
Hierarchical Scheduling over Off- and On-chip
Deterministic Networks∗

Ramon Serna Oliver
TTTech Computertechnik AG

Schoenbrunnerstr. 7, Vienna, Austria
rse@tttech.com

Silviu S. Craciunas
TTTech Computertechnik AG

Schoenbrunnerstr. 7, Vienna, Austria
scr@tttech.com

ABSTRACT
In this paper we present a compositional model for
distributed virtualized systems communicating over on-
chip/off-chip deterministic networks implementing an end-
to-end or partial time-triggered paradigm. We derive
system-level constraints for combined task-, virtualization-
and network-level static scheduling enabling the end-to-end
composition of schedules for systems featuring table-driven
(guest) operating systems. In the absence of a time-triggered
run-time system, we analyze the composition problem with
the aid of hierarchical scheduling methods for abstract re-
sources. Moreover, we identify and discuss possible trade-
offs and optimization opportunities that arise when schedul-
ing across multiple (virtualized) software layers in tandem
with the deterministic network.

1. INTRODUCTION
The proliferation of embedded hypervisors and system-on-

chip technologies open a range of opportunities for the devel-
opment of complex systems for real-time deployments in var-
ious embedded domains, like mixed-criticality systems and
the Internet of Things (IoT). Virtualized platforms span-
ning across multiple levels of on-chip and off-chip compo-
nents are able to host dynamically relocatable distributed
applications with different criticality requirements in iso-
lation of each other. An example of such architecture is
the DREAMS harmonized platform [5] currently being ex-
ploited within several demonstrators in the EU/FP7 project
DREAMS1.

This paper relies on previous work on end-to-end schedul-
ing of distributed time-triggered systems [3] and develops a
descriptive discussion concerning the challenges and impli-

∗The research leading to these results has received fund-
ing from the European Union Seventh Framework Pro-
gramme (FP7/2007- 2013) under grant agreement no 610640
(DREAMS).
1A detailed project description is available at
http://www.dreams-project.eu/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

c© 2016 Copyright held by the owner/author(s).

.

cations of extending the concepts to an abstract distributed
and virtualized on-chip/off-chip architecture (Section 2), a
generalization of the DREAMS harmonized platform, im-
plementing either a full or partial composable end-to-end
time-triggered paradigm. We explore in Section 3 the isola-
tion problem as a combination of proper resource allocation
and scheduling composability via hierarchical system mod-
els. We further present a number of performance trade-offs
leading to feasible solutions without excessively sacrificing
the schedulability solution space. We round up the paper
with a discussion (Section 4) of the trade-offs and optimiza-
tion opportunities arising from our model followed by a brief
survey of related research in Section 5 and concluding re-
marks in Section 6.

2. SYSTEM AND NETWORK MODEL
We introduce an abstraction of a distributed hierarchical

time-triggered system, similar to [13] composed of networked
multi-core nodes as depicted in Figure 1. Nodes are essen-
tially systems-on-chip composed of multiple tiles, each con-
sisting of a number of interconnected CPUs. On the tiles,
a hypervisor hosts multiple guest operating systems (guest
OS) following a table-driven schedule in a fully virtualized
platform. Application tasks execute on the guest OS and
communicate with other tasks within or outside their tile
by exchanging time-triggered messages (tt-message). We
differentiate two levels of the network, namely an on-chip
network connecting the tiles within one node, and the off-
chip network connecting the multiple nodes. Both on-chip
and off-chip networks implement a scheduled time-triggered
communication paradigm (e.g. [20]) to transfer messages of
tasks within the same node (on-chip) or, respectively, across
nodes (off-chip). We differentiate two alternative scenar-
ios (see Section 3) with respect to the execution of tasks in
the guest OS. On one hand, we consider the time-triggered
case (ostt) in which the guest OS and virtualization lay-
ers follow a table-driven schedule and, hence, an end-to-end
time-triggered paradigm orchestrates the execution of tasks,
virtual machines, as well as communicating networks. On
the other hand, we elaborate an alternative case (osabs) in
which the execution model of the guest OSs is abstracted
into a common schedulable resource on the level of hypervi-
sor. In this case, the time-triggered paradigm applies only
to the hypervisor and the networks. In our model we assume
that both the guest OS and virtualization layers have mech-
anisms allowing a global time synchronization (e.g. IEEE
802.1AS, IEEE 1588, or [21]).

