
Evaluating the Average-case Performance Penalty of
Bandwidth-like Interfaces

Björn Andersson
Carnegie Mellon University

ABSTRACT
Many solutions for composability and compositionality rely
on specifying the interface for a component using bandwidth.
Some previous works specify period (P) and budget (Q) as
an interface for a component. Q/P provides us with a band-
width (the share of a processor that this component may re-
quest); P specifies the time-granularity of the allocation of
this processing capacity. Other works add another param-
eter deadline which can help to provide tighter bounds on
how this processing capacity is distributed. Yet other works
use the parameters α and ∆ where α is the bandwidth and
∆ specifies how smoothly this bandwidth is distributed. It is
known [4] that such bandwidth-like interfaces carry a cost:
there are tasksets that could be guaranteed to be schedu-
lable if tasks were scheduled directly on the processor, but
with bandwidth-like interfaces, it is impossible to guarantee
the taskset to be schedulable. And it is also known that this
penalty can be infinite, i.e., the use of bandwidth-like inter-
faces may require the use of a processor that has a speed
that is k times faster, and one can show this for any k. This
brings the question: “What is the average-case performance
penalty of bandwidth-like interfaces?” This paper addresses
this question. We answer the question by randomly gener-
ating tasksets and then for each of these tasksets, compute
a lower bound on how much faster a processor needs to be
when a bandwidth-like scheme is used. We do not consider
any specific bandwidth-like scheme; instead, we derive an
expression that states a lower bound on how much faster
a processor needs to be when a bandwidth-like scheme is
used. For the distributions considered in this paper, we find
that (i) the experimental results depend on the experimental
setup, (ii) this lower bound on the penalty was never larger
than 4.0, (iii) for one experimental setup, for each taskset, it
was greater than 2.4, (iv) the histogram of this penalty ap-
pears to be unimodal, and (v) for implicit-deadline sporadic
tasks, this lower bound on the penalty was exactly 1.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—

The authors retain copyright.

Real-time systems and embedded systems; G.4 [Mathematical
Software]: Algorithm design and analysis

General Terms
Algorithms, Performance, Theory

Keywords
Real-time, Composability, Compositionality

1. INTRODUCTION
Consider a taskset τ scheduled on a single processor with
Earliest-Deadline-First (EDF). Assume that tasks are arbitrary-
deadline sporadic tasks, i.e., a task τi is characterized by Ti,
Di, and Ci, with the interpretation that τi generates a se-
quence of jobs with at least Ti time units between two con-
secutive arrivals of jobs of τi and each job of τi has execution
time at most Ci and each job has a deadline Di time units
relative to its arrival. It is known [5] that if for all positive
t it holds that ∑

τi∈τ max(b t−Di
Ti
c+ 1, 0)× Ci ≤ t (1)

then the taskset is schedulable. (A taskset is schedulable, if
for each jobset that it can generate, for each schedule that
EDF can generate for this jobset, it holds that all jobs meet
deadlines; note that because we assume EDF with arbitrary
tie-breaking, there may be more than one valid schedule for
a jobset scheduled by EDF.) The result above (in Eq. 1) is
well-known and allows software practitioners to efficiently
verify, before run-time, that all timing requirements will be
met at run-time. This result works assuming that the entire
taskset is known to a single person (or schedulability analysis
tool) and that the system does not undergo design changes
and that tasks do not use more resources than stated by
their parameters.

