
Copyright retained by the author

A Lazy DVS Approach for Dynamic Real Time System
Smriti Agrawal

Department of Information Technology,
Chaitanya Bharathi Institute of Technology, Hyderabad, India.

agrawal.smritil@gmail.com

Abstract
This paperpresents a LazyDVS scheduling algorithm that

offers higher acceptance ratio (number of tasks able to meet
their deadline is to number of tasks appearing) with equivalent
orlesser energy consumption for battery powered dynamic
real time system. It is modeled for aperiodic workload by
utilizing the concept of late start and dynamic voltage scaling.
In this paper,with a motivational example we show that
existing approaches have poor energy and aperiodic workload
management, thus, are not suitable for scheduling aperiodic
workload on limited source of energy. Based on this
motivation we propose a Lazy DVS scheduling algorithm that
tradeoffs between timing constraint and the available energy
to provide better acceptance ratio with lower energy. The
extensive examples and simulation results illustrate that our
approach can effectively improve the acceptance ratio while
consuming lower energy.

Keywords:Real time systems, energy aware scheduling, aperiodic,
dynamic voltage scaling, quality of service (QoS).

1. Introduction

Reduction in energy consumptionis one of the main

factors for designing battery powered real time embedded
systems. These systems need portability so must be compact
and lightweight. The advancement in technology has reduced
the chip area but the energy requirement has increased
correspondingly.Such systems if deploy bigger battery it
resultsin increase in their size as well as cost which in turn
severely limits the system’s lifespan and portability. Thus,
designing an energy aware real time embedded systems is a
possible answer.

Significantwork on energy aware scheduling based on
Dynamic Voltage Scaling has been done. However, most of
the algorithms [1, 3, 5, 6, 9, 15], are targeted for periodic tasks
which assumesthat all temporal requirement such as release
time, execution time and deadline are known in advance. Such
systems are traditionally scheduled in offline where they
provide a guaranteed quality of service both in terms of
number of tasks meeting their deadlines as well as duration of
energy backup. On the other hand, many real time applications
involve aperiodic tasks. An aperiodic task isevent based soits
temporal requirement is not known in advance,
thus,itsscheduling cannot be done offline. However, an
aperiodic task once accepted must meet finish by its deadline.
An improved quality of service by accepting more number of
aperiodic taskssuch that they finish within their deadline with
the available amount of energy is the key parameter in
scheduling such systems. This paper, targets aperiodic task

based systems andstrives to improve the quality of service
with limited energy available by using Dynamic Voltage
Scaling (DVS).

Existing strategies[2, 4, 7, 8]that strive for reduction of
energy consumption of aperiodic tasks are either time or
energy conformist. The authors [2, 4] suggested a greedy
based approach. In this technique whenever an aperiodic task
arrives if the time and energy permits it is accepted and
scheduled as soon as possible. However, if the system is
incapable of completing it within its deadline then it is
rejected. This approach has a high rejection rate because all
the energy is consumed by the tasks arriving early, leaving
little or no energy for its successors. The authors [7] refined it
and suggested a lazy approach in which the system does not
greedy schedule the ready task and thus, consume all the
available energy rather it will accumulate the ready task up to
maximum slack time and then select a task to be accepted or
rejected. The shortcoming of this approach is that although it
saves energy but tasks are rejected due to time constraints. A
DVS based scheme is suggested by authors[8, 10, 11, 12, 13,
14], such that whenever the time permits the lowest energy
consuming speed is assigned. The motivational example in the
following section illustrates these approaches.

In this paper, we aim to improve the quality of service
(QoS) by accepting more number of aperiodic tasks as well as
minimize the energy consumption leading to elongated
operating time of the battery.

The rest of the paper is organized as follows: in section
II, we describe our preliminary, followed by motivational
example and system model. Sections III discuss our
contribution. Section IV elaborates our proposed approach
followed by results and analysis in section V. Finally, paper
concludes with section VI.