Off-chip Network

Physical Node

O
n

-ch
ip

 N
etw

o
rk

Application Tile

Hypervisor

Phy.
CPU

Virtual
CPU

Phy.
CPU

Virtual
CPU

Virtual
CPU

Guest
RTOS

Guest
RTOS

Guest
RTOS

Network
Interface

Application Tile

Hypervisor

Phy.
CPU

Virtual
CPU

Phy.
CPU

Virtual
CPU

Virtual
CPU

Guest
RTOS

Guest
RTOS

Guest
RTOS

Network
Interface

On-chip – Off-chip Gateway

Physical Node

O
n

-ch
ip

 N
etw

o
rk

Application Tile

Hypervisor

Phy.
CPU

Virtual
CPU

Phy.
CPU

Virtual
CPU

Virtual
CPU

Guest
RTOS

Guest
RTOS

Guest
RTOS

Network
Interface

Application Tile

Hypervisor

Phy.
CPU

Virtual
CPU

Phy.
CPU

Virtual
CPU

Virtual
CPU

Guest
RTOS

Guest
RTOS

Guest
RTOS

Network
Interface

On-chip – Off-chip Gateway

Figure 1: Example of a virtualized on-chip/off-chip architecture.

2.1 Execution Modes
An advantage of virtualization is that, in the event of fail-

ures, tasks and guest OSs can be migrated to different tiles
or nodes provided that sufficient resources are still available.
While a dynamic reconfiguration procedure offers the great-
est flexibility towards unexpected failures, it also requires
online mechanisms to resolve and orchestrate the migration
steps. These mechanisms, however, decrease significantly
the deterministic behavior established by the time-triggered
paradigm, since it is typically not feasible to maintain sys-
tem guarantees across unforeseen run-time dynamics. A
more deterministic procedure results from an offline plan-
ning of reconfiguration modes (e.g. [6]). The advantages
arise from the possibility of ensuring the required end-to-
end system guarantees for each configuration mode, while
clearly, the main disadvantage is the limitation in the num-
ber of tolerated failures to those which have been considered
offline. In this paper we consider the second case. We claim
that predictability and determinism in the domain of mix-
criticality systems is of higher value than the adaptability
to unforeseen events. Moreover, we motivate our choice in
the existence of analysis methods, like [5], compatible with
the offline definition of alternative configuration modes.

An execution mode is, therefore, the allocation and con-
figuration for the set of tasks to the respective OS, as well as
an assignment for each OS to an explicit tile of a node. Note
that the end-to-end communication requirements (i.e. mes-
sage exchange between application tasks) remains the same
regardless of the particular resource where tasks are hosted.
Dependent configurations like, e.g. on-chip or on-chip net-
work schedules, may need to change and accommodate to
the new arrangement of tasks.

We consider system level timeliness guarantees as the end-
to-end application latency of communicating pairs of tasks.
To this respect, we follow a communication model, similar
to [3] in which tasks either consume or produce at most
one message which is respectively received before its release
time or transmitted at the end of its execution. We aim
at generating the schedule for each time-triggered layer (i.e.
off-chip/on-chip network, hypervisor, guest OS) such that
end-to-end latency is guaranteed for each execution mode
considered. Without loss of generality, we consider timeli-
ness guarantees to be specified as earliest start time, latest

execution time (e.g. deadline), and maximum end-to-end la-
tency, where end-to-end refers to the difference between the
scheduled release time of the producer task and the latest
scheduled execution time of the consumer.

Given the set of execution modes, we elaborate again two
alternative scenarios with respect to end-to-end guarantees.
On one hand, we consider the loose case in which gener-
ation of schedules is decoupled, hence satisfies end-to-end
constraints on each mode without imposing any constraints
across alternative modes. On the other hand, we consider
the strict case in which the same end-to-end timeliness is
coupled across the complete set of modes, meaning that the
scheduled start time, deadline, and end-to-end latency is
strictly the same for each mode. We motivate this scenario
in that a mode change can take place without any noticeable
change at the application layers with respect to end-to-end
timeliness. Note, however, that in order to fully guaran-
tee strict end-to-end timeliness of the application layer we
impose the guest OS to be table-driven (case ostt). A more
detailed discussion on this topic is presented in section 3.1.1.

