
Intra-component Resource Sharing on a Virtual
Multiprocessor Platform∗†

Sara Afshar§, Nima Khalilzad§, Moris Behnam§, Reinder J. Bril§,‡, Thomas Nolte§

§Mälardalen University, Västerås, Sweden
‡Technische Universiteit Eindhoven, Eindhoven, Netherlands

sara.afshar@mdh.se

ABSTRACT
Component-based software development facilitates the development
process of large and complex software systems. By the advent of
multiprocessors, the independently developed components can be
integrated on a multi-core platform to achieve an efficient use of
system hardware and a decrease in system power consumption and
costs. In this paper, we consider a virtual multiprocessor platform
where each component can be dynamically allocated to any set
of processors of the platform with a maximum concurrency level.
Global-EDF is used for intra-component scheduling. The existing
analysis for such systems have assumed that tasks are independent.
In this paper, we enable intra-component resource sharing for this
platform. We investigate using a spin-based resource sharing proto-
col with the accompanying analysis that extends the existing anal-
ysis for independent tasks. We briefly illustrate and evaluate our
initial results with an example.

1. INTRODUCTION
A common approach to accelerate the development process in in-
dustrial software systems is to break down large and complex sys-
tems into smaller subsystems. Each subsystem is then developed
in isolation benefiting from a component-based development ap-
proach, which modularizes the development process for such com-
plex software systems. In the integration phase, these subsystems/
components are integrated on a shared platform to construct the
whole system. As a consequence of the shift from using single-
core processors towards a multi-core architecture, these compo-
nents which may share resources will eventually co-execute on a
shared multi-core platform. Virtual component/cluster-based mul-
tiprocessor scheduling is a more general scheduling approach for
multiprocessors compared to the traditional approaches such as par-
titioned, global or physical component/cluster-based scheduling and
is less sensitive to task-processor mappings [4]. Under a virtual
multiprocessor scheduling, each component can be dynamically al-
located to any set of processors where components may share pro-
cessors.

Several works have been done in the context of virtual multipro-
cessor scheduling where they have assumed tasks are independent
and do not share any resources except the CPUs [7, 4, 8, 6]. In
addition, several works have also been done in the context of mul-
tiprocessor compositional scheduling with resource sharing [9, 1,
2], however, they have assumed that components are fixed assigned
to processors of the platform. For the best of our knowledge no pri-
∗The authors retain copyright.
†This work is supported by the Swedish Foundation for Strategic
Research via the research program PRESS, the Swedish Knowl-
edge Foundation and ARTEMIS Joint Undertaking project EMC2
(grant agreement 621429).

ori work has investigated resource sharing in the context of virtual
multiprocessor scheduling. In this work, we investigate enabling
resource sharing for virtual multiprocessor platforms using a pe-
riodic interface model. For the initial step, we have assumed that
each component has its own dedicated set of resources and there-
fore we enable an intra-component resource handling protocol for
system components under a global-EDF (g-EDF) scheduler. En-
abling inter-component resource sharing is left as a future step. We
use the MPR (Multiprocessor Periodic Resource) model [4] in or-
der to characterize a component. This model, using a maximum
parallelism level, specifies the total timing requirements for the
component, denoted as the component budget that will make the
tasks of the component schedulable. We investigate the overhead
on the component budget when enabling intra-component resource
sharing by selecting a spin-based approach to handle resource shar-
ing among tasks of a component.

2. SCHEDULING STRUCTURE
Our system consists of m identical unit capacity processors and a
set of components where each component is comprised of a set of
constrained deadline sporadic tasks. We use the MPR model [4]
to present a component. Based on this model a component is pre-
sented by a resource model µ =< Π,Θ,m′ > where it specifies that
a unit-capacity multiprocessor platform provides a total Θ units of
time with concurrency at most m′ in every Π time interval where
1 < m′ < m and Θ≤ m′Π.

The system uses a two level hierarchical scheduling scheme con-
sisting of: (a) inter-component and (b) intra-component schedul-
ing. In the global level (inter-component scheduling) components
are scheduled based on a dynamic assignment of the components
to m′ processors out of m processors in the platform. For intra-
component scheduling a global scheduling approach is used within
each component. EDF (Earliest Deadline First) scheduling strategy
(g-EDF) is used for intra-component scheduling similar to [4]. At
each instance of time, g-EDF schedules unfinished jobs that have
the m′ earliest relative deadlines. Similarly, we also assume that
preemption and migration overheads of any job is negligible.

3. RESOURCE SHARING PROTOCOL
In this section we present the resource sharing approach that is used
to enable intra-component resource handling. We use a spin-based
resource sharing approach similar to MSRP [5] and FMLP (for
short resources) [3]. We have assumed a non-nested resource ac-
cess of tasks of the components. For each resource a FIFO queue is
dedicated to enqueue the requests of the tasks. A task is inserted in
the related queue when it is blocked on a resource and it is removed
from the queue as soon as it accesses the resource. The idea behind
the spin-based approach is that a task spins non-preemptively from

the time when it gets blocked on a resource until it accesses the
resource. This rule results in one important property of spin-based
approaches which is that there exists at most one pending resource
request per core. To maintain this property the following rules are
provided to adjust the protocol to be used within each component.

RULE 1. Whenever a task τi requests a resource the priority of
the task is boosted to higher than the maximum priority of any task
within the component.