2. Motivational Example

In this section, we present a motivational example which

will illustrate the existing techniques.
Example: Consider a real time system working on a DVS

processor with speed levels ሼs 2⁄ , 3s 4⁄ , sሽ . The energy
available is 1.7 units and is replenished at every window of
size 7. The system consumes 1 unit of energy per unit time at
maximum speed. During a snap shot suppose three aperiodic
tasks, (߬ =ሼ(ܽ, ݁(ݏ), ݀): (0, 1.5, 8), (1, 1, 3), (2.5, 0.5, 3.2)ሽ) where a୧ is the
arrival time of task τ୧ while e୧(s) is the computation time
required at maximum speed s and d୧ is the absolute deadline)
arrive which need to be scheduled.

The schedule as computed by the existing techniques is
described in the following subsections:

Greedy approach (GA):

At time t=0 when the task τଵ arrives, the scheduler
calculates the energy requirement as 1.5 and finish time as 1.5.
The available energy in the system at this point of time is 1.7,
i.e., greater than that required by this task and no other higher
priority task is available hence, this task is accepted and starts
execution.

At time t=1, when task τଶ arrives, the scheduler estimates
that it energy requirement is 1 while available energy after the
task τଵ is only 0.2. Hence, it rejects task τଶ due to
unavailability of sufficient energy. Thus, task τଵ finishes at
time t=1.5.

At time t=1.5 no task is in the ready queue so the system
switches to idle state and remains there until time t=2.5, when
task τଷ arrives. At this point the scheduler again estimates the
energy requirement as 0.5 while the available energy is merely
0.2, hence, it rejects ߬ଷ.

Thus, the greedy approach is able to schedule only one
task out of three aperiodic tasks (33%) that arrived. This
schedule is plotted in Figure 1(a). The following subsection
describes the Lazy approach adopted to improve the

performance of this scheme.

Lazy Approach (LA):

Lazy approach as described in Section I delays the
scheduling up to the maximum slack time, preserves energy
for likely arrival for few more, and then decides how many it
can accept. In the above example when task τଵ arrives at time
t=0 it does not accepts/rejects it. Rather it estimates the slack
time and accordingly calculates the start time as, 8-1.5=6.5.
Thus, the system remains idle until time t=1 when task τଶ
arrives.

At time t=1, again it estimates the best start time subject
to completion of this task as well as not missing the deadline
of task τଵ, as 3-1=2. Thus, the system remains idle till time t=2

At time t=2, since, no other task has arrived, hence, it
will accept task τଶ and start its computation. At time t=2.5 a
lower priority (based on Earliest Deadline First) task arrives.
Thus, task τଶ continues its execution and finishes at its
deadline of 3. It consumesa total of 1 unit of energy and the
system is left with 0.7 units.

At time t=3, the scheduler selects the task τଷ, since it has
the highest priority. It estimates its energy requirement as 0.5
while 0.7 units is available, hence, task τଷ will be feasible
from the energy point of view. However, the time available up

3.1

Figure 1: Schedule for example (߬ = ሼ(ܽ, ݁(ݏ), ݀): (0, 1.5, 8), (1, 1, 3), (2.5, 0.5, 3.2)ሽ) according to (a) greedy approach (b) Lazy approach (c) DVS
based approach and (d) ProposedLazy DVS

System idle Computation at
speed s

(a) (b)

0

1

1.5

2.5 3.2

7 8

3

Task arrival Energy replenish Task deadline

6.5 0

1

2

2.5 3.2

7 8

3

(c)

0

1

1

2.5 3.2

7 8

3

(d)

0

1

2.5 3.2

7 8

3

Computation at
speed s/2

5
1

2 2.5

5.1

to its deadline is only 0.2 while it requirement at highest speed
is 0.5. Hence, task τଷ will fail to meet its deadline. Thus, the
scheduler reject it and system remains idle until time t=6.5.

At time t=6.5, since, both time and energy permits,
scheduler will accept task τଵ.

Thus, Lazy approach is able to accept two tasks (66%),
as compared to greedy approach that could schedule only one
(33%). The schedule for this interval is plottedin the figure
1(b). The following subsection describes the DVS based
approach for the same example.