3. HIERARCHICAL SCHEDULING
Typically the scheduling problem for distributed time-

triggered networked systems was decoupled into different
layers and handled separately or sequentially. Some ap-
proaches schedule the network first and derive out of the re-
sulting schedule constraints for the software layer [4] whereas
other methods consider the software layer first and subse-
quently constrain the schedule of the network layer [9]. Both
methods suffer from the problem that sequential scheduling
requires a feedback loop in the case of one of the layers not
being schedulable as a result of the constraints of the other
layer. The root cause for infeasiblity may be very difficult to
determine due to the so-called domino effect (cf. [2, p. 37]).
Some recent papers have considered the combined approach
in order to cover the whole solution space [3] but are re-
stricted to a simple model where end-nodes are uniproces-
sor systems lacking the virtualization layer and off-chip and
on-chip architecture discussed in our model.

Our architecture raises two main research questions.
First, the virtualization layer together with the multi-core
capabilities introduces the problem of creating combined
schedules over the hierarchical design. Secondly, the re-

quirements of having multiple modes, where applications
can migrate from one node to another, imposes additional
constraints on the off-chip and on-chip communication la-
tencies.

3.1 The allocation and scheduling problem
The model presented in this paper requires several lev-

els of scheduling in addition to the decision on which CPU
core to schedule which task/virtual machine. As in [3], we
assume the sender and receiver tasks communicating over
the off-chip/on-chip network have the same rate (period).
Multi-rate communication can be resolved, as discussed in
e.g. [7], by means of extended logic in the sender/receiver
tasks without affecting our approach. Other complex depen-
dencies, like e.g. event chain constraints, can be modeled by
a composition of precedence constraints (cf. [3]).

The most important aspect of the scheduling problem is
whether the guest OS features table-drive static scheduling
(ostt) or some other priority-based mechanism (osabs). In
the first case, we generate static schedules for the guest OS
layer (Section 3.1.1) whereas in the second case individual
guest OS schedulers featuring either dynamic or static pri-
orities cannot be readily integrated into our approach (Sec-
tion 3.1.2).

3.1.1 Table-driven static scheduling
The model presented in [3], in which preemptable tasks

running on uni-processor systems communicate through a
deterministic network, offers the basis for our analysis.
Our method consists of breaking up the preemptive time-
triggered tasks into non-preemptable pieces based on the
macrotick of the underlying OS and formulate first-order
logical constraints defining the point in time where both the
task pieces and frames on the network are scheduled fulfilling
the end-to-end guarantees. The constraints are then solved
by either a Satisfiability Modulo Theories (SMT) or Mixed
Integer Programming (MIP) solver, depending on whether
optimization objectives are considered or not.

We define the network model as a graph G(R,L). The set
R defines the set of all resources in the network, i.e., end-
nodes and off-chip components (switches). The edges (L ⊆
R×R) are the directional communication links that connect
the resources in the given topology. We have two types of
schedulable entities, namely tasks and network frames. We
model all schedulable entities through the concept of frames
similar to [3]. The communication through network links
is composed of frames of a certain length that have to be
transmitted from one sender to one or multiple receivers.
Tasks that are scheduled on CPUs in the end-systems can
be split into pieces, where each piece can be viewed as a
frame with a certain size that has to be scheduled. Hence,
for resources such as off-chip network switches, a frame is
the instance of a tt-message scheduled on an outgoing port
(physical link). For CPUs, a task is a set of sequential frames
scheduled on a CPU (core). We can model both preemptive
and non-preemptive tasks by generating either one frame
per task (with the length of the frame equal to the WCET
of the task) or as many frames as are necessary based on the
macrotick and speed of the respective CPU. From this point
on we will only concentrate on scheduling frames and refer
the reader to [3] for the complete transformation formalism
and scheduling constraints for uni-processor end-nodes.

If the guest OSs feature table driven static schedules we

can abstract the hierarchical scheduling problem to schedul-
ing n tasks (i.e. tasks from all guest OSs running on the same
application tile) on m processors. In this regard, we need to
extend the constraints presented in [3] to create schedules
for multiple processors, i.e., both the time at which tasks are
scheduled as well as the physical CPU where tasks run needs
to be determined by the solver engine. In [3] the only rel-
evant scheduling resource was time. For our current model
we need to extend this resource by a second dimension that
represents the physical CPU where tasks run.