The real-time systems research community understood these
limitations of using Eq. 1 as a schedulability test and using
EDF at run-time. The research community understood that
it was necessary to monitor the execution of a task to see if
it executed more than it was expected to, and also to moni-
tor a task to see if it generated jobs more frequently than it
was expected to. In addition, the research community un-
derstood that in system integration, it is often advantageous
to describe a set of tasks with related functionality with a
simpler description. Therefore, the research community cre-
ated a large set of solutions to achieve this. Typically, these
solutions work as follows. A component (sometimes called a

server task and sometimes called a subsystem) is character-
ized by a bandwidth parameter and some other parameters.
One or more tasks are assigned to a component. And each
task is assigned to exactly one component. Then, at each in-
stant at run-time, a root scheduler (sometimes called global
scheduler) selects a component and a local scheduler in this
component selects a task in this component. This selected
task executes on the processor. The bandwidth of a compo-
nent is characterized as a share of the processor (for exam-
ple, Component 1 should use at most 20% of the processor).
One could use a run-time mechanism that guarantees that
this bandwidth is allocated to each component in each time
interval (even “infinitely small” time intervals). But this
would require infinitely many context switches which would
make such a solution impractical. Therefore, the solutions
presented in the research literature use another parameter
as well: server-period. Some solutions ensure that in a time
interval of duration at least as large as the server period,
a component is allocated processing time being at least as
large as its bandwidth (i.e., bandwidth multiplied by server
period). Many schemes in the literature suffer from a so-
called blackout period; for such a scheme, the guaranteed
allocation is slightly less. Some schemes have a parameter,
server deadline, which can be used to control the duration of
this blackout period. Common to these schemes, however,
is that before run-time, a schedulability test is performed on
the root scheduler; it takes the bandwidth and potentially
other parameters of each component and determines if the
root scheduler will be able to allocate enough bandwidth to
each component.

These bandwidth-like schemes have several advantages. First,
they achieve isolation. This is important because it is often
very difficult to find the worst-case execution time of a task.
With these schemes, one can be sure that if the execution
time of a job would exceed its estimated worst-case execu-
tion time, then it does not jeopardize timing guarantees of
jobs in other components. Second, they allow hard and soft
real-time tasks to be executed on a single processor. Third,
they provides a simple interface for system integrators. In
particular, the concept of bandwidth is easy to understand
for laypersons. (For example: Component 1 is assigned 10%
of the processor; Component 2 is assigned 70% of the proces-
sor; Component 3 is assigned 15% of the processor.) Fourth,
they allow different schedulers to be used in different compo-
nents (e.g., the local scheduler in Component 1 may be EDF
and the local scheduler in Component 2 may be RM and the
local scheduler in Component 3 may be FIFO.) Fifth, some
real-time operating systems support their run-time mecha-
nisms. Sixth, the run-time policing has low time and space
complexity. Given all these advantages, it may seem that
bandwidth-like schemes offer a good foundation for real-time
systems.

Unfortunately, bandwidth-like schemes can waste an infinite
amount of resources. It can be seen as follows: Consider a
taskset τ with n tasks, τ1, τ2, . . ., τn and these tasks have
the parameters Ti = ∞,Di = i,Ci = 1. If these tasks are
scheduled directly on the processor (i.e., without compo-
nents), it can be seen that the taskset is EDF-schedulable
according to Eq. 1. Let us now discuss their behavior in a
system with components and with a bandwidth-like scheme.
Suppose that there are n components and one task in each

component; specifically, task τi is assigned to component i.
In order for the root scheduler to be schedulable, it is re-
quired that the sum of bandwidth of the components is at
most 1. The bandwidth required by a component depends
on the actual scheme used (the blackout period matters and
the predictability of supply of the root scheduler matters);
but for all bandwidth-like schemes, it holds that the required
bandwidth of a component is at least as large as the sum of
the density of the tasks in the component. This yields that
component i requires at least the bandwidth Ci/Di. Hence,
component i requires at least the bandwidth 1/i. Conse-
quently, in order for the root scheduler to be schedulable, it
must hold that

∑
i∈{1..n} 1/i ≤ 1. It is easy to see that (for

n ≥ 2) this condition is false and hence the system is not
schedulable with a bandwidth-like interface. Let the proces-
sor be k times faster. Then, in order for the root scheduler to
be schedulable, it must hold that

∑
i∈{1..n} 1/i ≤ k. Letting

n approach infinity yields that
∑
i∈{1..n} 1/i approaches lnn

and hence it approaches infinity. Thus, even using a proces-
sor that is k times faster cannot guarantee that the system is
schedulable with a bandwidth-like interface. We can do this
reasoning for any k and hence we obtain that bandwidth-like
interfaces can generate an infinite waste of resources.

