
Turning Compositionality into Composability

Björn Andersson
Carnegie Mellon University

ABSTRACT
Compositional theories and technologies facilitate the de-
composition of a complex system into components, as well as
their integration via interfaces. Component interfaces hide
the internal details of the components, thereby reducing in-
tegration complexity. A system is said to be composable if
the properties established and validated for components in
isolation hold once the components are integrated to form
the system. This brings us the question: “Is composition-
ality related to composability?” This paper answers this
question in the affirmative; it considers a previously known
interface for compositionality and shows that it can be used
for composability. It also presents a run-time policing mech-
anism for this interface.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems; G.4 [Mathematical
Software]: Algorithm design and analysis

General Terms
Algorithms, Performance, Theory

Keywords
Real-time, Composability, Compositionality

1. INTRODUCTION
Consider a taskset τ with each task in this taskset generating
a sequence of jobs with each job characterized by an arrival
time, an execution time, and a deadline. Assume that there
are parameters (e.g., deadline, minimum inter-arrival time,
execution time) describing how a task can generate this se-
quence of jobs. Also, assume that jobs are scheduled on
a single processor with preemptive Earliest-Deadline-First
(EDF). In addition, assume that jobs do not self-suspend
and assume jobs do not share other resources (e.g., critical
sections) and assume there is no overhead associated with
context switching.

The authors retain copyright.

Let the demand-bound function (hereafter referred to by
“dbf”) of a job for a time interval, I, be equal to its execution
time if this job arrives no earlier than the beginning of I and
its deadline is no later than the end of I; otherwise the dbf
of the job is equal to zero. The dbf of a jobset, for a time
interval, I, is the sum, over all jobs in the jobset, of the
dbf of the job for I. Let L represent an interval length.
The dbf of τi for intervals of length L, denoted dbf(τi, L),
is the supremum of the dbf of τi taken over all intervals I
of length L. The computation of dbf(τi, L) depends on the
types of jobs that τi can generate; if τi is a sporadic task
with minimum inter-arrival time Ti and relative deadline
Di and each of its jobs have execution time Ci, then it is
known [5] that dbf(τi, L) can be computed as dbf(τi, L) =
max(bL−Di

Ti
c+ 1, 0)× Ci.

We say that a taskset is schedulable if for each jobset that it
can generate, for each schedule that EDF can generate for
this jobset, it holds that all jobs meet deadlines (Note that
because we assume EDF with arbitrary tie-breaking, there
may be more than one valid schedule for a jobset scheduled
by EDF.) It is known [5] that if for all L > 0,∑

τi∈τ dbf(τi, L) ≤ L, (1)

then the taskset is schedulable. The result above (in Eq. 1)
is well-known and allows software practitioners to efficiently
verify, before run-time, that all timing requirements will be
met at run-time. This result works assuming that the entire
taskset is known to a single person (or schedulability analysis
tool) and that the system does not undergo design changes.

Unfortunately, many systems are designed by many individ-
uals, often spanning multiple organizations with little oppor-
tunity to interact. Sometimes one individual cannot change
software written by another individual, even if they work
on the same large software system. Also, there are requests
to change the system in small and large ways ranging from
fixing defects to upgrading to new hardware or sensors and
adding new functionality. Therefore, it is desirable to per-
form schedulability analysis in a modular fashion. One way
to do so is to describe (and potentially also design) the sys-
tem as a set of components with each component comprising
one or multiple tasks, and let each component offer an inter-
face which describes the resource consumption. The research
literature offers many different types of such interfaces.

We now assume that the system is composed of K compo-
nents, indexed by 1 ≤ k ≤ K. Let τk represent all the tasks



associated with component k, 1 ≤ k ≤ K. We define the
component-k dbf for intervals of length L by

dbf(τk, L) =
∑
τi∈τk dbf(τi, L). (2)

Combining Eq 1 and Eq 2 yields that: If for all positive L
it holds that: ∑

k∈{1..K} dbf(τk, L) ≤ L (3)

then the taskset is schedulable.

