
A Systems of Systems perspective on the Internet of Things

Invited paper†

Johan Lukkien (j.j.lukkien@tue.nl)
Department of Mathematics and Computer Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

The Internet of Things (IoT) refers to extending the reach
of the Internet into the physical world. The realization of IoT
applications involves the integrated operation of many subsystems
that retain their private function. This makes IoT application
deployment and integration a Systems of Systems (SoS) problem.
In this paper we collect SoS properties and characteristics
from the literature in order to understand common integration
problems in IoT better, for which we use two running examples.
We show that in particular for safety critical systems there must
be means to compute and predict integrated behavior based
on specifications at interfaces. We give a general coordination
architecture that supports this.

Index Terms—Systems of Systems, Internet of Things,
Smart Cities, System Engineering

I. INTRODUCTION

Systems-of-Systems (SoS) is a term for systems that are
composed of independent (autonomous) subsystems which are
full-blown systems by themselves in every way. While there
is growing awareness of the importance of SoS there is no
clear agreement about the architectural principles guiding the
design of SoS nor about the process of engineering them.

Thinking in terms of SoS brings a radical change in
viewpoint. In traditional embedded systems design1 we fo-
cus on how to effectively design and integrate subsystems
to implement the functionality of an overall system. This
integrated system plays a role in the physical world. With
the introduction of embedded networking these subsystems
are increasingly integrated through networks. In this way they
form the nodes in a larger whole. This integration becomes
an SoS problem when these subsystems have both a private
purpose and serve the overall goal of the combined system.
SoS research is about how to design, engineer, maintain and
evolve a composition of subsystems while acknowledging the
fact that these subsystems remain independent, are serving
their own functions, and have their own management and
lifecycles.

The Internet of Things (IoT) refers to the vision of con-
necting every ‘thing’ (to the Internet) using a unified protocol
and naming scheme thus extending the reach of the Internet
into the physical world while scaling up its size to tens

† The author retains copyright. The research leading to this paper was
partially funded by the European Unions Seventh Framework Program
(FP7/2007-2013) for CRYSTAL Critical System Engineering Acceleration
Joint Undertaking under grant agreement No 332830.

1An embedded system is by definition a subsystem in itself as it is part of
a larger whole.

Smart grid

Water
supply

Industry

Mobility
management

Public
services

Street
Lighting

Connected
light poles

Outdoor
sensing

Surveillance
infra

structure

Smart
Mobility

Traffic lights

Road side
units

Connected
vehicles

Telecom

Cellular
network

Data
services

Smart
Building

IT network

Building
management
infrastructure

Connected
luminaires

Wireless
sensors

Smart
Energy

Smart meter

Renewable
energy sources

Smart City

Emergency

Well-being

Navigation

Safety

A
p

p
lic

at
io

n
s

Management of
carbon release

Energy load balancing

Fig. 1. Urban (sub)systems in a Smart City can collaborate for reasons
of optimization or making new applications. Applications spanning several
subsystems are given in orange.

of billions of devices. In addition, IoT changes the types
of applications, because of this access to deeply embedded
sensing and control. IoT is currently at the top of the ‘hype
cycle’ with larger companies and standardization bodies in the
networking domain providing standards and frameworks.

In this paper we discuss what SoS is about based on a
review of existing literature which stems mainly from the first
decade of this century. We look in particular at characteris-
tics, at architecting principles and styles, and at engineering
methodologies for SoS. We relate this to IoT, showing that IoT
systems follow SoS paradigms and face similar challenges.
With this we aim at a renewed insight in the engineering of
IoT systems.

Original examples of SoS were taken from the military
domain [13] as well as transportation and avionics. A more
current example concerns Smart Cities, with separate subsys-
tems for traffic management, energy management, building
management and streetlighting (to mention a few), depicted
in Fig.1. New applications or optimization scenarios combine
functionality of several urban systems while the regular func-
tionality of these systems remains with its requirements of
dependability and sometimes timeliness. In this paper we use
Smart Cities as running example as well as a country-wide
Intelligent Transportation System (ITS), depicted in Fig.2.
In this figure we observe three different domains. a) The

V2V V2V

Internet, V2I

Government (congestion
control, road maintenance)
Manufacturers (monitoring)
User apps (e.g. car sharing,

charging mgt)