This observation (that bandwidth-like interfaces can waste
an infinite amount of resources) is known in the literature
[3, 4]. What is not known, however, is how well bandwidth-
like schemes perform in the average-case as compared to a
scheme that performs flat scheduling. Exploring this ques-
tion is the goal of this paper.

2. FORMULATING THE PROBLEM
From Eq. 1 it can be seen that for a taskset scheduled with
EDF, a processor speed

maxt>0(
∑
τi∈τ max(b t−Di

Ti
c+ 1, 0)× Ci

t
) (2)

is sufficient to meet deadlines.

From the discussion in the previous section, it can be seen
that if each task is in its own component, then with a bandwidth-
like scheme, a processor speed∑

τi∈τ
Ci

min(Di,Ti)
(3)

is necessary to meet deadlines.

For a taskset τ , let spdf(τ) be defined as:

spdf(τ) =

∑
τi∈τ

Ci
min(Di,Ti)

maxt>0(
∑
τi∈τ

max(b t−Di
Ti
c+1,0)×Ci

t
)

(4)

Here spdf(τ) should be read as speed-up factor. Intuitively,
spdf(τ) indicates a lower bound on how much faster the
processor needs to be in order for a bandwidth-like scheme
to make the taskset τ schedulable.

We have already seen that there is a taskset such that spdf is
infinite. This paper explores the question: What is spdf(τ)
for typical tasksets? The next four sections consider differ-
ent assumptions and derive expressions for spdf(τ). For the
first three next sections, we generate tasks randomly and
obtain histograms of spdf(τ). For the fourth next section,
we give a simple analytic expression of spdf(τ) and hence do

not run experiments. After these four sections, we comment
on the experimental results.

3. EVALUATION FOR THE SPECIAL CASE
OF TASKSETS WITH INFINITE MINI-
MUM INTER-ARRIVAL TIMES

In this section, we consider the special case where for each
task τi in τ , it holds that Ti =∞.

For this case, spdf(τ) can be computed as:

spdf(τ) =

∑
τi∈τ

Ci
Di

maxt>0(
∑
τi∈τ

θ(t−Di)×
Ci
t

)
(5)

where θ is the step function (it returns 1 if its input is non-
negative and it returns 0 if its input is negative).

Look at the denominator. Note that this step function only
changes for those t that are equal to a D parameter. It can
be seen that we only need to check those t that are equal to
a D parameter. Using this observation yields:

spdf(τ) =

∑
τi∈τ

Ci
Di

maxτj∈τ (
∑
τi∈τ

θ(Dj−Di)×
Ci
Dj

)
(6)

Look at the denominator. Observe that we only need to
include the terms where Dj − Di ≥ 0; the other ones are
zero. With this observation, additional rewriting yields:

spdf(τ) =

∑
τi∈τ

Ci
Di

maxτj∈τ (
∑
τi∈τ s.t. Di≤Dj

Ci
Dj

)
(7)

We will explore spdf(τ) for randomly-generated tasksets.
We do it with two types of taskset generation: similar tasks
and very different tasks.

With the taskset generation similar tasks, we generate tasks
as follows: Di = random(1, 10), Ci = random(1, 10), where
random(a, b) generates a random number, a real number, in
the range [a,b] and it does so with a uniform distribution.
If Ci > Di then we swap the values so that Ci ≤ Di. After
that, we normalize the density of the taskset so that it is
0.999; i.e., we multiple the C-parameters of all tasks so that
the density becomes 0.999. It can be seen that this does
not change spdf(τ); we do it simply so that we get taskset
parameters that are easier to interpret. Then we sort the
tasks in ascending order of the D parameter.