The schedulability test expressed by Eq 3 does not require
detailed knowledge of the individual tasks and their dbfs in
each component. Rather, it only requires knowledge of the
dbf associated with each component. If there are changes
to any task in any component, they will not impact the
schedulability test as long as they do not change the dbf for
that component.

Note that in this way, the system integrator does not need
to know the internals of a component and can still perform
schedulability testing of the system as a whole. Also, note
that in this way, the person developing a component k is free
to change the software of component k as long as dbf(τk, L)
is not affected.

One can issue three critiques against this method. First, this
method assumes that the software is already written (since
it requires that one can compute the dbf from the tasks).
Second, this method exposes lots of details of a component.
This can be problematic because other software (e.g., other
software components of the software system or software tools
that perform analysis on the software system) may depend
on this information that gets exposed and this creates de-
pendencies. Third, this method provides compositionality
but not composability.

The first critique is simple to address. A prime contractor
can simply state a dbf as an interface for each component
and then tell each sub contractor that (s)he must develop
software so that the dbf of his/her component is at most
as specified by the interface. If not, there is a need for re-
negotiation between the subcontractor and the prime con-
tractor. The second critique can be addressed by overap-
proximating the dbf of a component. Indeed, recent studies
[3, 4] have provided methods that do this and prove that
such methods result in bounded performance loss. And they
have proven bounds on how much information they expose.
The third critique will be discussed in this paper.

2. A FORMULATION OF COMPOSABILITY
Note that in Eq. 3, the left-hand side is a summation of
terms. Choosing one value of k ∈ {1..K} and rearranging
the terms in the left-hand side yields:

dbf(τk, L) +
∑
k′∈{1..K}\{k} dbf(τk

′
, L) ≤ L (4)

Rewriting yields:

dbf(τk, L) ≤ (L−
∑
k′∈{1..K}\{k} dbf(τk

′
, L)) (5)

Hence, if

∀k ∈ {1..K}, (∀L > 0,dbf(τk, L) ≤ (L−
∑
k′∈{1..K}\{k} dbf(τk

′
, L)))

(6)
then the system is schedulable.

In practice, we are often interested in using not the ex-
act demand-bound function but rather an upper bound on
the demand-bound function. For each component k, we let
dbfUB(τk, L) be a function such that for all non-negative t
it holds that dbf(τk, L) ≤ dbfUB(τk, L). With this defini-
tion of dbfUB(τk, L), it is easy to see that the following is
true: If

∀k ∈ {1..K}, (∀L > 0, dbfUB(τk, L) ≤ (L−
∑
k′∈{1..K}\{k} dbfUB(τk

′
, L)))

then the system is schedulable.

Note that if the right-hand side is given to the designer of
component k then (s)he knows the supply of time available
for component k and then (s)he can develop component k
independently of other developers. Clearly, this is a formu-
lation of composability.

When choosing dbfUB for each component, developers and
systems integrators need to strike a balance: on the one
hand, the right-hand side should be as detailed as possible
in order to not increase pessimism; on the other hand, the
right-hand side should not expose too much detail in order
to facilitate system evolution. The technique in [4] can be
used to achieve a trade-off with quantifiable cost in each of
these aspects.

The technique described in this section only works if the jobs
at run-time execute within what has been declared possible
by the specified demand-bound function (or upper bound
thereof). Therefore, we will now discuss policing.

3. RUN-TIME POLICING
Let us assume that each component has been specified with
an upper bound on the demand-bound function (note that
an important special case is when this upper bound is exact).
Also, recall that dbfUB(τk, L) represents this upper bound
for component k. It is clear from the definition of dbf(τk, L)
that dbf(τk, L) is non-decreasing with increasing L. We
will also assume that dbfUB(τk, L) is non-decreasing with
increasing L. We also assume that ∀L, dbfUB(τk, L) ≥ 0.
In addition, we assume that if a job has not finished by the
time its deadline expires, then the job is killed.

Our goal is to design a run-time policing mechanism that
ensures that jobs in a component do not violate the inter-
face (dbfUB(τk, L)) of the component. Note that this does
not guarantee that all jobs in the component meet their
deadlines. But using this policing mechanism ensures that
jobs in a component do not violate its interface and this can
be used (as seen in the previous section) to create a local
schedulability test.