DVS based Approach (DVS)[8]:

The authors [8] suggested a DVS approach, which
advocates reduction in the computation speed to the lowest
feasible for Sporadic Tasks. It lowers the energy consumption
of an executing task, on the job by job basis and adjusts the
processor frequency when the jobs are released. Thesame
technique can be applied to aperiodic tasks. Thus, for the
above example as illustrated in the figure 1(c), when task τଵ
arrives lowest speed at which it would be feasible is s 2⁄ .
Thus, task τଵ is accepted and computation begins at speed of s 2⁄ .

At time t=1, when task τଶ arrives, task τଵ has completed
33% of its total computation at speed s 2⁄ . However, slower
computation speed employed by task τଵ, saves energy, hence,
task τଶ is accepted and starts executing.

At time t=2.5, task τଷ arrives. Task τଶ , has performed
75% of its computation up to this point. It further requires 0.5
unit of time at speed s/2, while at speed srequirement is of
0.25. Thus, task τଶ can finish earliest by time t=2.75. The
computation time requirement of task τଷ at maximum speed is
0.5, hence, it can finish time earliest by 3.25, missing its
deadline of 3.2.The scheduler will thus, reject task τଷ and
continue with task τଶ at lowest speed.

At time t=3, when task τଶ completes only ready task is
task τଵ , which is scheduled and completes at time t=5, and
system is idle. The DVS based approach is able to reduce the
energy consumption, but still has to reject tasks due to
unavailability of time (33% rejection rate).

The example clearly demonstrates that the above
approaches are either time- or energy-constrained. This is
because they either waste time doing nothing or they consume
too much of energy leaving insufficient resources for the
upcoming tasks. This paper strives to balance between the two
and suggests an approach that will produce higher quality of
service.

3. System Model

 This system deals with energy minimization of random
arrival pattern aperiodic tasks and is able to operate at
different speed level.
The following considerations are made:
1. System consists of n independent aperiodic tasks߬ଵ, ߬ଶ,߬ଷ … ߬ . Each task ߬ has the attributes, (ܽ) is the arrival
time, ݁(ࣨݏ) is the worst-case execution time at maximum
speed level (ࣨݏ) and deadline(d୧), which are known only after

its release. A task once accepted is guaranteed to complete
within its deadline and not violating the deadlines of any
previously accepted tasks.
2. System is uni-processor with a set of independent,
preemptive tasks.
3. Dynamic priority scheduling algorithm Earliest deadline
first (EDF) is used.
4. DVS processor can operate at ࣨ + 1 discrete voltage
levels, i.e., ܸ = ሼݒ௦, ,ଵݒ ,ଶݒ ଷݒ … ሽࣨݒ where each voltage
level is associated with a corresponding speed from the set ܵ = ሼݏ௦, ,ଵݏ ,ଶݏ ଷݏ … ሽࣨݏ .The speed sଵ is the lowest
operating speed level whereas maximum speed is represented
as sࣨ. A processor can be in either activeor sleep state. In the
active state the processor can run at any of the speed levels
between sଵto ࣨݏ , while in the sleep state it will function at
speed ݏ௦.The power consumption is proportional to the cube
of the operating speed.

The figure 2 depicts the energy aware scheduling
scenario. Theenergy storage is the place to store energy and its
capacity is denoted as C. Instead of making the entire stored
energy available to the processor at one time, the window
based energy aware system will ensure that in no window the
total consumed energy is greater than ܧ. In other words, at
every the available energy for the execution isܧ, thus,
all the tasks in the window of ൫0, ൯ must be scheduled
consuming at most ܧ of energy. At any time the energy
available is represented as ܧ௩(ݐ) . At time ݐ = 0, , ,2 3 … ݊ the energy
availableܧ௩(ݐ) = . The symbols used are summarized inܧ
the table 1.