We formulate an additional constraint to the ones pre-
sented in [3] that captures the two-dimensional scheduling
resource for tasks, allowing pieces of a task to either overlap
in time but execute in different CPUs, or run on the same
CPU but not overlap in the time domain. A two dimensional
resource R ∈ R has two scheduling components, namely the
time dimension and the CPU dimension. In case of switches,
the second dimension has a capacity of 1 while in the case
of end-nodes the capacity of the resource R.C defines the
number of available CPUs. A task τi running on an applica-
tion tile generates a set of frames Fi = {fi,j | j = 1, . . . , n}
where the frames represent the non-preemptable pieces of
the task [3]. Usually, the pieces are defined based on the
macrotick of the system but they can also be defined de-
pending on optimization objectives (discussed below).

A frame fi,j ∈ Fi when scheduled on a resource R gener-
ates a frame instance denoted by fR

i,j . A frame instance is

defined by the tuple 〈fR
i,j .φ, f

R
i,j .π, f

R
i,j .L, f

R
i,j .T 〉, where fR

i,j .φ

is the offset in the time dimension, fR
i,j .π is the offset in the

CPU dimension, fR
i,j .L is the frame length (piece size), and

fR
i,j .T is the period of the frame in the time dimension.
The set of frames generated by all n tasks running on an

application tile FR = {fR
i,j | i = 1, . . . , n; j = 1, . . . ,mi}

scheduled on a resource R is subject to the following con-
straints: ∀fR

i,j ∈ FR : (fR
i,j .φ ≥ 0) and ∀fR

i,j ∈ FR :

(fR
i,j .π ≥ 0) ∧ (fR

i,j .π ≤ R.C), where R.C is the number
of available CPUs on resource R. Additionally, we have
to ensure that, regardless of the CPU the pieces of an in-
dividual task run on, they are in the correct order, i.e.
∀fR

i,j ∈ FR
i , j = 1, . . . ,mi − 1 : fR

i,j .φ+ fR
i,j .L ≤ fR

i,j+1.φ.
We now refine the link constraint presented in [3] to cap-

ture a multi-core/multi-processor architecture. The result-
ing constraint for any resource R ∈ R is

∀fR
i,j ∈ FR

i , f
R
k,l ∈ FR

k , i 6= k,

∀α ∈

[
0,
HP k,l

i,j

fR
i,j .T

− 1

]
, ∀β ∈

[
0,
HP k,l

i,j

fR
k,l.T

− 1

]
:(

(fR
i,j .φ+ α× fR

i,j .T ≥ fR
k,l.φ+ β × fR

k,l.T + fR
k,l.L)∨

(fR
k,l.φ+ β × fR

k,l.T ≥ fR
i,j .φ+ α× fR

i,j .T + fR
i,j .L)

)
∨(

fR
i,j .π 6= fR

k,l.π
)
,

where HP k,l
i,j

def
= lcm(fR

i,j .T, f
R
k,l.T).

Other constraints, such as precedence and latency require-
ments, can be defined complementary. The end-to-end la-
tency of the communication between a sender and receiver
task can be thus defined by the system requirements and
imposed as a constraint on the generated schedule (cf. [3]).

The length of a frame generated by a task is usually based
on the macrotick of the respective system. In this case

the length is equal to 1 since the generated schedule is de-
fined on a time-line with macrotick granularity. However, it
also possible to model non-preemptable tasks by setting the
length of the frame to the WCET of the task. Moreover, we
can also define a design problem allowing a arbitrary split
of tasks into frames between the two corner-cases defined
above. Here, there is a fundamental trade-off between so-
lution space and runtime of the solver. A larger length of
the frames, and hence a smaller number of frames that need
to be scheduled, may result in a faster runtime of the solver
at the expense of solution space. Furthermore, there is also
an optimization problem that can be defined with respect
to the switching overhead. For every frame that needs to
be scheduled, a context switch overhead may be introduced,
hence lowering the available CPU bandwidth for the execu-
tion of tasks and increasing the overhead of the underlying
guest OS and virtualization layer. The optimization prob-
lem consists in finding the optimal split of tasks into frames
that minimizes the overall context switch overhead.

