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ABSTRACT

Time-constrained networks have demanded so far for deter-
ministic modeling and analysis in order to guarantee their
worst-case behavior. With this work we intend to apply both
probabilistic modeling and probabilistic analyses to investi-
gate such networks. The probabilistic framework we propose
aims at guaranteeing confidence levels, in the form of proba-
bilities, to the network timing constraints; the deterministic
case remain a particular case, the worst-case, within the
probabilistic framework. We focus on probabilistic bounds
for defining probabilistic interfaces to network components
and we study the way that probabilities propagate within
networks by accounting for the dependences and the inter-
actions between network components. Finally, we define and
apply probabilistic performance metrics for evaluating net-
work behavior with different degree of confidence due to the
probabilities.

1. INTRODUCTION
Within todays embedded systems plenty of functional-

ities and non-functionalities coexist participating defining
the system correct execution. Due to that, system interac-
tions have reached a high complexity such that determinis-
tic worst-case bounds become overly pessimistic in modeling
system behavior. The pessimism of both modeling and anal-
ysis from the worst-cases, together with the resource over-
provisioning for accommodating all the timing constraints
that systems demands are not affordable anymore. Nonethe-
less, worst-cases remain fundamental for providing safety
guarantees and certification.
Networked embedded systems exasperate the increasing

complexity trend for embedded systems, since they compose
of multiple elements, included the communication network,
any of which may be unpredictable or extremely costly to be
made predictable. Even highly timed-constrained networks
such as Avionics Full-Duplex Switched Ethernet (AFDX)
can have unpredictabilities at their inputs and/or variabil-
ities arising from the network components, e.g. the AFDX
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switches. The dependences and the interactions between
network elements as well as messages accessing them ex-
ploit network unpredictabilities. All of that makes deter-
ministic models too pessimistic for the networks. The solu-
tion is to accurate model unpredictabilities and to character-
ize networks behavior while reducing the over-provisioning:
the solution demands for more flexibility than deterministic
models.

Uncertainties and variabilities make networks resemble
probabilistic processes with probability laws at describing
their behavior. Being closer to what really happens, prob-
abilistic models are less pessimistic than deterministic ones
based only on worst-cases. Moreover, probabilistic models
better cope with the different criticality levels that safety-
critical networked systems might require. Out of the proba-
bilistic modeling it has to be developed probabilistic analy-
ses. As there exist different time-critical constraints within
networks, the use of probability has to face that and provide
an edge with respect to the classical deterministic analyses.
The probabilistic analysis have to be able to account for all
the probabilistic effects while providing the accuracy and
the flexibility to guarantee system timing constraints.
Contributions. In this paper we formalize the component-
based probabilistic analysis approach which faces the natu-
ral variable behaviors within networks, e.g. the variability
of the message activations or the message payloads (mes-
sage lengths), the variability of the resource provisioning
(bandwidth) to transmit messages, and the queue behavior
variability. The probabilistic analysis approachmakes use of
the probabilistic models for either message parameters (acti-
vations or payloads/lengths) or network component param-
eters (bandwidth or queue) might have. The probabilistic
analysis extends the notion of bounding curves with prob-
abilities defining probabilistic bounds, where the probability
expresses the confidence there is on the bound. Then, it ap-
plies probabilistic comparisons between bounds to guarantee
timing constraints at both component and whole network
levels. The probabilistic analysis is component-based as it
considers the system composing component with their prob-
abilistic representation (component/interfaces). Interesting
and challenging are the guarantees to the network behavior
that can be provided with the probabilities. With our prob-
abilistic framework we are able to provide both hard and
soft guarantee to the network component timing behavior
as well as to the whole network timing behavior.
The probabilistic network modeling and analysis framework
we formalize and we apply hereby is named probabilistic
Calculus (pC).
Organization of the paper. In Section 2, we introduce



the probabilistic modeling to networks tackling with both
message flows and resource provisioning with probabilistic
bounds. Section 3 defines the basics for modeling network
components as probabilistic components. It presents also
the algebra for composing probabilistic bounds (bounding
curves and probabilities) within the networks. It describes
also how to model a FIFO queue network component with
probabilistic bounds. In Section 3 the probabilistic perfor-
mance metrics are formalized. Section 4 illustrates the theo-
retical framework and the potential of probabilistic analysis
to networks with a test case example. Finally, Section 5 is
for conclusions and future work.