Accident prevention

Local
Control

Local
Control

Local
Control

In-vehicle network

Driver
Control

Driver
Control

V2V network

Driver Control

In
-v

eh
ic

le

V
2

V

V
2

I

Fig. 2. A modern Intelligent Transportation System, integrating vehicles as
independent subsystems into the whole of the ITS. Applications like traffic
management operate on collected data from vehicles. Besides the managerial
applications, more consumer like applications are possible as well, e.g. car
sharing, ride sharing, energy optimization and so on. Further explanation in
the text. Subpictures, courtesy of the Internet.

vehicle, composed of subsystems integrated in the local control
system of the vehicle. Integration is through the in-vehicle
network and applications concern the operation of the vehicle.
Subsystems have no other function than serving the goals of
the vehicle and the integration is done in the classical way
after hierarchical decomposition. b) The vehicle-to-vehicle
(V2V) domain with applications involving several vehicles
(and posibly local infra structure) through communication,
e.g., accident prevention, parking spot finding or automatic
driving in a traffic jam. c) At the more global level of the
country, applications are based on Vehicle to Infra structure
(V2I) data collection and include traffic management or road
maintenance, but also user apps like car sharing.

In this paper we first compare SoS to Monolithic Systems

in order to understand what new aspects SoS brings. Then
we examine aspects of the engineering of SoS after which we
discuss consequences and solution directions. The contribution
of the paper is to develop terminology for reasoning about
common problems and to point towards a generic solution
direction.

II. SYSTEMS OF SYSTEMS AND MONOLITHIC SYSTEMS

The work of Maier[12] is one of the earlier systematic
discussions on SoS. Maier introduces some properties intrinsic
to an SoS: operational independence (subsystems have an
autonomous behavior, goal and useful existence), managerial
independence (subsystems are managed by different author-
ities) and evolutionary independence (subsystems evolve in-
dependently). In addition, geographic distribution is often a
characteristic as well as exibiting emergent behavior. Accord-
ing to Fisher[3], geographic distribution supports the three
independency properties while not being a necessary condi-
tion, and emergent behavior is the result of the subsystems
having the three independency properties. DeLaurentis[4] adds
to the characteristics heterogeneity of subsystems, networks as
the predominant means of connecting subsystems and trans-
domain collaboration (the need for differrent disciplines to
collaborate, e.g., engineering, economy, policy makers). Our
two examples show these aspects clearly. The Smart City ex-
ample is really about integrating systems that are traditionally
MLs. Independent operation, evolution and management are
obvious properties, as well as heterogeneity and geographic
distribution. For the ITS it is a bit more subtle as vehicles
have similar characteristics, but vehicle brands have their own
lifecycles and each vehicle is within the managerial domain
of its owner. This ownership brings also a debate on the role
of manufacturers when they collect data from the vehicles.

SoS is clearly about the design and engineering problems
of integrating existing systems into a larger whole that yields
new functionality not available through any of the constituent
systems. These problems comprise the architectural principles
of such composition, the engineering process and the tech-
nical solutions, in particular with respect to extra-functional
properties and integrity of the composed systems. We examine
some concepts that refer to this integration of (sub)systems to
understand the difference between ML and SoS.

A. System Integration

System integration in the context of MLs refers to the con-
cept of synthesizing (independently developed) subsystems.
Typically, the specification of these subsystems follows from
a decomposition of an original design of the ML, which is a
well-established engineering practice. The focus lies here on
interface definition, on integration methodology (e.g. vertical
integration: integration of different abstraction levels, and
horizontal integration: integration at similar abstraction levels),
on managing and reducing dependencies (coupling) and on
maximizing cohesion. The goal is to obtain a single integrated
system in which the subsystems are there for serving the
combined goal.

Within SoS there is also a need to integrate subsystems
but there are important differences. Fisher[3] describes some
implicit assumptions of system integration that are not true for
SoS, viz. that the architecture is frozen in an earlier stage of
the design, that the control flows and data flows are known,
and that requirements as well as properties of subsystems
are known upon integration. For SoS, the requirements for
subsystems are not specified in a hierarchical manner; the
function of each subsystem is defined by its original purpose
as well as its own internal context, data, processes, etc. We call
this uncorrelated requirements of subsystems. Second, in case
of SoS there are two types of control flow: the control flow
for the original purpose and the control flow coming from the
SoS. We call this aspect competition of control. Third, within
SoS there is no a priori architectural principle that guides the
design of all subsystems; instead, subsystems have their own
architectural principles. We call this architectural diversity.