Table 1: Symbol Table ܧ௩(ݐ) Energy available at time t ܧ Amount of energy replenished ܽ Arrival time of jth task ߬ ݀ Deadline of jth task ߬ ܹ ith number of energy window ܹௌ Starting point of ithenergy window ܹா Ending point of ithenergy window ߝ௦ Energy consumed per unit time by the processor in the sleep state ߝ(ݏ) Energy consumed per unit time by the processor when running at

a speed ݏ (ߝ(ݏ) = ܧ (is a constant ܭ ଷ whereݏܭ Energy required by task ߬for computation ܥ Total Energy storage capacity ܴ൫ݏ൯ Response time of task ߬at speed ൫ݏ൯ ܵݐ Start time of the ith task ߬ ݏ Speed assigned to task ߬
The following section presents the proposed technique to

reduce the energy consumption for the system modelled in this
section.

Uniprocessor Real time task

Energy Storage

Figure 2: Energy aware real time scheduling Scenario

4.Proposed Lazy DVS

The scheduling of the aperiodic tasks is best effort

service as the system requirements are dynamic. Such systems
can be scheduled online only. However, the scheduling will
combine both dynamic priority scheduling technique for
priority assignment and Lazy DVS technique for the start time
estimation of a task. This scheduling framework can be seen in
Figure 3.

The motivational example in Section 2, clearly illustrates
the various techniques available in literature for scheduling of
the aperiodic task with energy considerations. On closer look,
it can be observed that the existing techniques fail due to one
or more of the following reasons:
1. They overstress the system and consume all energy

available (greedy approach), leaving little or no energy for
the forth coming tasks.

2. They postpone the scheduling too far, so the upcoming
tasks have little or no time available (Lazy approach).

3. They execute the available tasks at such low speed that
they leave little or no room for the random tasks that arrive
(DVS based approach).

This paper tries to balance these two orthogonal
conditions by the following rules:
R1: Postpone the execution of a task up to a start time (ܵݐ =݀ − ܴ(ݏ), as explained in the following paragraph), while
keeping in account the feasibility of already accepted tasks.
R2: Unlike the Lazy approach, do not leave the system idle
instead schedule the ready task with minimum energy
consumption.
R3: If a task is not feasible at maximum speed due to its
energy requirement at that speed, select a lower (than
maximum) energy consuming speed, if its deadline permits.

As stated above, whenever a task ߬arrives, a start time
for it and its lower priority tasks, already accepted, is
estimated as follows: ൫ܵݐ = ݀ − ܴ(ݏ)൯ , where ,ݐܵ ݀ are the start time and
deadline of the task ߬and ܴ(ݏ) is the response time of the
task at the assigned speed, computed as ܴ(ݏ) = ݁(ݏ) + ∑ ݁(ݏ)∈ு where H is the set of higher priority tasks
already accepted. In case the estimates start time is negative
indicating that ݀ > ܴ(ࣨݏ), this task has to be rejected, since
it cannot be completed within its deadline. Further, the energy
required is also estimated as ܧ = ݁(ݏ)ߝ(ݏ). For a task
to be feasible, in terms of energy, its required energy ܧat

all times should always be less than or equal to available
stored energy in ሾܵݐ, ݀ሿ interval, i.e., ߝ(ݏ) ,ݐሾܵ߳ݐ ∀(ݐ)௩ܧ≥ ݀ሿ.Thus, a task is accepted if and only if the
deadline and energy requirement of this task along with the
lower priority tasks previously accepted can be met. The
algorithm for the proposed Lazy DVS is stated as follows:
// Input: Tasks are inserted in to the priority ready queue
based on their start time.
Algorithm LazyDVS()
1. While(ready queue is empty)

a. sleep and do nothing
2. While (ready queue not empty)