Captured in our constraint is the ability of a task to mi-
grate from one CPU to another by allowing each piece of the
task to be freely scheduled on any CPU. The overhead in-
volved in migration can be substantial thus raising another
optimization/design problem that aims at minimizing the
involved overhead (discussed in Section 4).

3.1.2 Priority-based scheduling
We now consider the case in which the guest OS run-

ning on top of the virtualization layer feature either earliest
deadline first (EDF) or rate monotonic (RM) scheduling. In
this case, the combined scheduling approach cannot include
the guest OS layer, since there is either dynamic priorities
or static priorities that define the timing behavior of tasks
at runtime and not a precomputed offline schedule. One
approach that can be used to handle such systems within
our combined scheduling method is the compositional hier-
archical scheduling framework [19] in which real-time tim-
ing requirements of individual periodic tasks scheduled in
one guest OS can be combined (abstracted) into one sin-
gle periodic resource requirement on the level of the virtu-
alization layer. In this approach, a scheduling component
model, defined as C(W,R,A), where W is the task set, R
is the abstracted resource model, and A is the scheduling
algorithm, is guaranteed to be schedulable in isolation to
the other scheduling models [18]. Given the set of tasks
W = {Ti(ei, pi)}, where ei is the WCET and pi the period
of task Ti, a method is given in [18, 19] to extract a periodic
resource Γ(Θ,Π) for both EDF and RM which ensures that,
if the virtualization layer supplies Θ time units every Π time
units for workload W , each task Ti will execute its workload
of ei within the given period pi. From this abstraction, a
periodic virtual real-time task with execution time Θ and
period Π can be defined that is then scheduled offline using
our combined approach on the virtualization layer.

The resulting scheduling problem is similar to the one de-
scribed above (Section 3.1.1), namely computing a schedule
for n virtual tasks that result from the guest OS abstractions
on m processors with one very important difference. Above,
the end-to-end latency was an input constraint from the user
on individual sender-receiver pairs. Here, we cannot control
the deadlines and release times of individual sender and re-
ceiver tasks running in the guest OSs, hence the end-to-end
latency cannot be specified as a user constraint but is rather

TrTr Tr

TsSender
node

Receiver
node

Network

Ts

Network latency

End-to-end latency (3 Periods)

Figure 2: End-to-end latency example.

computed as the worst-case resulting from the period of the
communication.

Since we only can guarantee that a sender/receiver task
will start and finish execution within its period, but not at
which point exactly within the period, the moment in time
when a message is available for transmission and reception
on the end-system side is at the end of the current and be-
ginning of the next period instances, respectively. We illus-
trate this issue in Figure 2 via a simplified example in which
a sender task Ts(2, 10) running on a guest OS abstracted
into a resource Γs(4, 10) is communicating via the network
to a receiver task Tr(3, 10) running on a guest OS abstracted
into a resource Γr(4, 10). All times are given in ms.

Illustrated in the figure is a possible schedule of both
sender and receiver tasks, where the grey areas define the
other tasks that run within the abstracted resources Γs and
Γr. The uncertainty regarding the moment of execution of
sender and receiver tasks within the guest OS results in a
worst-case end-to-end latency of 3 periods. For the network,
the end-to-end latency between the sending of the message
from the sender node and the reception of the message on
the receiving node is defined to be one period. In the exam-
ple the resulting worst-case end-to-end latency is 30ms.

As discussed in [3] individual tasks may have precedence
constraints due to shared resources or system design require-
ments. As opposed to the table-driven approach within the
guest OS, having priority-driven scheduling in a hierarchy
with dependencies both within a guest OS and between
tasks of different guest OSs, requires more advanced hierar-
chical abstraction mechanisms. Such mechanism have been
studied in [10], where hierarchies of tasks with dependen-
cies are considered within the RTW (Real-Time Workshop)
and LET (Logical Execution Time) semantics, exposing a
trade-off between end-to-end latency and composability.

