
Mode-Changes in COTS Time-Triggered Network Hardware
without Online Reconfiguration

Florian Heilmann, Ali Syed and Gerhard Fohler
Chair of Real-time Systems

Technische Universität Kaiserslautern, Germany
{heilmann,syed,fohler}@eit.uni-kl.de

ABSTRACT
Time-triggered networks are widely used for safety-critical
applications. Being offline scheduled, flexibility and adap-
tivity typically come at the price of very low resource utiliza-
tion, if possible at all. In this paper, we present the Stacked
Scheduling Approach (SSA) for time-triggered networks to
enable mode changes and implicit adaptation in such net-
works by enabling reuse of network bandwidth reservations.
We describe SSA in detail and conduct a case study to show
that SSA can be implemented in COTS time-triggered net-
work hardware and validate the approach by implementing
an example in a COTS TTEthernet network.

Keywords
Time-Triggered Networks; Scheduling; Mode Changes

1. INTRODUCTION
Safety-critical applications require a high degree of reli-

ability and predictability. In the network domain, time-
triggered (TT) networks are widely used to satisfy these re-
quirements. Safety-critical applications, however, may also
require a high degree of flexibility and adaptivity to deal
with changes in system state, environment or application
requirements. This is a problem for TT networks, because
they are scheduled offline. Flexibility and adaptivity in such
networks can only be achieved either at the price of very low
resource utilization, or cannot be achieved at all.

This limitation results in various approaches to augment
TT network technologies to enable adaptive behavior.

These approaches increase the flexibility of COTS TT net-
works, however, they have drawbacks, which either manifest
themselves in expensive online reconfigurations or the afore-
mentioned inefficient use of already scarce network band-
width. The integration of mode changes or adaptation mech-
anisms, which use network bandwidth efficiently and do not
require online reconfiguration, into the specifications of ex-
isting TT networking technologies is infeasible. Such an in-
tegration would incur significant cost and design overheads
since protocols and hardware would require redesign and re-
certification. To the best of our knowledge, no existing work
enables adaptation and mode changes in existing TT net-
work technologies without requiring online reconfiguration
or sacrificing bandwidth.

In this paper, we present the Stacked Scheduling Approach
(SSA) which makes use of the system specification to iden-
tify stackable messages (i.e. messages that are never ready

Copyright retained by the authors.

to transmit at the same time) and stack them into the same
scheduled TT transmission slot. This approach enhances
existing TT networks with increased flexibility. We outline
how SSA can be used to enable system wide mode changes
as well as node-local adaptation. We conduct a case study
showing that COTS TT networks can either execute sched-
ules created with an SSA enabled scheduler directly, or re-
quire only minor changes. In addition, by reusing network
bandwidth reservations with the help of SSA, more func-
tionality can now be added without compromising network
operation.

The remainder of this paper is structured as follows: Sec-
tion 2 focuses on related work while Section 3 presents the
system model and terminology used in this paper. Section
4 compares different mode change implementations. We
present the Stacked Scheduling Approach in Section 5 and
perform a case study on SSA in TTEthernet in Section 6
before concluding the paper in Section 7.

2. RELATED WORK
The state of the art explores several options to provide

adaptation in TT networks. One possible approach is the
inclusion of adaptation support into the network specifica-
tion itself. Time-Triggered Networks like TTCAN [5] or
FlexRay [3] provide limited flexibility to safety-critical sys-
tems by partitioning the network bandwidth into static and
dynamic segments. While the dynamic segments do not as-
sign network bandwidth to specific message and thus can
provide a platform for adaptation, the response time of a
message in this segment depends on whether it wins or (re-
peatedly) loses arbitration, which makes it difficult to pro-
vide response time guarantees [12]. Another example is
the Time-Triggered Protocol (TTP) proposed by Kopetz
et al. [9], which includes support for adaptation through
mode changes in its specification [10]. The number of mode
changes is, however, limited. Moreover, TTP is not able
to service event-triggered (ET) traffic alongside TT traffic
which may be desired by the system designer.

The adaptivity through mode changes allows systems to
adapt to major changes in the environment [4] or system
state, e.g. fault recovery. Kopetz et al. identified two dif-
ferent types of mode changes, which are triggered by a host
node by firing a mode change request [10]. In deferred mode
changes, all system nodes change mode after the request at
the end of the hyperperiod. In immediate mode changes,
only one system node changes operation mode soon after
the request, i.e. before the end of the hyperperiod. The
principle is consistency for the former and speed for the lat-

ter. Kopetz et al. [10] pointed out that an immediate mode
change may lead to consistency problems for the applica-
tions and therefore a number of tasks or messages must be
aborted but should not go in an undefined state. This notion
of an (immediate) mode change requires careful application
design and tight coupling between application and sched-
uler. However, Fohler asserted that consistency is required
in both mode change types to keep schedulability during and
after the mode changes [4]. His notion of a mode change de-
couples the application from the scheduler and hence is more
suited for complex systems.