With the taskset generation very different tasks, we generate
tasks as follows: Ci = 10random(0,4) × random(1, 10), Di =

10random(0,4) × random(1, 10), where random(a, b) generates
a random number, a real number, in the range [a,b] and it
does so with a uniform distribution. If Ci > Di then we
swap the values so that Ci ≤ Di. After that, we normalize
the density of the taskset so that it is 0.999; i.e., we multiple
the C-parameters of all tasks so that the density becomes
0.999. Then we sort the tasks in ascending order of the D
parameter.

The results for both similar tasks and very different tasks
are shown in Figure 1. Each subplot shows a histogram of
3000 randomly generated tasksets.

4. EVALUATION FOR THE GENERAL CASE,
ARBITRARY-DEADLINE SPORADIC TASKS

In this section, we consider the general case, i.e., it is not
required that T parameters are infinite. It is also assumed
that the taskset has arbitrary deadlines; i.e., Di is allowed
to be less than, or equal to, or greater than Ti.

Recall from Eq. 4 that

spdf(τ) =

∑
τi∈τ

Ci
min(Di,Ti)

maxt>0(
∑
τi∈τ

max(b t−Di
Ti
c+1,0)×Ci

t
)

(8)

Note that the denominator has an expression which consid-
ers all positive t. One can see, however, that if only those
t for which there exists a task τj and a non-negative inte-
ger k such that t = k × Tj + Dj are considered, then the
calculation yields the same result. One can also see that if
only values of t that are at most 10×maxτi∈τ (Ti +Di) are
considered, then the calculated value is an approximation of
spdf(τ) that has an error of at most 10%. We will use this
to obtain an approximation of spdf(τ).

We will explore spdf(τ) for randomly-generated tasksets.
We do it with two types of taskset generation: similar tasks
and very different tasks.

With the taskset generation similar tasks, we generate tasks
as follows: Di = random(1, 10), Ci = random(1, 10), Ti =
random(1, 10), where random(a, b) generates a random num-
ber, a real number, in the range [a,b] and it does so with a
uniform distribution. If Ci > Di then we swap the values so
that Ci ≤ Di. After that, we normalize the utilization of the
taskset so that it is 0.999; i.e., we multiple the C-parameters
of all tasks so that the utilization becomes 0.999. Then we
sort the tasks in ascending order of the D parameter.

With the taskset generation very different tasks, we gen-
erate tasks as follows: Ci = 10random(0,4) × random(1, 10),

Di = 10random(0,4)× random(1, 10), and Ti = 10random(0,4)×
random(1, 10), where random(a, b) generates a random num-
ber, a real number, in the range [a,b] and it does so with a
uniform distribution. If Ci > Di then we swap the values so
that Ci ≤ Di. After that, we normalize utilization as men-
tioned above. Then we sort the tasks in ascending order of
the D parameter.

The results for both similar tasks and very different tasks
are shown in Figure 2. Each subplot shows a histogram of
3000 randomly generated tasksets.

5. EVALUATION FOR THE GENERAL CASE,
CONSTRAINED-DEADLINE SPORADIC
TASKS

In this section, we consider the general case, i.e., it is not
required that T parameters are infinite. It is also assumed
that the taskset has constrained deadlines; i.e., Di is allowed
to be less than or equal to Ti.

The results for both similar tasks and very different tasks
are shown in Figure 3. Each subplot shows a histogram of
3000 randomly generated tasksets.

(a) Tasks similar and |τ |=2. (b) Tasks similar and |τ |=10.

(c) Tasks similar and |τ |=100. (d) Tasks similar and |τ |=1000.

(e) Tasks not similar and |τ |=2. (f) Tasks not similar and |τ |=10.

(g) Tasks not similar and |τ |=100. (h) Tasks not similar and |τ |=1000.

Figure 1: Histogram for spdf for different ways of generating tasksets randomly for the case that T=∞.