Applying this to the example of Smart Cities, it is clear
that the described aspects are important there. In order to
understand the competition of control a scenario is required,
which can be one in which an emergency vehicle influences
the traffic control system to obtain a free road, as well as the
telecommunication system in order to warn people on the road
in advance. The competition is then with the original control
in these two systems. For the ITS, the competition comes, for
example, in a potentially dangerous situation where automated
control takes over based on V2V communication.

In both cases, regarding this as an SoS integration problem
avoids the direction of making evermore complex software
while adding new functionality. Instead the focus moves to
interfaces that make both functionality and control of extra-
functional properties available.

Fig. 3. A primary interoperability is derived from being able to exchange
data packets regardless of the physical networking technology used. This
is achieved by the convergence towards IP transport protocols. On top of
this, however, applications vary as well as the meaning of the exchanged
data. From this point on, description of the semantics are required to enable
interoperation for SoS.

B. Interoperation

Interoperation refers to cooperative interactions between
two or more partners to achieve objectives. These objectives
can be shared (e.g., manage the traffic in an area), but can
also be private to each partner and can be as simple as
obeying actively some policy. For example, in a client-server
interaction, the server achieves its goal by serving clients.

Premise to interoperability is the ability to communicate,
which in networks is addressed in the convergence until the
transport layer in the OSI stack, as depicted in Fig.3. Currently,
a standardization on application protocols is observed, based
on the RESTful style. On top of that meaningful informa-
tion is exchanged and interpreted between interfaces, but
with a divergence in semantics depending on the particular
application. Interoperation requires understanding on three
aspects which can be seen as stages in the interoperation:
understanding, first, on how to reach the interface (discovering
the interface), second, on how to perform the interoperation
(understanding the interface), and third, on how the interaction
contributes to the objectives (understanding the semantics).
In addition, interoperation requires a certain level of trust
between cooperating partners.

Aspects of interoperation are defined in several domains
with slight differences, but always following this main line of
reasoning. Within ML these three aspects can be entirely con-
tained within the design, e.g. through embedding of implicit
or explicit assumptions in implementations, or through proto-
col standardization. More recent works on component based
systems and distributed systems introduce concepts that allow
late binding like service discovery, service descriptions (e.g.
within UPnP[8] and the Service Oriented Architectural Style
(SOA, see e.g. [14]). Standards in semantic-level descriptions
are RDF and OWL.

Besides standardization, interoperability within SoS need to
be based on a high-level description of goals and of services
since the architectural diversity implies that no assumption can
be made about the inner workings of subsystems. This is called
semantic interoperability. This means that such late binding
techniques needs to be further investigated and developed
for SoS. The separation between service and implementation
needs to be emphasized even further, in particular using rich
service interfaces that include semantic descriptions and that
expose extra-functional information as well (see also below).

Looking at the example of Smart Cities, this semantic
interoperability takes place at access points to the subsystem.
Within ITS, standardization admits V2V communication, but
for large scale data recording, semantic interoperability de-
scribing the meaning of data is more natural such as to avoid
complex datastructure standardization efforts.

C. Emergence

Emergent properties refer to properties exhibited by the
system as a whole that cannot be attributed to any of its
subsystems in isolation[11]. Examples are extra-functional
properties like latency and throughput as well as security,
reliability and availability, which typically arise from system
behavior over time. Hence, also the term emergent behavior is

Concept ML ML assumptions SoS
Subsystem
integration

• Horizontal and vertical
integration

• Interface and function
definitions based on de-
sign & decomposition

• Reduce coupling, maxi-
mize cohesion

• Subsystems have no pri-
vate goal

• Architecture frozen in
early design stage

• Known (and controlled)
data and control flow

• Requirements and
properties of subsystems
known upon integration

• Uncorrelated requirements:
– Functions of subsystems defined by original,

independent purpose
– Subsystem behavior defined by internal pro-

cesses and state
• Competition of control: competing control flows

from SoS integration and own function of subsys-
tem

• Architectural diversity:
– Each subsystem has its own architectural prin-

ciples
– Fully independent lifecycles

Interoperation:
• discover interface
• understand and use in-

terface functions
• understand interface se-

mantics

• Contained in design
(code)