When discussing the policing mechanism, we start with a
formulation of what the policing mechanism should achieve
and then write simple pseudocode that does not perform
exactly the way we want and then add new lines of code
until it performs exactly the way we want.

Discussing a schedule. For a given schedule, let exec(τk,t0,t1)
indicate the amount of execution performed in the time in-
terval [t0,t1] by jobs from τk with absolute deadlines at most
t1 and arrival time at least t0. Then, we can express the
property that the policing mechanism should ensure as fol-



lows: Make sure that for each time interval [t0,t1], it holds
that exec(τk,t0,t1) ≤ dbfUB(τk, t1 − t0). We call this the
Policing-correctness-property.

We will now show that only a subset of those intervals [t0,t1]
needs to be checked. For a given schedule, suppose that the
Policing-correctness-property is false. Then clearly, there
exists a time interval [t0,t1] such that

exec(τk, t0, t1) > dbfUB(τk, t1 − t0). (7)

Recall that the beginning of Section 3 stated that we assume
∀L, dbfUB(τk, L) ≥ 0. Combining this with Eq 7 yields

exec(τk, t0, t1) > 0. (8)

Thus, there is at least one time in [t0,t1] such that there is a
job arriving at this time (because otherwise, exec(τk, t0, t1) =
0 and it would contradict Eq 7). Also, there is at least one
time in [t0,t1] such that there is a job with absolute deadline
expiring at this time (because otherwise, exec(τk, t0, t1) = 0
and it would contradict Eq 8). Then we reason as follows:
Let t′0 denote the smallest value such that t0 ≤ t′0 and there
is a job arriving at time t′0. (From reasoning three sentences
earlier, it can be seen that t′0 exists.) Clearly, since t0 ≤ t′0
and since dbfUB is non-decreasing with respect to its 2nd
parameter, it follows that

dbfUB(τk, t1 − t′0) ≤ dbfUB(τk, t1 − t0). (9)

Also, from the definition of t′0, it follows that there is no
job with arrival time in the time interval (t0,t′0). Hence, any
execution in the time interval (t0,t′0) is from jobs with arrival
time t0 or earlier. Let us consider two cases:

1. There is no job arriving at time t0.

From this condition, it follows that any execution in
the time interval (t0,t′0) is from jobs with arrival time
strictly less than t0. Hence, it follows that exec(τk,t′0,t1)
= exec(τk,t0,t1).

2. There is a job arriving at time t0.

From this condition, it follows that t′0 = t0. Hence, it
follows that exec(τk,t′0,t1) = exec(τk,t0,t1).

Thus, regardless of the case, we have shown that

exec(τk, t′0, t1) = exec(τk, t0, t1). (10)

Combining Eq 7, Eq 9, and Eq 10 yields:

exec(τk, t′0, t1) > dbfUB(τk, t1 − t′0). (11)

That is, the time interval [t′0,t1] violates the Policing-correctness-
property.

Let t′1 denote the largest value such that t′1 ≤ t1 and there is
a job whose absolute deadline is at time t′1. With analogous
reasoning, we obtain that

exec(τk, t′0, t
′
1) > dbfUB(τk, t′1 − t′0). (12)

Hence, for a given schedule, if the Policing-correctness-property
is violated for this schedule, then there exists a pair of time
instants t′0 and t′1 such that t′0 is a time instant when there
is a job arriving at time t′0 and t′1 is a time instant when

there is a job whose absolute deadline expires at time t′1 and
exec(τk,t′0,t′1) > dbfUB(τk, t′1 − t′0).

Therefore, we can express the Policing-correctness-property
in an equivalent form as follows: Make sure that for each
time interval [t0,t1] such that at time t0 there is a job arriving
and at time t1 there is a job with absolute deadline expiring,
it holds that exec(τk,t0,t1) ≤ dbfUB(τk, t1 − t0).