Do
a. Select a task ࣎ with the earliest start time from the

ready queue.
b. If (start time of ࣎= current time)

i. Execute the task ࣎ at speed assigned ࢇ࢙ till
A. It finishes, then go to step 2.
B. A new taskarrives, then save the status and go

to step 3.
C. A higher priority task ࢎ࣎ (based on EDF)

preempts it, then save its status and go to
step 2.b.iwith ࣎ = .ࢎ࣎

Else
i. Select the task ࣎ with the highest priority based

on EDF
ii. Execute the task ࣎ at lowest speed ࢙ till

A. It finishes, then go to step 2.
B. A new task arrives, then save the status and

go to step 3.
C. A higher priority task ࢎ࣎ (start time of ࢎ࣎ =

current time) preempts it, then save its
status and go to step 2.b.i with ࣎ = .ࢎ࣎

Repeat
Go to step 1

3. For every task ࣎arriving with attributes (ࢇ, ,(घ࢙)ࢋ (ࢊ
Do
a. Assign the speed ࢇ࢙ = घ࢙
b. Estimate the start time as ࢚ࡿ = ࢊ − (ࢇ࢙)ࡾ
c. If (0>࢚ࡿ)

i. Reject it and goto step 1
d. Else

i. Estimate the energy requirement ࢋ࢘ࡱ (ࢇ࢙)ࢿ(ࢇ࢙)ࢋ=
ii. If((ࢇ࢙)ࢿ ≤ ,࢚ࡿሾ࢚ࣕ ∀(࢚)࢜ࢇࡱ (ሿࢊ

A. Insert the task the ready queue and goto step
2.

Else
A. If (ࢇ࢙ = (࢙

a. Reject it and go to step 2
Else

a. Assign next lower speed level and go to
step 3.b.

Repeat
Go to step 1

Aperiodic Task

Lazy DVS

Dynamic priority
scheduling policy
(EDF)

Schedule

Figure 3: Energy aware schedulingframework

Thus, scheduling the motivational example (Section 2)
using the proposed LazyDVS algorithm. Attime t=0 when first
aperiodic task τଵarrives, its start time is estimated to be 6.5 (as
per the rule R1, step 3 of the algorithm), which means that the
system should remain idle till time 6.5 if no other task arrives
in the meanwhile and finally start execution of the task τଵ at
6.5 at maximum speed. However, the proposed lazy approach
as per rule R2(Step 2 b of the algorithm) will start execution of
this task at the lowest possible speed so as to consume least
energy as well as utilize the otherwise wasted time.

At time t=1 when task τଶ arrives, the system has already
completed 33% of the task τଵ computational requirement. The
start time for τଶ is now estimated to be 2 by rule R1. Thus, the
system should remain idle until time t=2, however, as per rule
R2, task τଶ will be executed with the lowest possible energy
consumption. However, at time t=2, as its start time has
occurredτଶ will speed up to maximum speed and complete by
time t= 2.5.

At time t=2.5 task τଷ will arrive and its start time as per
rule R1 is estimated to be 2.7, hence, it will execute
consuming lowest energy from time 2.5-2.7. However, at time
t=2.7, its start time, it will speedup to complete at 3.1. From
time t=3.1 task ߬ଵ will start executing consuming lowest
energy and will finish at time t=5.1, still saving 0.275 units of
energy. Thus, the proposed approach is capable of accepting
all the three tasks (100%) arriving in this example as
compared to the existing approachesthat are able to accept at
most 66% of the incoming load. Further, it also saves energy,
0.275 units in the current example.

The next section deals with performance measurement
ofthe proposed LazyDVS approach through simulations.

5. Simulation Results and Discussion

In this section, simulations on synthesized tasks are
performed to evaluate the performance of the proposed Lazy
DVS scheduling. The processor is capable of voltage and
frequency scaling. The key parameters for performance
measurment are average energy consumption and acceptence
ratio(no of tasks accepted upon no of incoming tasks).
Aperiodic tasks were generated by the exponential distribution
using with inter arrival time (1/λ) and service time (1/μ) with
parameters λ and μ.Simulation is run for 10000 aperiodic
tasks.We implemented the following approach for
performance evaluation in this case:
Greedy Approach(GA): which schedule the jobs atmaximum
avilable speed on greedy basis.
Lazy Approach (LA): which schedule the jobs at maximum
avilable speed and defered their startitng time on the basis of
time as well as avilable energy.
Dynamic Voltage Scaling for Sporadic Tasks (DVSST
[8]):starts with a minimum possible frequency-scaling factor,
and scales the processor frequency up and down depending
when jobs are released.
Proposed Lazy Dynamic Volatge Scheduling (LazyDVS): an
online speed assignment algorithn for aperiodic tasks that
assignes maximum speed intially but utilizes any available

time toexecute with least energy consumption for all ready
jobs at current time t.