• Standardization
• Late binding, standard

descriptions (RDF,
OWL, SOA)

Embedded in code:
• Knowledge about inter-

face semantics
• Knowledge about par-

ticular technologies

• High-level description of goals and services (se-
mantic interoperability)

• Rich service interfaces, including extra-functional
properties

• Extend late binding techniques
• Negotiation

Emergence • Addressed within the ar-
chitecture

• Weak

Emergent properties
are addressed in
(de)composition

• Make behavioral properties explicit at subsystem
boundaries (rich interfaces)

• Weak (whitebox), strong (blackbox)
• Directed control and selforganization

TABLE I
Summary of properties and comparison between Monolithic Systems and SoS

often used. While in an ML emergent properties are typically
addressed within the architecture giving them a place in
the process of hierarchical decomposition, within SoS these
properties require explicit attention at subsystem boundaries.
In line with the discussion on interoperability, these properties
must be managed at subsystem interfaces.

Because of the characteristics of SoS (e.g. independent
evolution) there is an intrinsic uncertainty about the effect
of operations, about the effect of failures etc. This must be
taken into account at subsystem boundaries, in particular,
by adopting failures, unpredictable behavior and conflicts of
control as the natural mode of operation rather than as the
exception.

For SoS, emergent functionality is identified as a defining
property. Such emergent functionality is achieved through
interoperation. Since we cannot expect to have direct and
detailed control within a subsystem, required emergent func-
tionality must be the result of policy specification at subsystem
boundaries or of standardization. The emergence can further-
more be the result of directed control (see below), or from
self-organization.

Chalmers[5] discriminates weak and strong emergent behav-
ior based on whether the behavior can be deduced from the
subsystems. Within SoS the emergent behavior is typically
weak when assuming a white box situation in which all
subsystems are transparent. However, since this is most often
not the case, the emergent behavior is perceived as strong
when it cannot be computed from the behavior specification
at interfaces.

Emergent behavior in our example of ITS concerns V2V
applications, which include cooperative driving, warnings and
prevention. Cooperative driving, like platooning, is a complex
control problem, which shows that such emergence is a
complex matter. In order to establish such behavior, resource
reservations and guarantees at interfaces are required.

Table I gives an overview.

III. SYSTEMS OF SYSTEMS ENGINEERING

A. Classification

Maier[12] discerns three types of SoS: virtual, directed, and
collaborative. A directed SoS looks mostly like an ML with
a centralized control. It means, in fact, that the restriction of
managerial independence is dropped. The distinction remains
that subsystems can also function autonomously. In a collabo-
rative SoS the centralized control cannot enforce cooperation.
Instead, applications rely on the voluntary collaboration of
subsystems. In a virtual SoS there is no central control. It
lacks a central agreement process upon purpose; this just
emerges from the constituent systems. In all three cases, but
especially in the last two, a signaling type of interaction
(“commands”) is not the right mode; instead, interoperation
is based on negotiation. In a directed SoS this negotiation
entails obtaining and exercising control in a manner similar to
supervisory control, subsequently orchestrating the behavior
of the subsystems. For a collaborative SoS the negotiation
entails the decision on a shared goal while for a virtual SoS
the decision on a shared goal is very localized.

Our Smart City example is most likely a directed SoS. The
ITS example is at least collaborative but also has character-
istics of a virtual SoS, especially for the safety applications
that have a very localized goal. With a decrease of explicit
control, emergence becomes more important. For predictabil-
ity, specification of budgets at interfaces, standardization and
certified behavior will be vital. By using policies at interfaces
we separate the (policy) negotiation from interactions.