This expression is stated in terms of enumeration over time
intervals. But we can express this equivalently as enumera-
tion over pairs of jobs. Specifically, the Policing-correctness-
property can be stated in an equivalent form as follows:
Make sure that for each pair of jobs J ′ and J ′′ such that
AJ′′ +DJ′′−AJ′ ≥ 0, it holds that exec(τk,AJ′ ,AJ′′ +DJ′′)
≤ dbfUB(τk, AJ′′ +DJ′′ −AJ′). It is straightforward to see
that this is an equivalent formulation of Policing-correctness-
property: AJ′ corresponds to t0 and AJ′′ +DJ′′ corresponds
to t1.

Run-time. Note that the Policing-correctness-property is
evaluated over an entire schedule. We will now present a
condition that can be used at run-time. Recall that Policing-
correctness-property is about making sure that for each pair
of jobs J ′ and J ′′ such that AJ′′ +DJ′′ − AJ′ ≥ 0, it holds
that exec(τk,AJ′ ,AJ′′ + DJ′′) ≤ dbfUB(τk, AJ′′ + DJ′′ −
AJ′). Clearly, if this condition is false, then there exists a
pair of jobs J ′ and J ′′ such that AJ′′ + DJ′′ − AJ′ ≥ 0,
it holds that exec(τk,AJ′ ,AJ′′ + DJ′′) > dbfUB(τk, AJ′′ +
DJ′′−AJ′). Among those pairs, let us choose the pair J ′ and
J ′′ such that AJ′′ + DJ′′ is the smallest. Thus, there is no
pair of jobs where the 2nd job has earlier absolute deadline
that violates the Policing-correctness-property. Also, since
exec(τk,AJ′ ,AJ′′ + DJ′′) > dbfUB(τk, AJ′′ + DJ′′ − AJ′)
it follows that there exists an x (with x ∈ [0,AJ′′ + DJ′′

- AJ′ ]) such that exec(τk,AJ′ ,AJ′+x) = dbfUB(τk, AJ′′ +
DJ′′ − AJ′) and just after time AJ′+x, there is execution
and Policing-correctness-property is violated. Let us choose
the smallest such x. Let AJ′+y denote the latest scheduling
event before AJ′+x (a scheduling event is a time when a job
arrives or a deadline expires or a context switch occurs).
Intuitively, AJ′+x is the time when Policing-correctness-
property is violated and AJ′+y is the latest time when
Policing-correctness-property is not violated and we can do
something about it. Clearly, for y it holds that

exec(τk,AJ′ ,AJ′+y) ≤ dbfUB(τk, AJ′′ +DJ′′ −AJ′). (13)

Thus, let us define δ as δ = dbfUB(τk, AJ′′ +DJ′′ −AJ′) -
exec(τk,AJ′ ,AJ′+y). It is easy to see (from Eq 13) that δ ≥
0. Intuitively, δ is the amount of margin that we have at time
AJ′+y, i.e., δ is the amount of execution that we can allow
after AJ′+y without violating Policing-correctness-property.

Pseudocode. From the above discussion, we obtain that
policing can be achieved as follows: Whenever a scheduling
event (job arrival, deadline expiring or a context switch)
occurs, do the following:

1. Let timeb denote the current time.

2. Find the largest dbfslack such that for each pair of
jobs J ′ and J ′′ such that the arrival time of J ′ is at
most timeb and the arrival time of J ′′ is at most timeb



and AJ′′ + DJ′′ − AJ′ ≥ 0, it holds that dbfslack +
exec(τk, AJ′ , AJ′′ + DJ′′) ≤ dbfUB(τk, AJ′′ + DJ′′ −
AJ′).

3. Set up a timer to expire at time timeb + dbfslack (i.e.,
dbfslack time units in the future) and when the timer
expires, treat it as a scheduling event.

The reason why this works is that in Step 2., we compute
dbfslack and it can be seen that regardless of the schedule
generated during the next dbfslack time units, it holds that
if no new job arrives, then the interface will not be violated
during the next dbfslack time units. Let us now discuss how
this can be implemented with pseudocode.