In the following section we measure the effect of
variation in aperiodic load on the average energy consumption
and acceptense ratio of aperiodic task.

Effect of load on Average energy consumptionand
acceptance ratio of aperiodic task:

The effect of load on the average energy consumption
and acceptence ratio can be seen from the figure 4and figure 5
respectively.

Figure 4, compares the average energy consumption of
Greedy Approach (GA), Lazy Approach (LA), Dynamic
Voltage Scaling for Sporadic Tasks (DVSST) and Lazy
Dynamic Volatge Scheduling (LazyDVS) when aperiodic load
varies from 10% to 90%. It is observered thatas load increases,
average energy consumption also increasesfor all the
approaches. However, when it is high say 70% to 90% the
proposed LazyDVS approach providesalmost 13% reduction
in average energy consumption over existing DVSST
approach. This is because LazyDVS is better utilized when
occurrence of more aperiodic task is higher. On the other
hand, when the aperiodic load is varied from 10% to 40%
proposed approach has approximately 6% reduction in
average energy consumption over DVSST. This is due to the
most of the time aperiodic will execute at same speed level in
both approach.

Figure 5,compares the performance of Greedy Approach

(GA), Lazy Approach (LA), Dynamic Voltage Scaling for
Sporadic Tasks (DVSST) and Lazy Dynamic Volatge
Scheduling (LazyDVS)when aperiodic load varies from 10% to
90% in terms of acceptance ratio. It is observedthatas load
increases acceptence ratio decreases for all approaches.
However, when the aperiodic load is high say 70% to 90% the
proposed Lazy DVS accepts approximately28% more tasks
than simple Lazy approach (LA) without DVS, approximately
35% more as compared to Greedy approach (GA) and as
compared to DVSST itis 10%. This is because limited energy

0

10

20

30

40

50

60

70

80

0.1 0.3 0.5 0.7 0.9

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

→

Aperiodic Load →

Figure 4: Avg. Energy consumption Vs Aperiodic Load
GA LA DVSST LazyDVS

is avilable, however, without DVS based approaches (GA and
LA) always execute the task at maximum avilable speed so
stored energy is consumed earliar and more chance to reject
task due to energy constraints. However, DVSST switches the
task to lowest possible speed to save energy may waste so
much of time doing one job that there is little or no room left
for the upcoming tasks, leading to poor acceptance ratio.
While at lower aperiodic load (10% to 20%) without all
approach accept most of the aperiodic tasks as sufficient
amount of energy and time is avilable.

6. Conclusion

In this paper, we presented a Lazy DVS scheduling
algorithm that focused on obtaining maximal utility while
respecting the limited amount of available energy for aperiodic
tasks.A new aperiodic task is accepted only and only if it can
be guaranteed to finish within its deadline with the available
energy without violating the deadlines of the previously
accepted tasks. For meeting the timing as well as energy
requirement, we proposed a set of rules which when followed
save energy. The proposed algorithm improvesthe
performance both in terms of energy saving and acceptance
ratio.

The examples and simulation studies has carried out. It
has been observed that the proposed scheduling algorithm
reduce the overall average energy consumptionof aperiodic
tasks is approximately 13 % at aperiodic load varied from 70%
to 90% while 6% at lower aperiodic load varied from 10% to
50%. When the aperiodic load is high say 70% to 90% our
proposed approach LazyDVS could accept approximately
10% more task than simple Dynamic Voltage Scaling
Algorithm and accept 35% more task as compare to Greedy
approach without DVS (GA). Thus, extensive simulation and
illustrative example shows that our proposed approach is
capable of performing better in terms of average energy
consumption of aperiodic task as well as acceptance ratio of
aperiodic task.