B. Engineering

The research reported in the SoS domain is mainly of a
reflective nature: researchers and practitioners recognize that

the problems they encounter go beyond traditional system
design and integration. In order to increase understanding they
have generalized and subsequently taxonomized the concepts
and the problems, as summarized above. Keating et al.[2]
discuss SoS engineering (SoSE) in combination with systems
engineering and identify a number of differences. They explain
that an SoSE process must address design issues differently
from traditional systems engineering in view of the given
characteristics, and address system evaluation and evolution
as well as system transformation for SoS DSL-based code
generation is a technique that supports this.

This work seems to regard adaptation of code as part of
the integration. However, independent evolution interferes with
this. Because of this independent evolution, Integration of SoS
is expected in a late stage of the life cycle, e.g. during or after
deployment, except, possibly, for a directed SoS. This also
advocates the network as the integration point.

Lewis et al.[9] describe SoSE as addressing a double
challenge, viz., of generating responses extremely flexibly in
changing situations while collaborating effectively across sys-
tem boundaries. They define an abstract lifecycle addressing
the SoS software development consisting of three steps:

1) The independent subsystems contribute a pool of software
elements.

2) SoS engineers search through this pool for elements to
build integrated SoS capabilities.

3) Subsequently, the relation between the SoS and the orig-
inal subsystem needs to be established. The nature of
this relation defines the dependencies between subsystem
and the SoS. For example, if the SoS application requires
access to certain data, the subsystem must allow this
access, which has to be aligned with the local security
policies.

This lifecycle appears to approach the design problem from a
similar perspective as Component-Based Software Engineer-
ing, i.e., by composing functionality from existing compo-
nents. The resulting problems are resolved during or after
this composition by (re)configuration. Not all problems can be
solved in this way. For example, performance problems and
control conflicts might need refactoring. In addition, similar
to the previous case the approach does not take into account
the fact that subsystem lifecycles have become truly indepen-
dent. This independence would cause repeated invocation of
the SoSE engineering process upon changes in any of the
constituent subsystems. Instead, we need to develop an SoSE
process in which functionality of a subsystem is represented by
services using rich interfaces that admit management of extra-
functional properties. Such a specification will be an explicit
requirement on the further evolution of subsystems. DSLs can
be very useful here as they can be used to describe these
interfaces.

In spite of this, the state-of-the-art for MLs is relevant to
take into account when considering SoS engineering. The role
of reference designs and architectures (e.g. the time-triggered
architecture[10], reference architectures for IoT[6]), integra-
tion verification and tools for that, application of standards for
connectivity and middleware (e.g. AUTOSAR), ever increas-
ing use of simulators, software synthesis/code generation, and

INTEGRATION AND COORDINATION PLATFORM

 Urban
 subsystem 2

Adaptation

Policies

Control / Data

Application 1 Application 2

 Urban
 subsystem 1

Local
App

Service
Discovery

Adaptation

Local
App

legacy collaboration

Discovery
(subsystems,
services)

Coordination
(policies, intra-
subsystem)

Control / Data

Fig. 4. Proposed architecture for the integration of urban systems. The
subsystems connect to a coordination layer using interfaces that give con-
trolled access to the resources of the subsystem. Service discovery and policy
negotiation form the basis for subsequent control and data flow. By adding an
application developers API the layer has a north and a south API. Developers
need similar access to develop distributed applications using service discovery
and policy establishment, but now across subsystems.

verification tools is evident and increasing. Rather new and
very useful for SoS are fast integration techniques like smart
adapters, and system-level awareness of control of operations.
These techniques are only partly available.

The engineering of applications in the Smart City example
really calls for an intermediate layer as described in Fig.4
that avoids a pairwise interaction with an explosion of de-
pendencies. The design of collaborative applications in the
V2V domain is based on standardization, extensive analysis
and certification because of the safety criticality nature. It
is an example where the interactions can be designed and
foreseen in advance at the expense of reduced operational
independence. Aspects of legacy and evolution must still
be taken into account. Collaborative applications in the V2I
domain might follow a similar structure as in Fig.4, separating
application development from the data collection systems that
are vendor or fleet owner specific.

C. Architectural principles and styles

The essential ingredients of SoS follow from the indepen-
dence of the subsystems. The architecting principles must
therefore address this independence. Operational and manage-
rial independence require negotiations at interfaces to obtain
access and budgets. Evolutionary independence requires loose
coupling techniques and binding based on introspection and
rich descriptions. Relevant styles include the following. The
Service Oriented Architectural style provides explicit interface
specification, separates implementation from functionality and
avoids hidden state. Publish & Subscribe styles separate co-
operating parties both in time and space. The RESTful style
simplifies the interaction between parties by removing state.