The accounting of execution of component k can be per-
formed as follows:

at initialization do

IS := empty set

JS := empty set

at each context switch or time when a job

arrives or time when a deadline expires do

let prev denote the task that executed

before this event

let next denote the task that executes

after this event

timeb := read current time

if current context switch is a job arrival

then

create a new object J’’’

J’’’.rA := timeb

J’’’.rd := timeb +

deadline of the task next

JS := JS union J’’’

end if

if prev != null then

create a new object I

I.rstart := timea

I.rstop := timeb

IS := IS union I

end if

timea := timeb

The code above performs accounting. It records job arrivals
and deadlines, and stores them in sets. (In the pseudocode
above: JS means Job-Set; rA means recorded-arrival-time;
rd means recorded-absolute-deadline.) It also records the
time intervals when the component executes. (In the pseu-
docode above: IS means Interval-Set; ristart means recorded-
interval-start-time; ristop means recorded-interval-stop-time.)
We would like to add policing to it. This can be achieved
by considering each job arrival time and each deadline and
for this time interval, consider the amount of execution that
the component has performed and see how much extra exe-
cution can be allowed; and then take the minimum of that.
Let dbfslack denote this value. We set up a timer inter-
rupt dbfslack time units in the future. Hence, policing of
component k can be performed as follows:

at initialization do

IS := empty set

JS := empty set

at each context switch or time when a job

arrives or time when a deadline expires do

let prev denote the task that executed

before this event

let next denote the task that executes

after this event

timeb := read current time

if current context switch is a job arrival

then

create a new object J’’’

J’’’.rA := timeb

J’’’.rd := timeb +

deadline of the task next

JS := JS union J’’’

end if

if prev != null then

create a new object I

I.rstart := timea

I.rstop := timeb

IS := IS union I

end if

dbfslack := infinity

for each J’ in JS do

for each J’’ in JS do

sumexec := 0

for each I in IS do

if (J’.rA <= I.ristart) and

(I.ristop <= J’’.rd) then

sumexec := sumexec +

I.ristop - I.ristart

end if

end for

delta :=

dbfUB(τk, J’’.rd - J’.rA)

- sumexec

if delta <dbfslack then

dbfslack := delta

end if

end for

end for

set up a timer to expire

at time timeb+dbfslack;

when it expires , treat it

as a context switch.

timea := timeb

There are four errors in the code above. First, when comput-
ing delta, we consider time intervals of duration J”.rd - J’.rA.
If this is negative, then we will evaluate dbfUB for a negative
value and this is not defined. Hence, we should check for this
in the double for-loop. Second, in the double for-loop, we
should only count execution from jobs with absolute dead-
line at most J”.rd and arrival time at least J’.rA. Third, if
dbfslack is negative then it is not obvious what setup timer
would do. Fourth, if dbfslack is positive but very small (e.g.,
1 microsecond) then this time may have elapsed even before
the timer interrupt has been set up. We introduce a param-
eter THRESHOLD which is used for this decision. Its value
depends on the computer platform. In an ideal platform
THRESHOLD = 0; but as a ballpark estimate, a reason-



able assignment is THRESHOLD = 1 microsecond. Hence,
policing of component k can be performed as follows:

at initialization do

IS := empty set

JS := empty set

at each context switch or time when a job

arrives or time when a deadline expires do

let prev denote the task that executed

before this event

let next denote the task that executes

after this event

timeb := read current time

if current context switch is a job arrival

then

create a new object J’’’

J’’’.rA := timeb

J’’’.rd := timeb +

deadline of the task next

JS := JS union J’’’

end if

if prev != null then

create a new object I

I.rstart := timea

I.rstop := timeb

I.rA := arrival time

of the job of task prev

I.rd := absolute deadline

of the job of task prev

IS := IS union I

end if

dbfslack := infinity

for each J’ in JS do

for each J’’ in JS do

if J’’.rd - J’.rA >0 then

sumexec := 0

for each I in IS do

if (J’.rA <= I.ristart) and

(I.ristop <= J’’.rd) and

(J’.rA <= I.rA) and

(I.rd <= J’’.rd) then

sumexec := sumexec +

I.ristop - I.ristart

end if

end for

delta :=

dbfUB(τk, J’’.rd - J’.rA)

- sumexec

if delta <dbfslack then

dbfslack := delta

end if

end if

end for

end for

if dbfslack > THRESHOLD then

set up a timer to expire

at time timeb+dbfslack;

when it expires , treat it

as a context switch.

else

stop all execution in this

component and do not allow

any future execution

in this component

end if

timea := timeb

4. WHY IS MEMORY-EFFICIENT POLIC-
ING HARD?

We have seen a policing mechanism in the previous section.
It kept track of all jobs and all execution segments in the
schedule. Doing so is undesirable because for long-lived sys-
tems, this run-time dispatching consumes lots of memory
and its run-time overhead may be large. One may wonder if
it is possible to create a policing mechanism that can forget;
i.e., if it is possible to create a policing mechanism that does
not depend on data that is sufficiently old. In this section,
we show why creating such a mechanism is difficult.