1.1 State of the Art
The Network Calculus (NC), [1], is widely applied to in-

vestigate networks. It makes use of deterministic bounds to
characterize both message flows and network elements tim-
ing behavior. Although pessimistic, the NC guarantees cer-
tifiable performances of time-constrained avionic networks
such as AFDX, [2, 3].
The Real-time Calculus (RTC) [4] instead, tackles with

tasks and scheduling elements offering bounds to their tim-
ing behavior. Both NC and RTC have algebras to compose
bounds and provide behavior analyses to either component-
based networks or component-based task execution systems.
For the sake of comprehension, in this work we consider
NC and RTC equivalent in computing bounding curves, al-
though there are significant differences between their alge-
bras; see [5] for an insight on the NC and RTC differences.
Recently, probabilistic instances of Network Calculus and

Real-Time Calculus have been introduced for the modeling
and the analysis of realistic networks, where variabilities are
the normal behavior. Both the Stochastic Network Calcu-
lus (SNC), [6, 7] and the probabilistic Real-Time Calculus
(pRTC), [8, 9, 10] contribute to probabilistically modeling
flows and resource provisioning with probabilistic bounding
curves. In particular, few works make use of SNC for study-
ing networks, focusing on specific system parameters such
as delays and backlogs, [11, 12, 13]. With this work we ap-
ply both SNC and pRTC basics to define the pC for network
modeling and analysis that we apply for investigating timed-
constrained embedded networks from probabilistic models
of message flows. As we stress the probabilistic nature of
message flows, we apply probabilistic analysis to the prob-
abilistic component-based representation of the networks.
The flexibility brought by the probabilities allows for more
accurate network timing behavior characterization than de-
terministic approaches, and the possibility of handling both
hard and software timing constraints.

2. PROBABILISTIC MODELING

BACKGROUND
A message flow can be seen as consecutive message in-

stances which repeat periodically while exhibiting variabil-
ities at both arrival time or payload/length per instance.
Each message parameter, due to variabilities from possible
sources of uncertainties, can be represented with a random
variable1. The probabilistic representation of a message mi

is through a distribution Mi and its associated probabilis-

1A random variable is a variable whose value is subject to
variations due to chance; it can take on a set of possible
different values, each with an associated probability.

tic distribution function (pdf)2 pdfMi
which describes the

variability of mi. In case of discrete distribution it is:

pdfMi
=

ki
∑

k=0

P (Mi = xk
i )δx=xk

i
(1)

where P (Mi = xk
i ) is the probability of having value xk

i for
the message parameter (either arrival or payload) within the
execution streamline. In the following, this will be noted as :

pdfMi
=

(

x1
i · · · xki

i

P (Mi = x1
i ) · · · P (Mi = xki

i )

)

, (2)

with all the possible values xj
i , and

∑ki

j=1 P(Mi = xj
i ) = 1

by definition.

The cumulative distribution function (cdf) cdfMi(x)
def
=

P (Mi ≤ x) and the inverse cumulative distribution func-

tion (1-cdf) 1-cdfMi(x)
def
= P (Mi > x) are alternative rep-

resentations to the pdf. In particular, the 1-cdf outlines the
exceedence thresholds as P (Mi > x).

With Mi a continue distribution, it is P (a ≤ Mi ≤ b) =
∫ b

a
pdfMi

(y)dy, cdfMi(x) = P (Mi ≤ x) =
∫ x

−∞
pdfMi

(y)dy,

and 1-cdfMi(x) = P (Mi > x) =
∫ +∞

x
pdfMi

(y)dy.

Worst-case distributions.
In this paper we assume to have worst-case distributions

representing message or network elements parameters. By
that we mean considering distributions which are greater
than or equal to any possible parameter observed [emphiri-
cal] distribution in any possible execution condition. See [14]
for an insight on the definition of worst-case distributions
for the task execution times and the difference between the
observed distributions, the worst-case distributions, and ap-
proaches for safe worst-case estimates.

The worst-case distributions already accounted for the
effect of other system components concurrently executing,
e.g. multiple messages accessing the resource to transmit,
different queues/switches with variable inputs, etc.. With
the worst-case distributions it is possible to assume the sta-
tistical independence between system component parame-
ters, thus the independence between components. In the
rest of the paper we assume the input M as discrete worst-
case distributions, even if our analysis framework is generic
enough to approach continuous inputs. Furthermore, the
pC could face the different probabilistic parameter model-
ing approaches developed so far, [15, 16, 17, 18].