(a) Tasks similar and |τ |=2. (b) Tasks similar and |τ |=10.

(c) Tasks similar and |τ |=100. (d) Tasks similar and |τ |=1000.

(e) Tasks not similar and |τ |=2. (f) Tasks not similar and |τ |=10.

(g) Tasks not similar and |τ |=100. (h) Tasks not similar and |τ |=1000.

Figure 2: Histogram for spdf for different ways of generating tasksets randomly for the case that T is finite. Arbitrary-deadline
sporadic tasks.

(a) Tasks similar and |τ |=2. (b) Tasks similar and |τ |=10.

(c) Tasks similar and |τ |=100. (d) Tasks similar and |τ |=1000.

(e) Tasks not similar and |τ |=2. (f) Tasks not similar and |τ |=10.

(g) Tasks not similar and |τ |=100. (h) Tasks not similar and |τ |=1000.

Figure 3: Histogram for spdf for different ways of generating tasksets randomly for the case that T is finite. Constrained-
deadline sporadic tasks.

6. EVALUATION FOR THE GENERAL CASE,
IMPLICIT-DEADLINE SPORADIC TASKS

In this section, we consider the special case where for each
task τi in τ , it holds that Ci = Ti.

Recall from Eq. 4 that

spdf(τ) =

∑
τi∈τ

Ci
min(Di,Ti)

maxt>0(
∑
τi∈τ

max(b t−Di
Ti
c+1,0)×Ci

t
)

(9)

Using Ci = Ti on this expression yields that:

spdf(τ) =

∑
τi∈τ

Ci
Ti

maxt>0(
∑
τi∈τ

max(b t−Ti
Ti
c+1,0)×Ci

t
)

(10)

Rewriting yields:

spdf(τ) =

∑
τi∈τ

Ci
Ti

maxt>0(
∑
τi∈τ

b t
Ti
c×Ci

t
)

(11)

It can be seen that the denominator is maximized for t→∞.
This yields:

spdf(τ) =

∑
τi∈τ

Ci
Ti∑

τi∈τ
Ci
Ti

(12)

Simplifying yields:

spdf(τ) = 1 (13)

For this reason, there is no need to run experiments for
implicit-deadline sporadic tasks.

7. COMMENTING ON THE EXPERIMEN-
TAL RESULTS

Recall that spdf is a lower bound on how much faster a
processor needs to be in order for a bandwidth-like scheme
to meet deadlines. And recall that Figure 1, Figure 2, and
Figure 3 provide histograms for spdf. From these figures,
it can be seen that (i) the experimental results depend on
the experimental setup, (ii) this lower bound on the penalty
was never larger than 4.0, (iii) for one experimental setup,
for each taskset, it was greater than 2.4, (iv) the histogram
of this penalty appears to be unimodal, and (v) for implicit-
deadline sporadic tasks, this lower bound on the penalty was
exactly 1.

Let us now discuss two subfigures in Figure 1 in order to
understand the results.

Consider Figure 1a. It shows an experimental setup with
just two tasks so it is easy to see details. Consider the taskset
with the largest observed spdf. By inspecting this taskset,
we see that its spdf is 1.862861. We will now discuss how
this result was obtained. The taskset contains 2 tasks and it
turns out the denominator (of Eq. 7) is maximized for j = 1.
For the taskset, it holds that D1 = 1.082638. The taskset
is as follows: C1 = 0.58, D1 = 1.08, C2 = 4.58, D2 = 9.91.
Consider Eq. 7 again. Recall that there is a denominator

with a max-expression. It turns out that for this taskset,
this expression is maximized for j = 1. We also know that
D1 = 1.082638. Applying this knowledge on Eq. 7 yields:

spdf(τ) =

∑
τi∈τ

Ci
Di

(
∑
τi∈τ s.t. Di≤1.082638 Ci)/1.082638

(14)

We can compute the sum in the denominator; it is the sum
of C for tasks with D ≤ 1.082638. Using values yields that
it is 0.58 and hence the denominator is 0.58/1.082638. This
yields that the denominator is 0.535 and we have already
seen that the numerator is 0.999. Hence,

spdf(τ) = 0.999
0.535

(15)

This yields: spdf = 1.86.