RULE 2. When a task is spinning or holding a resource and the
budget of the component is depleted an overrun happens until the
task releases the resource.

Rule 2 implies that the budget of a component should accommodate
for such overrun. Therefore, budget of each component should be
inflated with the maximum amount of resource access time of any
task within the component and its maximum spinning time to ac-
quire the resource.

A task that is scheduled globally within a component may experi-
ence blocking due to other tasks accessing resources. A task may
experience two types of blocking incurred by other tasks within the
same component: (i) blocking due to requesting a resource that is
held by another task and (ii) blocking incurred by a lower prior-
ity task when its priority is boosted due to requesting a resource
(Rule 1). The latter blocking case happens when a task is supposed
to be scheduled by the g-EDF scheduler, i.e., it is one of the m′

highest priority ready tasks, but it is not since a lower priority task
is non-preemptive on one of the cores of the component. A task
may incur such delay for the maximum resource access time of any
lower priority task. This type of blocking can only happen once
when the task arrives for the first time since Rule 2 prevents such
blocking to happen after the first arrival time.

To calculate the maximum amount of blocking of type (i) for a
task, the worst-case locking scenario for resource requests of the
task is assumed. Under such worst-case scenario, whenever a task
requests a resource, all tasks on the other m′− 1 processors of the
component (if any) have requested the resource earlier. We denote
the maximum amount of waiting time for a task τi as spini and
R S i as the set of resources used by a task τi. Further, we denote
Lq,i as the summation of m′−1 maximum largest access time for a
resource Rq from each of the tasks within the component other than
τi. Based on these assumptions, spini is calculated as follows.

spini = ∑
∀q:Rq∈R S i

Lq,i. (1)

According to the spin-based approach, a task is busy-waiting when
it is blocked on a resource. Hence, typically the spin-based ap-
proaches consider such blocking delay as part of the task execution
time. Thus, to account for such delay the execution times of the
tasks are inflated by such blocking, i.e., for any τi that uses a re-
source C′i =Ci + spini.

The blocking type (ii) does not need to be incorporated in the anal-
ysis since it is incurred at most once to a task and has already been
considered in the demand bound function as part of the execution
time of a lower priority task. According to the schedulability test
of a component presented in [4], the execution times of all tasks
are considered in the schedulability measurement window of a task.
Therefore, the blocking time type (ii), which accounts for the maxi-
mum critical section of any lower priority task, has been considered
in this analysis and there is no need for reconsideration.

4. RESULTS AND CONCLUDING NOTES
We have investigated the overhead of budget increase by enabling
intra-component resource sharing which we show with a simple ex-
ample here. The component schedulability condition is performed
according to the analysis presented in [4] that is extended in this
paper by execution time inflation (1) due to resource sharing as
presented in Section 3.

Example. The following example shows that the total budget that
is required to make the tasks of the component schedulable is in-
creased significantly when resource sharing is enabled within tasks
of a component. In this example the component consists of five
tasks. The execution time and period of a task τi is shown by Ci
and Ti, respectively with implicit deadlines. We have ∀i Ci = 3000
and Ti = 10000. Therefore, the task set utilization is equal to 1.5.
The resource access time of a task τi for a resource Rq is denoted by
Csi,q. We assumed two shared resources (i.e. R1,R2). Also, we as-
sumed that each task accesses both resources once with a resource
access time equal to 100 (i.e. ∀i,q Csi,q = 100). This means
that each resource access time of a task is 3.3% of its execution
times. The period of the component (Π) is 5000. First we ignored
the shared resources and we calculated the component budget (Θ).
In this case, the total required budget without resource sharing is
9488 with a maximum parallelism level of 2 cores. Therefore, the
interface utilization (Θ

Π
) without considering the shared resources

is approximately 1.89. If resource sharing is enabled, then the total
required budget is increased to 19438 with maximum parallelism
equal to 4, resulting in the interface utilization of approximately
3.88. This necessitates a further exploration of the presented re-
source sharing protocol in order to remove the current pessimism
in the analysis which is left as a future activity.

5. REFERENCES
[1] S. Afshar, M. Behnam, and T. Nolte. Integrating

independently developed real-time applications on a shared
multi-core architecture. In CRTS’12.

[2] A. Biondi, G. Buttazzo, and M. Bertogna. Supporting
component-based development in partitioned multiprocessor
real-time systems. In ECRTS’15.

[3] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A
flexible real-time locking protocol for multiprocessors. In
RTCSA’07.

[4] A. Easwaran, I. Shin, and I. Lee. Optimal virtual cluster-based
multiprocessor scheduling. Real-Time Systems, 43(1):25–59,
2009.

[5] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and
P. Marceca. A comparison of MPCP and MSRP when sharing
resources in the Janus multiple-processor on a chip platform.
In RTAS’03.

[6] N. Khalilzad, M. Behnam, and T. Nolte. On component-based
software development for multiprocessor real-time systems. In
RTCSA’15.

[7] H. Leontyev and J. Anderson. A hierarchical multiprocessor
bandwidth reservation scheme with timing guarantees. In
ECRTS’08.

[8] G. Lipari and E. Bini. A framework for hierarchical
scheduling on multiprocessors: From application
requirements to run-time allocation. In RTSS’10.

[9] F. Nemati, M. Behnam, and T. Nolte.
Independently-developed real-time systems on multi-cores
with shared resources. In ECRTS’11.