2.1 Probabilistic Flows
A possible representation for a real message flow is through-

out a cumulative stochastic process Xi(t) which counts the
amount of resource (bandwidth) requested in a time inter-
val [0, t). Considering the function Ri(t) as the cumula-
tive amount of actual bandwidth requested by mi up to
time t, it is possible to define a probabilistic bound R+

i to
mi upper constraining Xi, up to any given probability pi :

R+
i (t)

def
= sup{Ri(t) |P (Xi(t) ≤ Ri(t)) ≤ pi}.

The tuple (R+
i (t), pi) represents a probabilistic bound to

the mi trace in the time domain. pi is a measure of the ac-
curacy/confidence of such bound, since it is the probability

2By calligraphic letters we intend probability distributions,
while non-calligraphic letters are for alternatively probabilis-
tic events or deterministic values, with no ambiguity.



that Xi(t) is upper bounded by the superior R+
i (t) of the

Ris. The case pi = 1 is the deterministic one where R+
i (t)

bounds Xi without fail.
The arrival curve αi(∆, ·) is an abstraction to message

flow in the interval domain as an upper bound to all the
admissible traces Ri of such stream; αi(t − s, ·) : Ri(t) −
Ri(s) ≤ αi(t− s, ·), ∀s < t and ∆ = t− s, as stated by the
NC [1]. Parameterizing the arrival curve with a variable x,

the upper bounding request curve αi(∆, x)
def
= αi(∆, ·)+x is

such that αi(t− s, x)− [Ri(t)−Ri(s)] ≥ 0 for all 0 ≤ s ≤ t
and ∆ = t− s.
It is possible to define the probabilistic request curve, in-

spired by [7, 8, 9], as follow.

Definition 2.1 (Probabilistic request curve). In a
probabilistic framework, the request curve αi(∆, x) of a re-
source request Ri from message flow mi is a non-decreasing
non-negative function which satisfies

P (αi(t− s, x)− [Ri(t)−Ri(s)] ≥ 0) ≤ p(x) (3)

for all 0 ≤ s ≤ t, x ≥ 0 and ∆ = t − s. p(x), p(x) ∈ [0, 1]
and p(0) = 0, specifies the confidence on αi(∆, x) being an
upper bound to Ri. The probabilistic request curve of mi is
the couple 〈α(∆, x), p(x)〉.

Definition 2.1 leads to a set of probabilistic request curves
α(∆, x) from the varying x. Each curve α(∆, x) has a confi-
dence p(x) associated of being an upper bound to the mes-
sage behavior, i.e. the resource demand. The function p(x) :
N+ → [0, 1] behaves like a cumulative distribution function:
p(0) = 0 for the lower bound αi(∆, 0) = αl

i, p(x
max) = 1 for

the deterministic upper bound αi(∆, 0) = αu
i valid 100% of

the time, and the values in between for probabilistic upper
bounds. p(x) is a non-decreasing non-negative function.
It is possible to build a distribution A out of the set of

probabilistic request curves obtained varying x. The values
of such distribution are the curves α(∆, x), while the proba-
bilities associated comes from the p(x)s. In particular, it is
cdfA(x) = p(x). A is such that:

A =

(

α(∆, x)
P (α(·, x)) = pdfA(x),

)

, (4)

where α(∆, x) are the distribution values or we can think
about the values of A as the indexes x as there is the unique
association x → α(∆, x). The probability threshold cdfA(x)
represents the accuracy/confidence of the α(∆, x) bound.
Equivalent representation toA is the couple (α(∆, x), cdfA(x)).
As a reminder, the probabilistic approach we are devel-

oping keeps the worst-case deterministic condition α(∆, x∗)
such that cdfA(x∗) = 1. In case of distributionsA with finite
support, the worst-case would be α(∆, xmax); in case of not
finite support distributions the worst-case is definable at the
limit, or it could be defined the worst-cases at confidences
very close to 1, e.g. 〈α(∆, x∗), cdfA(x∗) = 1 − 10−30〉 or
〈α(∆, x∗), cdfA(x∗) = 1 − 10−50〉. In this paper we assume
to have discrete and finite support input distributions Ms,
hence discrete and finite support As.

