream queue.

We input 100 tuples to each operator to estimate an aver-
age execution time for each operator. As shown in Figure
10, the execution times across the range from 4 bytes to
16 KB did not vary greatly, while a tuple size of 16 KB,
execution time of the Map and Filter operators increased
with tuple size. The execution time of the Join operator in-
creased more drastically than that for the other three oper-
ators, whereas, the execution time of the Aggregate operator
did not vary greatly with tuple size. A different trend in the
execution time of each operator was therefore observed.

4.3 Performance of the Framework
We evaluated the performance of the CM-ADSMS using

NetworkPlugin, by which the StreamSender and StreamRe-
ceiver cells required to communicate between the two consec-
utive operators allocated to the different ECUs were inserted
automatically.

The total number of lines of source codes required to
output one or more execution files for each ECU are com-
pared. We measured the auto-generated source codes as the
increase in the number of pairs of communicating opera-
tors that needed data transmission through the network by
generating 10 random operator, and allocating them ran-
domly to one ECU with zero communicating operators, two
ECUs with one communicating operator, three ECUs with
two communicating operators, and so on.

With no communicating operators (horizontal value of
zero in Figure 11), 2,843 lines of source codes were au-
tomatically generated. When the horizontal axis value was
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Figure 11: Generated Lines of the Source Codes.

one and operators were distributed on two ECUs, 4,721 lines
were automatically generated. This suggests that the source
code needed to build a connection between the two opera-
tors on different ECUs corresponded to 1,878 lines. This
source code must be implemented by automotive DSMS de-
velopers when not using an auto-generation framework such
as CM-ADSMS. The volume of auto-generated source code
increased with the number of communicating operator pairs
and ECUs. As a result, a considerable amount of source code
could be automatically generated for automotive DSMS de-
velopers, without considering the operator placement pat-
terns on the ECUs.

4.4 Discussion
The results of the first experiment show that the end-to-

end execution times of stream processing in the architec-
ture using a dual-core processor can be significantly reduced
by distributing the massive amount of streamed data across
single- and multi-core processors. The gap in the end-to-end
execution times of placements (A) and (B) in Figure 9, was
incurred by the network latency between the two processors.
This network latency was incurred in transmitting a tuple
between the Map2 operator on ECU2 and the Join1 operator
on ECU3 in placement (A). In contrast, the data transmis-
sion through the network was lower in placement (B), since
the network transmission between ECU2 and ECU3 was re-
placed by a core transmission from core2 to core1 as shown in
Figure 8. The latency of the core transmission of streamed
data is much smaller than that of network transmission.

We confirmed that the end-to-end execution time for dis-
tributed stream processing is influenced largely by the net-
work latency between the processors, rather than the latency
in processing burst stream data in the single network con-
troller of the multi-core processor. Thus, the greater parallel
processing of massive amounts of streamed data is possible
in an architecture of mixed single- and multi-core proces-
sors. We also confirmed that developers need to consider
operator types when optimizing operators in multiple ECUs
for real-time and parallel stream processing.

Our second experiment automatically generated large amounts
of source codes, even though the queries used for the eval-
uation were simple ones. Therefore, we expect that still
more significant amounts of source codes will be generated
in real development environments, irrespective of the op-
erator placement patterns of the multiple ECUs. This is
because the number of operators and ECUs and the com-
plexity of the operator precedence relations are significantly
greater in a real development environment.

Our experimental results can help reduce the operator
placement search problem by excluding placements poorly
suited to parallel stream processing. By Assuming that m

operators are required to be placed on N processors whose
specifications are different from each other, the total num-
ber of searches for the best operator placement is Nm. A
large number of real-time stream processing test can be re-
duced by the experimental results, and can be conducted for
a range on placements using CM-ADSMS.

5. RELATED WORK
There are many prototypes of the DSMSs for general-

purpose systems such as Borealis [3], TelegraphCQ [10], and
STREAM [5]. Queries registered in these systems can be
changed to other queries or modified during the execution
time according to dynamic conditions. To employ these dy-
namic changes during the execution time, many modules are
required to be embedded in the execution environment, and
large amount of memory is required. However, the existing
DSMSs do not meet the requirement of the automotive sys-
tems since the automotive systems generally have low-speed
and low-capacity memories as well as low CPU performance
due to strict cost limitation requirements.