3.2 Mode changes
In the context of this paper execution modes are defined

as a collection of configuration artifacts for the schedulable
time-triggered resources (e.g. hypervisor, guest-OS, or on-
chip/off-chip network). Eventually, a re-configuration of re-
sources may be necessary in order to maintain system guar-
antees upon changes in the distributed deployment. These
runtime changes may be triggered as a response to system
failures or due to changes in the application demand for
given resources. Regardless of the triggering event, we define
the action of switching from one system-wide configuration
(execution mode) to a new one as a mode change [16].

We restrict the runtime adaptability to changing events
to a set of pre-computed execution modes. We also assume
an offline established relation between each such mode and
one or several alternative triggering events. Once an event
occurs, a system wide decision to switch to a new mode is
made. Note that a discussion concerning the mechanism to
detect, decide, and orchestrate mode changes during runtime
is not in the scope of this paper.

In any case, we consider the action of switching to a new
mode as a critical operation with a non-zero cost in terms of
complexity and performance degradation [6], [17], [14]. In
general terms, loading a new configuration may require the
reconfigured resource to restart (e.g. off-chip switch, guest-
OS) or imply a certain loss of application data (e.g. routing
tables, application cache). For certain resources, typically
those with lower utilization, it is possible to leverage the
reconfiguration efforts by defining super-sets of configuration
modes. In particular, if the resource is managed according
to a table-driven schedule, the construction of the super-set
reduces to the union of multiple tables.

For example, consider execution modes ma and mb for
alternative tasks sets in a given guest-OS, namely Ta =
{τai , τaj } and Tb = {τ bi , τ bk}. Instead of reconfiguring the sys-
tem at run-time based on the respective table-driven sched-
ules tta and ttb we define a merging step of the task-set,
prior to the scheduling step, to determine a combined task-
set Ta∪b, where Ta∪b = Ta∪Tb = {τi, τj , τk}. This essentially
results in one larger task-set that can be scheduled following
the same approach described so far. Therefore, configuring
the resulting schedule (i.e. tta∪b) is sufficient to fulfill both
execution modes, ma and mb. In this case, the activation
of the already scheduled tasks for each mode is leveraged to
the application logic as it does not require any additional
re-configuration mechanism at run-time.

One such resource is the off-chip network, where several
time-triggered communication schedules can be merged into
a super-schedule. Switching to a new mode which is part
of the current super-set results in zero cost, since the frame
transmission events required in the new mode are already
present in the current configuration. Only when the union of
schedules becomes unfeasible due to conflicting constraints
or over-utilization of the resource it becomes necessary to
switch to an alternative super-set. It is relevant, there-
fore, to build the super-sets based on the union of those
modes which are prone to correlate in order to minimize
the need to reconfigure a new super-set. In other resources,
even those that may not follow a time-triggered paradigm
(i.e. an abstract OS), a union of modes can still be achieved
based on the analysis of resource requirements detailed in
Section 3.1.2.

4. TRADE-OFFS AND OPTIMIZATION
We have identified several fundamental trade-offs and op-

timization problems arising from the presented model which
we discuss here in more detail.

From the scheduling perspective, the different layers open
up several interesting trade-offs in terms of solution space
and runtime of the solver engine, which is important for
NP-complete problems, as well as optimization problems re-
garding several overhead parameters. As presented in Sec-
tion 3 one important factor influencing the schedulability of
the system is the macrotick length. A larger macrotick will
reduce runtime of the solver since the search space for frame

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000

C
P

U
 b

a
n

d
w

id
th

 [
%

]

macrotick [µsec]

Available CPU bandwidth for task execution

Figure 3: Available CPU bandwidth for task ex-
ecution in function of the macrotick length on a
TMS570 platform. Measurements were obtained
from our previous experiments conducted for [4].

offsets is defined by the granularity of the time-line at the
expense of also reducing the solution space. Moreover, a
smaller macrotick, while increasing system responsiveness,
will also reduce the available CPU bandwidth for executing
tasks since, for some systems, the constant overhead of the
timer interrupt (which happens at macrotick granularity) in
addition to the context switch overhead will be more rele-
vant if the macrotick is smaller. In Figure 3 we illustrate
the dependency between the available CPU bandwidth for
task execution and the macrotick size for a custom RTOS
developed at TTTech [4] running on a TMS570 platform.