2.1.1 Probabilistic Bounding Correspondence

It is possible to compute the probabilistic request curves
from probabilistic representations like Equation (2) for the
message i) inter-arrival times (the minimum inter-arrival
time T ) with Ti the distribution representing inter-arrivals
variability for mi, and ii) the message payload C, with Ci the

distribution representing payload variability that mi could
have.

Probabilistic Inter-Arrivals.
With Ti, the set of probabilistic request curve of mi comes

from Inequality (3) and Condition (4).

αT
i (∆, x)

def
=







αl,T
i (∆) if x = 0, T = Tmax

⌈ ∆
Tx
i
⌉ · Ci if x ∈ [1, li)

αu,T
i (∆) if x ≥ ℓi, T = Tmin,

(5)

where x is the index through which differentiate the bound-
ing curves and the probability thresholds associated. For
any interval of size ∆, each curve in this set upper bounds a
certain percentage of message mi activations depending on
the value assigned to parameter x.

The associated distribution AT
i is defined such that:

cdfAT
i
(x)

def
=







0 if x = 0
∑x

j=0 pdfTi
(T j

i ) if x ∈ [1, li)
1 if x ≥ li

(6)

The pdfTi
is also the pdf of the probabilistic curve distri-

bution, thus pdfAi
= pdfTi

. (αT
i , cdfAT

i
) includes also the

lower bounding curve αl,T
i (∆) for consistency reasons: αl,T

it the only one with a probability of upper bounding the
message behavior equal to 0. αu,T

i (∆) is the deterministic
upper bound 100% true.

Lemma 2.2 (Bounds from Inter-arrivals, [10]). Let
〈αT

i (∆, x), cdfAT
i
(x)〉 be defined as in Expressions (5) and (6),

then αT
i (∆) = ⌈ ∆

Tx
i
⌉ · Ci upper bounds all the request curves

of τi, in any interval of length ∆ such that Ti ≥ T x
i with a

probability cdfAT
i
(x) = cdfTi(x).

Probabilistic Payloads/Lengths.
With the pdf Ci describing the message payload, it is pos-

sible to define the following set of request curves relative to
the variable payloadmi, with x the index of the probabilistic
bounding curves.

αC
i (∆, x)

def
=







αl,C
i (∆) if x = 0, C = Cmin

⌈ ∆
Ti
⌉ · Cx

i if x ∈ [1, ki)

αu,C
i (∆) if x ≥ ki, C = Cmax

(7)

For any interval of size ∆, each curve in this set upper
bounds a certain percentage of mi with the associated cdf
defined as follows.

cdfAC
i
(x)

def
=







0 if x = 0
∑x

j=0 pdfCi
(Cj

i ) if x ∈ [1, ki)
1 if x ≥ ki

(8)

The set of probabilistic arrival curves
(

αC
i (∆, x), cdfAC

i

)

defined with Equation (7) and Equation (8) represents the
different bounding curves obtained varying the message pay-
load. Within (αC

i , cdfAC
i
) there is the lower bounding curve

αl,C
i (∆, ·) for consistency reasons being the only certain not

to upper bound any message behavior equal to 0. αu,C
i (∆)

is the deterministic upper bound 100% true.



Lemma 2.3 (Bounds from Payloads, [10]). Let
〈αC

i (∆, x), cdfAC
i
〉 be defined as in Expressions (7) and (8),

then αC
i (∆) = ⌈ ∆

Ti
⌉ ·Cx

i upper bounds all the request curves

of τi such that Ci ≤ Cx
i in any interval of length ∆. The

probability threshold is cdfAC
i
(x) = cdfCi(x).

Figure 3(a) shows an example of probabilistic request curve
obtained varying the index parameter x.

Example 2.4. Let mi = (Ci, Ti) be a periodic probabilis-

tic message where Ci =

(

2 3 4
0.5 0.4 0.1

)

is the probabilis-

tic payload which could vary from one instance to another,

and Ti =

(

15 12 10
0.1 0.2 0.7

)

is the probabilistic inter-arrival

time of the message instances. The probabilistic resource re-
quest Ai is represented by Figures 1 and 2 describing the
upper bounding curves of mi and the distribution, respec-
tively.

∆

resource

Figure 1: Probabilistic curve: ordered multiple
curves αi(∆, x).