SoSE calls for fault tolerance techniques taking deviating
behavior as the norm, leading to reflective systems that ex-
amine interactions and determine the health of themselves[7].
Explicit reasoning of the system about its own health, com-
paring its state with expectations is a relatively new field,
closely related to adaptive systems and scenario detection

mechanisms. Machine learning and anomaly detection have
been around for some time, but only very application-specific.

In the literature, four architectural aspects are further em-
phasized. The first is that SoS is based on communication
and networking. The required flexibility and decoupling from
operating systems and languages, the robustness for device
failures and the likes are naturally achieved by placing system
boundaries at networks. Although it might be debatable, this
seems a good first choice.

Second, the concept of SOAs is mentioned as a relevant
style since it decouples clearly the concepts of service, im-
plementation and specification. The current uses of SOA,
however, might not be adequate as it often assumes shared
ontologies and centralized discovery mechanisms that may
not be appropriate across systems. In addition, there is no
clear and integrated general concept of negotiation. The use of
services and explicit specifications admits dynamic integration
using model-based adapter technology, where formal methods
support compliancy with specifications on the basis of model
descriptions.

Third, some authors mention that in order for systems to
evolve further, stable intermediate subsystems are required.
Hence, in order to build larger systems with more functionality
we have to leave the subsystems closed, and build on top of
their interfaces. Leaving a system closed means really not in-
terfering with its private architecture, operation, management,
evolution, installation etc., but it also means that the subsystem
is essentially self-contained in terms of self-adaptation and
management. This includes join-and-leave scenarios that de-
scribe what happens with the system if constituent subsystems
are joining and leaving at runtime.

Fourth, the following may be considered as a general
principle: any addition or change to the SoS must at least
retain existing functionality and quality within the subsystems.
Differently phrased, changes must not make things worse, or
the optimist variant: changes make things better.

Applying this to the example of ITS, vehicles will contin-
uously monitor the situation around them in order to observe
discrepancies between their own state and the state reported
by devices around them. Also, internal monitoring procedures
will be in place in order to evaluate their own healthiness.
Interaction will be stateless, if possible, each vehicle listening
to the vehicles in range. For the Smart City example the
integration is best done using the SOA style as also indicated
in Fig.4.

IV. DISCUSSION

We have discussed Systems of Systems integration by exam-
ining the literature in relation to two examples: Smart Cities
and Intelligent Transportation Systems. We see the latter as
an IoT application with collaborative scenarios at two different
levels: V2V and V2I. A Smart City can also be regarded as an
IoT system when we consider embedded sensing and actuating
as being available for integrated scenarios. The discussion led
to an increased understanding of the engineering problems
around SoS in general and IoT in more depth. It gives us
terminology to explain phenomena that we see occurring in
practice.

The ITS is also a typical example of Cyber Physical Systems
(CPS). CPS result from the advances in ICT when applied
to real-time embedded systems. While in IoT concerns of
scalability and management are dominant, in CPS predictabil-
ity and dependability are the drivers. In the context of SoS
this is particular challenging since guarantees are required
across independent domains. We see that these CPS and IoT
now grow together, with dependability concerns reaching IoT
systems and scalability and management concerns reaching
CPS. We discuss three aspects in some more detail.

First, the managerial independence in IoT is particularly
important with respect to data. Data generated by smart
phones, in-home equipment, vehicles or any other data source
is easily transported to a location in the cloud. This means
that the data leaves the domain of the data owner (DO) to a
service provider (SP). This SP in turn is subject to rules made
up by public authorities (PA). For example, the PA may require
the SP to give access to the data without DO being involved
in any way. Proposals to deal with this include changing the
reach of DO by having a private store under control of DO in
which each SP stores its data of DO. Other solutions include
policies and country restrictions for SP about data handling
and storage.