Consider Figure 1h. It shows the experimental setup where
the largest observed spdf occurred. By inspecting this taskset,
we see that its spdf is 3.899300. We will now discuss how
this result was obtained. The taskset contains 1000 tasks
and it turns out the denominator (of Eq. 7) is maximized
for j = 148. For the taskset, it holds that D148 = 21.94. In
order to give an idea of what the taskset looks like while not
consuming too much space, we list below only the first task
and also list tasks with D ≤ 21.94 and with C > 0.20. The
listing is as follows: C1 = 0.24, D1 = 2.06, . . ., C13 = 0.43,
D13 = 4.12, . . ., C30 = 0.59, D30 = 6.28, . . ., C58 = 0.24,
D58 = 8.70, . . . C88 = 0.25, D88 = 12.25, . . . C102 = 0.45,
D102 = 14.28, . . . C106 = 0.23, D106 = 15.03, . . . C119 =
0.27, D119 = 16.71, . . . C134 = 0.22, D134 = 19.56, . . .
C145 = 0.58, D145 = 21.05, . . . C147 = 0.20, D147 = 21.81.
Consider Eq. 7 again. Recall that there is a denominator
with a max-expression. It turns out that for this taskset,
this expression is maximized for j = 148. We also know that
D148 = 21.94. Applying this knowledge on Eq. 7 yields:

spdf(τ) =

∑
τi∈τ

Ci
Di

(
∑
τi∈τ s.t. Di≤21.94 Ci)/21.94

(16)

We can compute the sum in the denominator; it is the sum
of C for tasks with D ≤ 21.94. Using values yields that
it is 5.621 and hence the denominator is 5.621/21.94. This
yields that the denominator is 0.2562 and we have already
seen that the numerator is 0.999. Hence,

spdf(τ) = 0.999
0.2562

(17)

This yields: spdf = 3.899300.

8. RELATED WORK
The literature on hierarchical scheduling, composability, and
compositionality is vast; here we only survey some of the pre-
vious work. When rate-monotonic scheduling was developed
as a comprehensive framework, it was recognized that many
systems have software whose resource consumption is hard
to characterize; e.g., it is hard to find its worst-case exe-
cution time or minimum inter-arrival time. For this reason,
reservation-based frameworks were developed (see for exam-
ple [13]). The run-time behavior of such a framework is as
follows: A task may be associated with a server task and
this server task is scheduled as a normal task (for example
with an execution time, often called budget, and a period)

and if a task is associated with a server task then it is only
allowed to execute when the server task executes. In this
way, if a task τi is in a server task and if τi experiences an
execution overrun or arrives more often than expected then
its impact on other tasks is bounded and it is bounded by
the parameters of the server task. Later works created such
reservation for EDF; one example of that is the constant-
bandwidth server (CBS) [1].

Researchers realized that reservation-based frameworks can
be used to form hierarchical scheduling; some work that did
so with EDF include [14, 9]. With the focus on hierarchical
scheduling, Feng and Mok developed [11] a resource model
which states that a root scheduler supplies, in a time interval
of duration t, at least (t−∆k)∗αk units of execution to com-
ponent k. Shin and Lee developed [15] another model where
a component k is characterized by its period and execution
time and with this, presented a so-called supply-bound func-
tion; this work could be used for components that use fixed-
priority as a local scheduler or components that use EDF as
a local scheduler. Later works have focused on resource shar-
ing, specifically the question, if a task τlock executes within
a critical section and its current budget has reached zero,
what should the scheduler do? There may be other tasks
that will request this critical section and these requests can
be granted only if the task that currently holds that critical
section (τlock) has released it. In order for the task (τlock) to
release the critical section, it must be able to execute and in
order for this task (τlock) to execute, it must have a current
budget greater than zero. Different solutions for this have
been developed; see for example [8, 7, 6]. Clearly, server pa-
rameters must be selected in order to ensure schedulability;
this has been the focus of [2].