0 0.05 0.1
0.39 0.37

0.02 0.07

0 1 2 3 4 5 6

0 0.05 0.15

0.54

0.91 0.93 1

0 1 2 3 4 5 6

Figure 2: Distribution function pdfAi
(x) and cdfAi(x)

indexed by x.

It is worthy to note that the probabilistic modeling of
message flows (Equation (4), (5),and/or (7)) is straightfor-
ward applicable to the characterization of virtual links with
AFDX networks.

2.2 Probabilistic Resource Abstraction
For generalization purposes we can follow the same rea-

soning for arrival curves, i.e. the resource curves, with the
service curves, i.e. the request curves. This way, we are
capable of probabilistically modeling resource provisioning
within networks.
Naming S(t) the total amount of resource provided at

time t, the resource provisioning is characterized by consid-
ering lower bounding service curve β in the interval domain,

namely resource curves. β(∆, ·) ≡ βu(∆, ·) abstracts the
resource provisioning; with ∆ = t − s it is S(t) − S(s) ≥
β(t− s, ·)∀s < t. The resource provided can be modeled ac-
cording to some cumulative stochastic process Y(t), and the
probabilistic resource bounds is S(t)− = inf{S(t) | P(Y(t) ≥
S(t)) ≤ p}.

Then parameterizing the resource provisioning function
with a variable y, it follows that for all 0 ≤ s ≤ t and

∆ = t − s, the lower bounding service curve β(t − s, y)
def
=

β(∆, ·)−y is such that [S(t)−S(s)]−β(t−s, ·) ≥ y. Thus we
can define the probabilistic resource curve by the definition
of bounding probability, [7, 8, 9].

Definition 2.5 (Probabilistic resource curve). The
resource curve β(∆, y) of a resource provisioning S is a non-
decreasing non-negative function which satisfies

P ([S(t)− S(s)]− β(t− s, ·) + y ≥ 0) ≤ p(y) (9)

for all 0 ≤ s ≤ t, y ≥ 0 and ∆ = t−s. p(y) is the probability
associated to β(∆, y). The probabilistic resource curve is
representable as 〈βl(∆, y), p(y)〉.

With the notion of probabilistic curve for resource provi-
sioning, 〈β(∆, y), cdfB(y)〉 we have a set of bounding curves
β(∆, y), each with the changing y and a probability associ-
ated (the confidence of being a lower bound). cdfB(y) such
that cdfB(y) = P(B ≤ y); see Figure 3(b) there is as an
example of probabilistic resource provisioning curve. The
probability distribution related to (β(∆, y), cdfB(y)) is:

B =

(

β(∆, y)
P (β(·, y)) = pdfB(y),

)

, (10)

with β(∆, y) the values of B and pdfB(y) is the confidence
on β(∆, y) being a lower bound. Equivalent representation
to B is the couple (β(∆, y), cdfB(y)).

∆

α
(∆

,
·)

x

〈α(∆, xmax), 1〉

(a) Probabilistic request
curve: the probability of
bounding flow resource
requests decreases as
the quality of the up-
per bound decreases,
∀ xi ≤ xj , α(∆, xi) ≤
α(∆, xj), cdfA(xi) ≤
cdfA(xj).

∆

β
(∆

,
·)

y

〈β(∆, xmax), 1〉

(b) Probabilistic resource
curve: the probability
of bounding the resource
provisioning decreases as
the quality of the lower
bound decreases, ∀ yi ≤
yj , β(∆, yi) ≥ β(∆, yj) and
cdfB(yi) ≤ cdfB(yj).

Figure 3: Probabilistic request and resource curves.

In Figure 3(b) an example of the sets of probabilistic re-
source curves where each curve has a probability/confidence
associated. The probability threshold cdfB(y) describes the
accuracy of the β bound. β(∆, xmax) with cdf(xmax) = 1
is the guaranteed upper bound (100% sure) to the resource
provisioning,[4, 10, 1]. Please note that for the service we
need to consider lower bounding curves; this guarantees the
safety of the analysis approach whenever comparing requests
and resources, like for [4, 10, 1].