7. References

[1.] H. Aydin, R.G. Melhem, D. Mosse´, and P. Mejı´a-Alvarez,

“Power-Aware Scheduling for Periodic Real-Time Tasks”, IEEE
Trans.Computers, vol. 53, no. 5, pp. 584-600, May 2004.

[2.] I. Hong, M. Potkonjak, and M.B. Srivastava, “On-Line
Schedulingof Hard Real-Time Tasks on Variable Voltage
Voltage Processor,”Proc. Int’l Conf. Computer-Aided Design,
pp. 653-656, 1998.

[3.] P. Mejı´a-Alvarez, E. Levner, and D. Mosse´, “Adaptive
SchedulingServer for Power-Aware Real-Time Tasks,” ACM
Trans. EmbeddedComputing Systems, vol. 3, no. 2, pp. 284-306,
2004.

[4.] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z.
Lu,“Power-Aware QoS Management in Web Servers,” Proc.
IEEEReal-Time Systems Symp., pp. 63-72, 2003.

[5.] P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage Scaling
forLow-Power Embedded Operating Systems,” in Proc. 18th
Symp.Operating Systems Principles, pp. 89-102, 2001.

[6.] Y. Zhu and F. Mueller, “Feedback EDF Scheduling
ExploitingDynamic Voltage Scaling,” Proc. IEEE Real-Time
and EmbeddedTechnology and Applications Symp., pp. 203-
212, 2004.

[7.] A. Sinha and A.P. Chandrakasan, “Energy Efficient Real-
TimeScheduling,” Proc. Int’l Conf. Computer-Aided Design, pp.
458-470,2001.

[8.] A. Qadi, S. Goddard, and S. Farritor, “A Dynamic Voltage
ScalingAlgorithm for Sporadic Tasks,” Proc. IEEE Real-Time
SystemsSymp., pp. 52-62, 2003.

[9.] Y. Shin and K. Choi, “Power Conscious Fixed Priority
Schedulingfor Hard Real-Time Systems,” Proc. Design
Automation Conf.pp. 134-139, 1999.

[10.] Y. Doh, D. Kim, Y.-H. Lee, and C. M. Krishna.
ConstrainedEnergy Allocation for Mixed Hard and Soft Real-
Time Tasks. InProc. of Int. Conf. on Real-Time and Embedded
Computing Systemsand Applications, pages 533–550, 2003.

[11.] W. Yuan and K. Nahrstedt. Integration of Dynamic
VoltageScaling and Soft Real-Time Scheduling for Open Mobile
systems. InProc. of Int. Workshop on Network and Operating
Systems Supportfor Digital Audioand Video, pages 105–114,
2002.

[12.] D.Shin and J.kim “Dynamic voltage scaling of periodic
andaperiodic tasks in priority-driven systems” In Proc. of Asia
and SouthPacific Design, pp 653-658,2004.

[13.] Y. Shin and K. Choi. Power Conscious Fixed PriorityScheduling
for Hard Real-Time Systems. Proceedings of theDesign
Automation Conference, pp. 134–139, June 1999.

[14.] Y.-H. Lee and C. M. Krishna,“Voltage-Clock Scaling for
LowEnergy Consumption in Real-Time Embedded
Systems”,Proceedingsof the Sixth Int’l Conf. on Real Time
Computing Systemsand Applications, pp. 272-279, 1999.

[15.] F. Gruian, “Hard Real-Time Scheduling for Low-Energy
UsingStochastic Data and DVS Processors,” Proc. Int’l Symp.
LowPowerElectronics and Design, pp. 46-51, 2001.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5 0.7 0.9

A
cc

ep
at

an
ce

 r
at

io
 →

Aperiodic Load →

Figure 5: Acceptance Ratio Vs Aperiodic Load

GA LA DVSST LazyDVS