Based on these general-purpose DSMSs, many operator
scheduling algorithms have been researched [8, 15, 18]. Bab-
cock et al. [8] introduced the chain scheduling algorithm,
which targets applications including networking systems and
sensor networks. The purpose of this algorithm is to mini-
mize run-time system memory usage. Tick scheduling strat-
egy [15] is used to minimize deadline miss ratio by reducing
scheduling overheads and to maximize throughput. Preemp-
tive rate-based scheduling strategy [18] has been proposed
to maximize throughput over stream data. However, these
existing algorithms do not explicitly target a distributed en-
vironment consisting of multiple processors. Moreover, these
algorithms do not consider strict timing constraints required
for use in automotive systems.

To satisfy the strict timing constraints of DSMS, several
studies have been presented [13, 17, 19]. Li et al. introduced
the OP-EDF scheduling algorithm [13], in which a task with
shorter absolute deadline is assigned higher priority to mini-
mize deadline miss ratio. Schmidt et al. [17] introduced the
RM scheduling algorithm based on the rate monotonic algo-
rithm and a hard real-time scheduling strategy. Queries can
be processed in accordance with their timing constraints in
RTSTREAM [19]. However, these methods cannot be appli-
cable to a distributed environment since they are assumed
to be implemented in the uni-processor environment.

As methods for parallel stream processing in a distributed
environment, many mechanisms are presented. In [16], a
processing route of each input tuple is dynamically deter-
mined by selecting the next operator to process in the ex-
ecution time. A method to manage the load across the
multiple processing ECUs by migrating operators to lightly
loaded ECUs is presented in [22]. However, these existing
algorithms are assumed an architecture consisting of only
single-core processors or only multi-core processors; thus,
they cannot be adapted to the automotive systems compris-
ing of mixed with single-core and multi-core processors di-
rectly. Furthermore, these algorithms do not consider strict
timing constraints required for use in automotive systems.

To employ the general-purpose DSMS to the automotive
systems, StreamCars [9] and eDSMS [21, 12] have been de-
veloped. These automotive DSMSs integrate data retrieved
from a variety of sensors, and they enable to change sys-
tem properties such as sensors and algorithms used in ap-



plications easily. However, StreamCars [9] do not consider
the strict timing constraints and cannot be applied to dis-
tributed environments. eDSMS [21, 12] does not consider
the distributed environments consisting of single-core and
multi-core processors. As a result, it cannot be known whether
multi-core processors are applicable to the automotive DSMS
in distributed environments.

6. CONCLUSIONS
Distributed stream processing on an architecture com-

prising a mix of single- and multi-core processors was pro-
posed and evaluated. We conducted experiments to compare
stream processing in three cases: i) processing all stream
data on one single-core processor, ii) dividing the stream
data between the multiple single-core processors, and iii) di-
viding the stream data between the cores in a single multi-
core processor. The results suggest that for the range of
tuple size between 4KB and 1MB, an architecture of mixed
multi-core processors has a shorter average end-to-end exe-
cution times for parallel stream processing than a one single-
core processor or an architecture comprising only single-core
processors. We also confirmed that placing all operators in
one single-core processor can reduce the execution time com-
pared with that in a distributed architecture of networked
single-core processors until 16KB. At tuple sizes larger than
16KB, a distributed architecture of networked single-core
processors processes streamed data faster than one single-
core processor. These results can help developers to place
operators in distributed processor architecture for parallel
stream processing in automotive DSMS applications.

We also recommend the use of the CM-DSMS framework
to extend automotive DSMS to a distributed environment
and reduce the implementation challenges facing automotive
DSMS developers. This framework reduces the severity of
the operator placement problem and allows the the testing of
the real-time constraints on stream processing across various
operator placement patterns.

In future work, we plan to apply AUTOSAR [1] to the au-
tomotive DSMS and extend CM-ADSMS to the automatic
generation of all ECU execution files from a query for a
variety of operator placement patterns. The extended CM-
ADSMS should help developers perform the testing of a va-
riety of operator placements with much reduced effort.
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