3. PROBABILITY COMPOSITION
Whenever using probabilistic models for message flows,

the relationship between messages becomes statistical, in
particular it becomes statistical dependence. The joint prob-
ability, which expresses the composition between random
variables, is affected by the degree of dependence between
random variables. The input worst-case distributions as-
sumption guarantees independence between the parameters
as well as independence between the probabilistic bounding
curves. Thus, for a couple of message flow distributions Ai

and Aj , the joint probability is pdfAi,Aj
= pdfAi

⊗pdfAj
, as

the conditional probability pdfAi|Aj
= pdfAi

. The ⊗ oper-

ator is the convolution between distributions. In case of no
statistical independence it would be pdfAi,Aj

= pdfAi|Aj
⊗

pdfAj
= pdfAj |Ai

⊗ pdfAi
which is manageable knowing the

conditional relationship between Ai and Aj , for example
with the copula convolution [19].

3.1 Probabilistic Network Components
In both NC and RTC there exist output curves to a sys-

tem component. In particular, with networks we could name

outputs as the executed/processed flow α
′

, and the unused

resource β
′

for processing such flows. The probabilistic out-
put curves can be inferred by applying the relationship be-
tween the arrival and service inputs, [6, 7, 8, 9].
The probabilistic output request curve (output arrival curve)

is defined as the curve (α
′

(∆, x), cdfA′ (x)) with α
′

(∆, ·)
def
=

α⊘β(∆, ·)3 and the threshold probability pdfA′ (·)
def
= pdfA⊗

pdfB(·)
4:

A′
i
def
= (α′

i
def
= αi⊘β(∆, ·), cdfA′

i
(x)

def
= cdfAi · cdfB(x)). (11)

The probabilistic curve bounds the cumulative amount of
resource processed up to time t, R′(t), as follows:

P
(

α
′

i(∆, x)− [R′
i(t)−R′

i(s)] ≥ 0
)

≤ cdfA′(x). (12)

The unused resource is passed to other parts of the sys-
tem according to a specific strategy. The probabilistic ver-

sion of the residual curve 〈β
′

(∆, y), cdfB′ (y)〉 is such that

β
′

(∆, ·)
def
= β ⊘ α(∆, ·)5, and pdfB′ (·)

def
= pdfA ⊗ pdfB(·):

B′
i
def
= (β′ def

= β ⊘ α(∆, ·), cdfB′(x)
def
= cdfAi · cdfB(x)), (13)

with the output bounds such that:

P
(

[S′(t)− S′(s)]− β′(∆, y) ≥ 0
)

≤ cdfB′(y). (14)

Let us add few remarks on Equation (12), Equation (14),
Equation (11), and Equation (13). The probabilistic out-
puts (α′, cdfA′) and (β′, cdfB′) are obtained assuming inde-
pendence between inputs (α, cdfA) and (β, cdfB). This is
reasonable since there should not be dependence between
message flows α and resource provisioning β. Due to inde-
pendence, the joint probability, as the probability of having
both inputs present, comes from the convolution between the

3As defined in RTC [4] and by the notion of max-plus de-
convolution ⊘, [1].
4⊗ is the convolution between functions in the classical al-
gebra; ⊗ is the min-plus convolution for RTC curves, and ⊗
is the max-plus convolution.
5As defined in RTC [4] and by the notion of min-plus de-
convolution ⊘, [1].

input distributions. In case of dependence between flows and
resource provisioning, the output probabilities are the joint
probabilities in the general form, pdfA′ ≡ pdfB′ = pdfAi,B

=
pdfAi|B

⊗ pdfB, and computable once characterized the con-
ditional effect pdfAi|B

and pdfB|Ai
of one to the other.

Within a probabilistic framework there exist probabilistic
components for networks, where probabilistic interfaces are
described with the tuple ((α, cdfA), (β, cdfB), (α

′, cdfA′), (β′, cdfB′)).
The generic network component and the input/output bounds
forming the probabilistic interface to the component are il-
lustrated in Figure 4.

(α, cdfA)

(β, cdfB)

(α′, cdfA′ )

(β′, cdfB′ )

Figure 4: Interface of
a probabilistic network
component.

A1 A2

SWi

A′
1,A

′
2

Figure 5: FIFO net-
work component (e.g.
AFDX switch) with
two input flows.