The length of the macrotick also influences the task
splitting into non-preemptable task pieces (frames). A
finer macrotick granularity reduces the wasted CPU band-
width when the WCET of the task is not a multiple of
the macrotick since, in such a case, there is some over-
provisioning, i.e, the number of generated frames ni of task
τi with computation time WCET i running on a system with
macrotick mT is computed as ni = dWCET i

mT
e.

An arbitrary split of a task into pieces spanning multiple
macroticks also exposes a trade-off between solution space
and runtime of the solver and offers some space for opti-
mization. Lowering the number of frames that need to be
scheduled may result in a faster runtime of the solver and
may also result in fewer context switches at the expense
of solution space. An interesting multi-objective optimiza-
tion problem in this context is to find the optimal number
of pieces (frames) for each task such that overall context
switch overhead and the wasted CPU bandwidth from over-
provisioning are minimized. The problem can also be for-
mulated as finding the maximum macrotick size for which
the system is still schedulable.

The second dimension that yields optimization opportuni-
ties is the multi-core design. The ability of a task to migrate
from one CPU to another by allowing each piece of the task
to be freely scheduled on any CPU may result in substantial
migration cost. Here there is also a fundamental trade-off
between overhead cost of migration and schedulability. If a
task is not allowed to migrate by design, we can impose a
constraint, ∀fR

i,j ∈ FR
i , j = 1, . . . ,mi − 1 : fR

i,j .π = fR
i,j+1.π

that forbids migration. However, while reducing the migra-
tion cost to 0, this also reduces the feasible solution space.
As with the context switch overhead, an interesting opti-
mization problem is to let tasks migrate in order to increase
schedulability but define an optimization objective that min-
imizes the resulting migration overhead.

For systems in which the guest OS layer features priority-
driven scheduling we also identify an optimization problem.
The main issue with extracting the single periodic resource
requirement Γ(Θ,Π) out of multiple tasks is finding the op-
timal period Π such that the resource capacity of the vir-
tualization layer is not wasted, i.e., minimize the abstrac-
tion overhead [19]. Additionally, the virtual task resulting
from the abstracted resource must be schedulable using the
macrotick of the underlying virtualization layer. In other
words, the optimization problem here is to find x and y,
with Θ = x × mT and Π = y × mT and where mT is
the macrotick of the virtualization layer, such that the ab-
straction overhead, defined in [19] as OP = UP−UW

UW
, where

UW =
∑

Ti
ei/pi and UP = Θ/Π, is minimized.

5. RELATED WORK
Hierarchical scheduling models have been extensively

studied within the scope of real-time scheduling with the
most prominent being the work on the hierarchical schedul-
ing framework presented in [18, 19] and extended in [10].

Combined task and network-level scheduling featuring
preemptive or non-preemptive tasks running on uniprocessor
end-nodes that are connected through a switched determin-
istic network has been studied in [3] and [22] using SMT
solvers and MIP multi-objective optimization, respectively.
Approaches dealing with tasks communicating through a bus
are [1] and [15] which discusses the combination of fixed-
priority task and TTP bus message scheduling. A SAT-
based approach is used in [11] to schedule the application
and network layers where tasks that communicate though a
bus are scheduled using a fixed-priority scheme.

Within the context of virtualized platforms, the work
in [12] discusses a scheduling method based on Mixed Inte-
ger Linear Programming (MILP) that features both the al-
location as well as the scheduling of tasks on CPUs together
with scheduling and routing communication on networks-on-
a-chip. The work in [8], which addresses a similar problem to
ours, presents a schedulability analysis in which the schedul-
ing model on one virtualization layer within a two-level hi-
erarchical system is abstracted into a set of time windows.

6. CONCLUSION
Driven by the proliferation of embedded hypervisors

and system-on-chip technologies in real-time systems,
we presented methods for the generation of combined
time-triggered schedules for virtualized multi-core/multi-
processor systems connected through deterministic off-
chip/on-chip networks with two alternative types of guest
operating systems. Moreover, we discussed several funda-
mental trade-off and optimization challenges that open up
interesting directions for future work.

References
[1] Abdelzaher, T. F., and Shin, K. G. Combined task and

message scheduling in distributed real-time systems. IEEE
Trans. Parallel Distrib. Syst. 10, 11 (1999), 1179–1191.