Recall that early in this paper, we pointed out that bandwidth-
like schemes can suffer from poor performance and we have
suggested that using the demand-bound function is an in-
terface that does not suffer from this drawback. A similar
point has been made in [12, 10]; they also discuss approxi-
mate policing of such an interface.

9. CONCLUSIONS
Bandwidth-like schemes can cause a performance penality.
It was known that for certain tasksets, this performance
penalty is infinite but it was not known how large this penalty
is for average tasksets. Therefore, this paper generated
tasksets randomly and computed spdf which is a lower bound
on how much faster a processor needs to be in order to meet
deadlines if a bandwidth-like scheme is used. Through the
experimentation in this paper, it can be seen that (i) the ex-
perimental results depend on the experimental setup, (ii) this
lower bound on the penalty was never larger than 4.0, (iii) for
one experimental setup, for each taskset, it was greater than
2.4, (iv) the histogram of this penalty appears to be uni-
modal, and (v) for implicit-deadline sporadic tasks, this lower
bound on the penalty was exactly 1.

Acknowledgment
Copyright 2016 ACM This material is based upon work
funded and supported by the Department of Defense un-
der Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering In-
stitute, a federally funded research and development cen-

ter. [Distribution Statement A] This material has been ap-
proved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distri-
bution. DM-0003264

10. REFERENCES
[1] L. Abeni and G. Buttazzo. Integrating multimedia

applications in hard real-time systems. In RTSS, 1988.

[2] L. Almeida and P. Pedreiras. Scheduling within
temporal partitions: response-time analysis and server
design. In EMSOFT, 2004.

[3] B. Andersson. A pseudo-medium-wide 8-competitive
interface for two-level compositional real-time
scheduling of constrained-deadline sporadic tasks on a
uniprocessor. In CRTS, 2009.

[4] B. Andersson. A preliminary idea for an 8-competitive,
log2 DMAX + log2 log2 (1/U) asymptotic-space,
interface generation algorithm for two-level
hierarchical scheduling of constrained-deadline
sporadic tasks on a uniprocessor. In CRTS, 2010.

[5] S. K. Baruah, L. E. Rosier, and R. R. Howell.
Algorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one
processor. In Real-Time Systems, pages 301–324, 1990.

[6] M. Behnam, T. Nolte, M. Asberg, and R. J. Bril.
Overrun and skipping in hierarchically scheduled
real-time systems. In RTCSA, 2009.

[7] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP:
a synchronization protocol for hierarchical resource
sharing in real-time open systems. In EMSOFT, 2007.

[8] R. I. Davis and A. Burns. Resource sharing in
hierarchical fixed priority pre-emptive systems. In
RTSS, 2006.

[9] Z. Deng and J. W.-S. Liu. Scheduling real-time
applications in an open environment. In RTSS, 1997.

[10] F. Dewan and N. Fisher. Efficient admission control
for enforcing arbitrary real-time demand-curve
interfaces. In RTSS, 2012.

[11] X. Feng and A. K. Mok. A model of hierarchical
real-time virtual resources. In RTSS, 2002.

[12] P. Kumar, J.-J. Chen, and L. Thiele. Demand bound
server: Generalized resource reservation for hard
real-time systems. In EMSOFT, 2011.

[13] J. P. Lehoczky, L. Sha, and J. K. Strosnider.
Enhanced aperiodic responsiveness in hard real-time
environments. In RTSS, 1987.

[14] G. Lipari and S. K. Baruah. A hierarchical extension
to the constant bandwidth server framework. In
RTAS, 2001.

[15] I. Shin and I. Lee. Periodic resource model for
compositional real-time guarantees. In RTSS, 2003.