3.1.1 FIFO

Equation (12) can be applied for modeling FIFO queue
components like the AFDX switches SW , Figure 5 for an
example. In there, the input interface has only message
flows, since the queue applies the whole bandwidth resource
assigned, β(∆, ·) = ∆. In order to compute resource out-
put, the resource provided to each flow have to be known.
Considering the case of two input probabilistic flows A1 and
A2, the resource provided to A1 is B1, and is computed as
the residual unused by A2, such that:

β1(∆, k) = β(∆, y)− α2(∆, x)

cdfB1(k) = cdfA2(x) · cdfB(y). (15)

Generalizing to more than two input flows, it is Bj such
that:

βj(∆, k) = β(∆, y)− αj(∆, x)

cdfBj (k) = cdfA
j
(x) · cdfB(y). (16)

The probabilistic curves can be cumulated as:

Aj(x) = ⊗k 6=jAk(x),

such that αj(∆, x) =
∑

k 6=j
αk(∆, x) and pdfA

j
(x) = ⊗k 6=jpdfAk

(x),

to have the total resource request from a number of flow
messages, thus compute the residual services.

From Equation (16) the probabilistic interface to FIFO
switch is ((α1, cdfA1), . . . (αn, cdfAn), (α

′
1, cdfA′

1
), . . . (α′

n, cdfA′

n
)).

3.2 Probabilistic Performances
With the [deterministic] NC it exists the notion of backlog

BL which comes from the combination of the arrival and
service curves:

B ≤ v(α, β) = sup∆≥0{α(∆)− β(∆ + τ)}}. (17)



BL is the vertical distance between the resource demand
and the resource provisioning curves. The delay DEL in
NC is defined as:

D ≤ h(α, β) = sup∆≥0{inf{τ ≥ 0 / α(∆) ≤ β(∆ + τ)}}, (18)

being the horizontal distance between α and β. Both backlog
and delay defines the performance of a network component.
With a probabilistic framework, due to the probabilis-

tic nature of α and β, it is possible to define performance
metrics like delay and backlog as random variables. The
probabilistic backlog is the couple (BL(k), p(k)) such that:

BL(k) = sup∆≥0{α(∆, x)− β(∆ + τ, y)}}

p(k) = cdfA(x) · cdfB(y),

with k = (x, y). The probabilistic backlog is then a distri-
bution BL ≡ (BL(k), p(k)) for which:

pdfBL =

(

BL0 · · · BLk

P (BL = BL0) · · · P (BL = BLk)

)

, (19)

where the BLk are the BL(x, y) values from α(∆, x) and
β(∆, y).
The probabilistic delay DEL =≡ (DEL(k), p(k)) is:

DEL(k) = sup∆≥0{inf{τ ≥ 0 | α(∆) ≤ β(∆ + τ)}}

p(k) = cdfA(x) · cdfB(y),

with the delay distribution DEL:

pdfDEL =

(

DEL0 · · · DELk

P (DEL = DEL0) · · · P (DEL = Delk)

)

,

(20)
where the value DELk = DEL(x, y) comes from α(∆, x)
and β(∆, y) .

3.2.1 Performance Composition

The end-to-end probabilistic delay of a message flow is
the the joint distribution among the delay distributions of
the components crossed by the message flow. The perfor-
mance of a component-based network can be composed for
probabilistic end-to-end delays. In case of independence be-
tween delays, the joint probability can be computed as the
convolution of the delays:

DEL = ⊗SWiDELi (21)

The independence between components, thus between de-
lays, is the consequence of the flow independence assump-
tion and the use of worst-case distributions. The same could
happen to the backlog.

4. SPREADING PROBABILITIES:

CASE STUDY
In this section we show how the probabilities combine

through network components and the network topology, thus
the way the flow relationship propagates within the net-
work. To investigate probabilistic networks we make use
of a probabilistic component-based simulator implemented
in R6. The simulator 1) computes probabilistic curves from
input parameter distributions, it 2) computes also the out-
put probabilistic curves for the network components already
modeled, and it 3) computes the network component perfor-
mance combining the probabilistic input curves. The net-

6https://www.r-project.org/

work topology is built by hand by connecting the probabilis-
tic components.