Consider component k and assume that there is one task
in this component and that this task is an implicit-deadline
sporadic task with the following characteristics: T k1 = 1, Dk

1 =
1, Ck1 = 1/INT. Here INT is a positive integer greater than
or equal to 2. Also, assume that the interface is the follow-
ing: dbfUB(τk, L) = 0 if L < 1; otherwise dbfUB(τk, L) =
1. And assume that the policing mechanism is the one in
the previous section configured with THRESHOLD = 0.

Consider the case that a job of τ1 arrives at time 0 and
jobs of this task arrive periodically. Then, at time 0, the
policing code will execute and it will compute dbfslack =
1. The 1st job of τ1 will execute during the time interval
[0, 1/INT). Then the processor is idle during the time in-
terval [1/INT, 1). Then at time 1, a job of τ1 arrives and
it will be allowed to execute immediately when it arrives
and it finishes at time 1 + 1/INT. This behavior keeps re-
peating until time INT − 1. At this time, a job of τ1 ar-
rives. The policing will allow it to execute and it will finish
at time INT − 1 + 1/INT. Then at time INT, a new job
of τ1 arrives and the policing mechanism is invoked. The
policing mechanism considers many time intervals; one of
them is the arrival of the 1st job until the deadline of the
INT + 1:th job (which is at time INT + 1). There is so
far INT × 1/INT units of execution performed in this time
interval of jobs with arrival time greater than or equal to
the beginning of the time interval and absolute deadline
less than or equal to the end of the time interval. Also,
note that for this time interval dbfUB(τk, L) = 1. Hence
we compute dbfslack = 1 − INT × 1/INT and this yields
dbfslack = 0. Since dbfslack = 0 at time INT, the run-time
policing mechanism suspends the component at time INT.
This is the correct behavior. Note, however, that the INT−2
first jobs have deadlines before current time and they still
impact the result; if their execution would have not been
considered then we would have obtained the wrong result.
We can repeat this reason for any positive INT. By choosing
an infinite INT, we obtain that when performing policing,
it may be necessary to consider a time interval that started
at an arrival time infinitely number of jobs in the past and
when counting execution, it may be necessary to consider
such execution infinitely in the past.

5. RELATED WORK



The literature on hierarchical scheduling, composability, and
compositionality is vast; here we only survey some of the pre-
vious work. When rate-monotonic scheduling was developed
as a comprehensive framework, it was recognized that many
systems have software whose resource consumption is hard
to characterize; e.g., it is hard to find its worst-case exe-
cution time or minimum inter-arrival time. For this reason,
reservation-based frameworks were developed (see for exam-
ple [13]). The run-time behavior of such a framework is as
follows: A task may be associated with a server task and
this server task is scheduled as a normal task (for example
with an execution time, often called budget, and a period)
and if a task is associated with a server task then it is only
allowed to execute when the server task executes. In this
way, if a task τi is in a server task and if τi experiences an
execution overrun or arrives more often than expected then
its impact on other tasks is bounded and it is bounded by
the parameters of the server task. Later works created such
reservation for EDF; one example of that is the constant-
bandwidth server (CBS) [1].