Second, SoS increasingly have an aspect of inclusion of
third parties for the development of applications. For example,
in ITS third parties want to develop new safety applications
or applications on top of cloud-collected data from vehicles.
Examples include energy/charging optimization and vehicle
sharing. Similarly, development of Smart City applications
would better be done by third parties. This leads to a design
in which there is an API for developers on the one hand
and an API for subsystems on the other side. The devel-
oped applications lead to configuration and behavior of the
subsystems through a coordination layer. Typically this is
referred to as north (for application programmers) and south
(for subsystems) APIs respectively, see e.g., Software Defined
Networking[1]. The situation is not uncommon to an Operating
Systems API that manages resources that attach to it via plug
and play technology.

Third, as we have explained, subsystems provide access by
exposing functionality and resources and admitting reserva-
tions at interfaces. These rich interfaces are made available to
application builders and include discovery of services inside
the subsystem as well as control and data flows. Combining
these ideas yields a diagram as in Fig. 4 for the case of Urban
Systems.

V. CONCLUSION

In this paper we discussed System of Systems development
and integration characteristics and discussed their impact on
two examples relating to the Internet of Things: Smart Cities
and Intelligent Transportation Systems. The network was
found to be the natural point of integration. The main char-
acteristics of SoS, managerial, operational and evolutionary
independence are relevant for these examples. We introduced
three more aspects that characterize SoS integration, viz.,
architectural diversity, competition of control and uncorrelated

requirements. The analysis provided terminology and a recog-
nition of common issues and complications in IoT systems.
Our discussion yields a generic integration architecture based
on rich interfaces that admit reservation, access control and the
computation of extra-functional properties of compositions.

VI. ACKNOWLEDGEMENTS

I want to thank Pieter Cuijpers and Tanir Ozcelebi for
their help in preparing the paper. I thank Louis Almeida for
stimulating discussions around the topics of this paper. The
research leading to this paper was partially funded by the Eu-
ropean Unions Seventh Framework Program (FP7/2007-2013)
for CRYSTAL Critical System Engineering Acceleration Joint
Undertaking under grant agreement No 332830.

REFERENCES

[1] X.Nguyen K.Obraczka B.A.A.Nunes, M.Mendonca. A survey of
software-defined networking: Past, present, and future of programmable
networks. IEEE Communications Surveys & Tutorials, 16, 2014.

[2] R.Unal D.Dryer C.Keating, R.Rogers. Systems of systems engineering.
Engineering Management Journal, 15, 2003.

[3] D.A.Fisher. An emergent perspective on interoperation in systems
of systems, TECHNICAL REPORT CMU/SEI-2006-TR-003, ESC-TR-
2006-003, 2008.

[4] D.DeLaurentis. Understanding transportation as a system of systems
design problem. In 43rd AIAA Aerospace Sciences Meeting, Reno,
Nevada, AIAA-2005-0123, 2005.

[5] D.J.Chalmers. Varieties of emergence. In The Re-Emergence of Emer-
gence: The Emergentist Hypothesis from Science to Religion. Oxford
University Press, 2006.

[6] Bassi et al. Enabling Things to Talk, Designing IoT solutions with the
IoT Architectural Reference Model. Springer Open, 2013.

[7] J.J.Lukkien E.U.Warriach, T.Ozcelebi. Fault-prevention in smart envi-
ronments for dependable applications. In IEEE Eighth International
Conference on Self-Adaptive and Self-Organizing Systems, pages 183–
184, 2014.

[8] UPnP Forum. Upnp device architecture 2.0, 2015.
[9] P.Place S.Simanta D.Smits L.Wrage G.Lewis, E.Morris. Engineering

systems of systems. In IEEE International Systems Conference, Mon-
treal, 2008.

[10] G.Bauer H.Kopetz. The time-triggered architecture. Proceedings of the
IEEE, 91:112–126, 2003.

[11] L.Steels. Towards a theory of emergent functionality. In Proceedings of
the First International Conference on Simulation of Adaptive Behavior,
pages 4452–461, 1991.

[12] M.W.Maier. Architecting principles for system of systems. Systems
Engineering, 1(4):267–284, 1998.

[13] Office of the Deputy Under Secretary of Defense for Acquisition
and Technology. Systems and software engineering. systems engi-
neering guide for systems of systems, version 1.0, Washinton, DC:
ODUSD(A&T)SSE, 2008.

[14] Th.Erl. Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice-Hall PTR, 2005.