For this case study we consider an AFDX network ex-
ample with 4 flows (α1, α2, α3, and α3) and three queues
(the switches SW1, SW2, and SW3), as in Figure 6. We
assume α1 and α2 accessing SW1, the α1 output of SW1

α
(1)
1 and α3 accessing SW2, and the α1 output of SW2 α

(2)
1

and α4 access SW3. The probabilistic inputs associated are
(α1(∆, x), cdfA1(x)), (α2(∆, x), cdfA2(x)), (α3(∆, x), cdfA3(x)),
and (α4(∆, x), cdfA4(x)). The distributions As follows the
Poisson (dist1) and the Weibull (dist2) discrete and with
finite supports laws. The Poisson and the Weibull distri-
butions are applied to represent worst-case distributions for
two different behaviors: with small tails (the Poisson) and
heavy tails (the Weibull). The distributions are for the input
flows and could result from a probabilistic representation of
the flow parameters such as inter-arrivals and/or payloads.
The relationships between Mis and Ais comes from Equa-
tion (5), (6), (7), and (8).

C’

A1 A2

SW1

SW2

SW3

A3A
(1)
1

A
(1)
2

A
(2)
1 A4

A
(3)
1 ,A

(3)
4

Figure 6: Case study with 3 switches and 4 indepen-
dent input flows.

Considering the independence between flows, A1✄A2, at
the output of SW1 it is :

A
(1)
1 = (α

(1)
1 (∆, x), cdf

A
(1)
1

(x))

A
(1)
2 = (α

(1)
2 (∆, x), cdf

A
(1)
2

(x)),

with pdf
A

(1)
1

(x) = pdf
A

(1)
2

(x) = pdfA1
⊗pdfA2

, Equation (11).

At the output of SW2, due to A1✄A3, it is :

A
(2)
1 = (α

(2)
1 (∆, x), cdf

A
(2)
1

(x))

A
(2)
3 = (α

(2)
3 (∆, x), cdf

A
(2)
3

(x)),

with pdf
A

(2)
1

(x) = pdf
A

(2)
3

(x) = pdf
A

(1)
1

⊗pdfA3
, Equation (11).

At the output of SW3, due to A1✄A4, it is :

A
(3)
1 = (α

(3)
1 (∆, x), cdf

A
(3)
1

(x))

A
(3)
4 = (α

(3)
4 (∆, x), cdf

A
(3)
4

(x)),

with pdf
A

(3)
1

(x) = pdf
A

(3)
4

(x) = pdf
A

(2)
1

⊗pdfA4
, Equation (11).

Figure 7 shows how A1 propagates throughout the net-
work in case of input distributions following a Poisson law.



The distributions are represented in terms of the index x
(the values) and the upper bounding cumulative probabil-
ities. The probability distributions at the switch outputs
are the results of Equation (11). Some of the probabilistic
curves and their propagation through the SWs are repre-
sented in Figure 8. The output curves are computed with
Equation (11).
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Figure 7: A1 propagation throughout the network
from dist1. cdf representation for the A1s.
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Figure 8: Curve propagation with As following dist1.

Figure 9 is the representation of the A1 propagation in
case of input distributions following the Weibull law.
Figure 10 and Figure 11 depicts respectively the delay and

backlog behavior throughout the network. DEL1 and BL1

are the delay and backlog distributions of SW1, DEL2 and
BL2 are the delay and backlog distributions of SW2, and
DEL3 and BL3 are the delay and backlog distributions of
SW3; all of them are from Equation (20) and Equation (19),
respectively for the delay and backlogs, in case of input dis-
tributions following dist1. DEL is the convolution of the
delays for the end-to-end delay distribution of A1 traversing
the 3 switches, Equation (21).
The delays and backlog counterparts from dist2 are rep-

resented in Figure 12 and Figure 13.

5. CONCLUSION
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Figure 9: A1 propagation throughout the network
from dist2. cdf representation for the A1s.
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With this paper we have applied probabilities to component-
based modeling and analysis of timing constrained networks.
We have formalized and developed the probabilistic calcu-
lus for network analysis with the use of probabilities. The
probabilistic Calculus framework face probabilistic networks
where the network element parameters are described as dis-
tributions. Besides, it models and analyses network elements
with probabilistic bounding curves to characterize both the
network elements and the whole network behavior. Hard
and soft timing guarantees to the network performance are
given in terms of performance.

For the future, we want to enhance the probabilistic anal-
ysis by tackling with the confidence and the guarantees that
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Figure 12: Delays with dist2. cdf representation for
the DELs.
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for the BLs.

a probabilistic framework could offer. Furthermore, we want
to extend modeling to other network parameters/network el-
ements and complete the probabilistic view to time-constrained
networks such as AFDX. Finally, we aim at enhancing the
pC for tackling with adaptive network behavior as well as
the mixed-critical network behavior.
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