[2] Buttazzo, G. C. Hard Real-time Computing Systems:
Predictable Scheduling Algorithms And Applications (Real-
Time Systems Series). Springer-Verlag, 2004.

[3] Craciunas, S. S., and Serna Oliver, R. Combined task-
and network-level scheduling for distributed time-triggered
systems. Real-Time Systems 52, 2 (2016), 161–200.

[4] Craciunas, S. S., Serna Oliver, R., and Ecker, V. Opti-
mal static scheduling of real-time tasks on distributed time-
triggered networked systems. In Proc. ETFA (2014), IEEE
Computer Society.

[5] Durrieu, G., Fohler, G., Gala, G., Girbal, S., Gra-
cia Pérez, D., Noulard, E., Pagetti, C., and Pérez, S.
DREAMS about reconfiguration and adaptation in avionics.
In Proc. ERTS (2016).

[6] Fohler, G. Changing operational modes in the context of
pre run-time scheduling. IEICE Transactions on Informa-
tion and Systems Special Issue on Responsive Computer Sys-
tems (November 1993).

[7] Forget, J., Grolleau, E., Pagetti, C., and Richard, P.
Dynamic priority scheduling of periodic tasks with extended
precedences. In Proc. ETFA (2011), IEEE Computer Society.

[8] Guasque, A., Balbastre, P., Brocal, V., and Crespo, A.
Schedulability analysis of hierarchical systems with arbitrary
scheduling in the global level. In Proc. CESCIT (2015).

[9] Hanzalek, Z., Burget, P., and Šucha, P. Profinet IO
IRT message scheduling. In Proc. ECRTS (2009), IEEE
Computer Society.

[10] Matic, S., and Henzinger, T. A. Trading end-to-end la-
tency for composability. In Proc. RTSS (2005), IEEE Com-
puter Society.

[11] Metzner, A., Franzle, M., Herde, C., and Stierand,
I. Scheduling distributed real-time systems by satisfiability
checking. In Proc. RTCSA (2005), IEEE Computer Society.

[12] Murshed, A., Obermaisser, R., Ahmadian, H., and
Khalifeh, A. Scheduling and allocation of time-triggered
and event-triggered services for multi-core processors with
networks-on-a-chip. In Proc. INDIN (2015).

[13] Obermaisser, R., et al. Architectural style of DREAMS.
Distributed Real-time Architecture for Mixed Criticality Sys-
tems (DREAMS) D1.2.1 (July 2014).

[14] Pedro, P., and Burns, A. Schedulability analysis for
mode changes in flexible real-time systems. In Proc. ECRTS
(1998), IEEE Computer Society.

[15] Pop, P., Eles, P., and Peng, Z. Schedulability-driven com-
munication synthesis for time triggered embedded systems.
Real-Time Syst. 26, 3 (2004), 297–325.

[16] Real, J., and Crespo, A. Mode change protocols for real-
time systems: A survey and a new proposal. Real-Time
Systems 26, 2 (2004), 161–197.

[17] Sha, L., Rajkumar, R., Lehoczky, J., and Ramamritham,
K. Mode change protocols for priority-driven preemptive
scheduling. Real-Time Systems 1 (1988), 243–264.

[18] Shin, I., and Lee, I. Periodic resource model for compo-
sitional real-time guarantees. In Proc. RTSS (2003), IEEE
Computer Society.

[19] Shin, I., and Lee, I. Compositional real-time scheduling
framework with periodic model. ACM Trans. Embed. Com-
put. Syst. 7, 3 (2008), 30:1–30:39.

[20] Steiner, W., Bauer, G., Hall, B., and Paulitsch, M.
TTEthernet: Time-Triggered Ethernet. In Time-Triggered
Communication, R. Obermaisser, Ed. CRC Press, Aug 2011.

[21] Steiner, W., and Dutertre, B. Automated formal verifi-
cation of the TTEthernet synchronization quality. In NASA
Formal Methods, vol. 6617 of Lecture Notes in Computer
Science. Springer, 2011.

[22] Zhang, L., Goswami, D., Schneider, R., and
Chakraborty, S. Task- and network-level schedule
co-synthesis of Ethernet-based time-triggered systems. In
Proc. ASP-DAC (2014), IEEE Computer Society.