Researchers realized that reservation-based frameworks can
be used to form hierarchical scheduling; some work that did
so with EDF include [14, 9]. With the focus on hierarchical
scheduling, Feng and Mok developed [11] a resource model
which states that a root scheduler supplies, in a time interval
of duration t, at least (t−∆k)∗αk units of execution to com-
ponent k. Shin and Lee developed [15] another model where
a component k is characterized by its period and execution
time and with this, presented a so-called supply-bound func-
tion; this work could be used for components that use fixed-
priority as a local scheduler or components that use EDF as
a local scheduler. Later works have focused on resource shar-
ing, specifically the question, if a task τlock executes within
a critical section and its current budget has reached zero,
what should the scheduler do? There may be other tasks
that will request this critical section and these requests can
be granted only if the task that currently holds that critical
section (τlock) has released it. In order for the task (τlock) to
release the critical section, it must be able to execute and in
order for this task (τlock) to execute, it must have a current
budget greater than zero. Different solutions for this have
been developed; see for example [8, 7, 6]. Clearly, server pa-
rameters must be selected in order to ensure schedulability;
this has been the focus of [2].

Recall that early in this paper, we pointed out that bandwidth-
like schemes can suffer from poor performance and we have
suggested that using the demand-bound function is an in-
terface that does not suffer from this drawback. A similar
point has been made in [12, 10]; they also discuss approxi-
mate policing of such an interface.

6. CONCLUSIONS
This paper has presented ideas for how an interface origi-
nally developed for compositionality can be used to achieve
composability. We have also seen a design of a policing
mechanism. We left open the question on how to perform
policing with low memory consumption and low CPU over-
head. The policing presented here makes sure that the inter-
face is not violated but the policing does not depend on any
scheduler used. Naturally, all of our results apply to EDF
but they also apply to Least-Laxity-First (LLF). For future

work on policing, it may be worth assuming that EDF is
used and exploit this to reduce memory and CPU overhead
of the policing mechanism.

Acknowledgment
Copyright 2016 ACM This material is based upon work
funded and supported by the Department of Defense un-
der Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering In-
stitute, a federally funded research and development cen-
ter. [Distribution Statement A] This material has been ap-
proved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distri-
bution. DM-0003263

7. REFERENCES
[1] L. Abeni and G. Buttazzo. Integrating multimedia

applications in hard real-time systems. In RTSS, 1988.

[2] L. Almeida and P. Pedreiras. Scheduling within
temporal partitions: response-time analysis and server
design. In EMSOFT, 2004.

[3] B. Andersson. A pseudo-medium-wide 8-competitive
interface for two-level compositional real-time
scheduling of constrained-deadline sporadic tasks on a
uniprocessor. In CRTS, 2009.

[4] B. Andersson. A preliminary idea for an 8-competitive,
log2 DMAX + log2 log2 (1/U) asymptotic-space,
interface generation algorithm for two-level
hierarchical scheduling of constrained-deadline
sporadic tasks on a uniprocessor. In CRTS, 2010.

[5] S. K. Baruah, L. E. Rosier, and R. R. Howell.
Algorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one
processor. In Real-Time Systems, pages 301–324, 1990.

[6] M. Behnam, T. Nolte, M. Asberg, and R. J. Bril.
Overrun and skipping in hierarchically scheduled
real-time systems. In RTCSA, 2009.

[7] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP:
a synchronization protocol for hierarchical resource
sharing in real-time open systems. In EMSOFT, 2007.

[8] R. I. Davis and A. Burns. Resource sharing in
hierarchical fixed priority pre-emptive systems. In
RTSS, 2006.

[9] Z. Deng and J. W.-S. Liu. Scheduling real-time
applications in an open environment. In RTSS, 1997.

[10] F. Dewan and N. Fisher. Efficient admission control
for enforcing arbitrary real-time demand-curve
interfaces. In RTSS, 2012.

[11] X. Feng and A. K. Mok. A model of hierarchical
real-time virtual resources. In RTSS, 2002.

[12] P. Kumar, J.-J. Chen, and L. Thiele. Demand bound
server: Generalized resource reservation for hard
real-time systems. In EMSOFT, 2011.

[13] J. P. Lehoczky, L. Sha, and J. K. Strosnider.
Enhanced aperiodic responsiveness in hard real-time
environments. In RTSS, 1987.

[14] G. Lipari and S. K. Baruah. A hierarchical extension
to the constant bandwidth server framework. In
RTAS, 2001.

[15] I. Shin and I. Lee. Periodic resource model for
compositional real-time guarantees. In RTSS, 2003.