Another possible approach to provide adaptation enables
mode change support using online reconfiguration by recom-
puting a suitable TT schedule on the fly. This approach
is investigated by Klobedanz et al. for FlexRay [6][7][8],
and Ashjaei et al. for FTT-Switched Ethernet [1]. The
common issue with these approaches comes with the over-
head incurred by reconfigurations. Online recomputation of
TT schedules may take a significant amount of time, during
which the network may or may not be available. Moreover
these works focus on fault-tolerance or admission control
specifically.

Craciunas and Serna Oliver investigated the synthesis of
TTEthernet schedules [2]. Their implementation, however,
leads to the assumption that mode changes can only be im-
plemented by aggregating all messages from all modes into
a single “super schedule”, an approach similar to the one
investigated by Klobedanz et al. where frame-packing is
used to dynamically alter the contents of scheduled mes-
sages [7]. These super schedules allow the network to ex-
hibit behavior akin to seamless online mode changes. Due
to all messages of all modes being assigned their own slots
in such super schedules, collisions cannot happen and re-
liable operation is ensured. However, this method wastes
network bandwidth, as the super schedule reserves network
bandwidth for all messages of all modes at any given time,
which leaves the network bandwidth reserved for inactive
modes idle. This approach limits the functionality that can
be integrated into the network, since the available network
bandwidth is quickly exhausted if all modes are aggregated
into one schedule.

3. SYSTEM MODEL AND TERMINOLOGY
In this paper, a generic TT network Θ is modeled by the

tuple

〈µΘ,NΘ, LΘ〉 (1)

where µΘ represents the time granularity of the TT network.
For a given network type, the lower limit for the time gran-
ularity µΘmin is defined by the hardware. The application
designer may select µΘ > µΘmin , based on the application
requirements. NΘ and LΘ collectively represent the network
topology. NΘ is a set of communication nodes, i.e. switches
and processing nodes, and LΘ is a set of communication
links, i.e. the links between switch/processing nodes or a
bus. A link l ∈ LΘ is further defined by the tuple 〈Nl, υl〉,
where Nl defines the set of nodes connected by the link l
while υl defines the link speed.

For switched networks, Nl is represented by an ordered
pair 〈na, nb〉, which defines a directed logical communication
link connecting two nodes na, nb ∈ NΘ. The network is a full
duplex network when ∀ 〈na, nb〉 ∈ li, there exists 〈nb, na〉 ∈
lj . Moreover, υl can vary for different links, i.e. multi-speed

t

Mo2

Mo1

sw1 ew1
w1 w2 w3

m3

m1 m2

m2 m4

ψm3

ψm1

Figure 1: Example schedule for a link l

links. For a bus based network, Nl = NΘ.
An application model is represented by a set of operation

modesO. An operation mode o is defined by 〈Mo, Po〉, where
Mo is the set of messages of the mode and Po is a set of
routes for these messages through the links LΘ in a switched
network. For a bus based network Po is an empty set ∅. A
message m ∈Mo is represented by the tuple

〈ψm, γm〉 (2)

where ψm is the message transmission time. Moreover,
γm is defined by 〈γs, γr〉, where γs is the sender node and γr
is the set of receiver nodes. For multi-speed networks, ψm is
a function of pm ∈ Po, while for single speed networks, ψm

is a constant.
We assume that the message deadlines are implicit (i.e.

equal to the message period) and the message phase is con-
strained by the message period. Furthermore, we assume
that ∀m ∈Mo, the sender/receiver nodes γm and the routes
pm ∈ Po are known and fixed.

As we are focusing on TT messages, all activities are as-
sumed to be triggered by the passage of time. The sched-
ule of a link l is uniformly partitioned into a set of non-
overlapping TT transmission slots Wl. A TT transmission
slot w ∈Wl is defined by the tuple

〈sw, ew,Mw〉 (3)

where sw is the start time of the slot, ew is the end time
and Mw is the set of messages scheduled in slot w. The pa-
rameters sw and ew are integral multiples of the granularity
µΘ. Note that the parameters sw, ew and υl collectively de-
fine the reserved bandwidth for the messages Mw. The set
of scheduling tables Tl is generated offline by the message
scheduler and is defined by a set of Wl and the hyperperiod
HP , i.e. the LCM of all message periods.

An example schedule for link l is shown in Figure 1. In
the figure, wi denotes the TT transmission slots, mj denotes
the messages and Mok denotes the sets of messages in mode
ok. The figure assumes that Mw1 = {m1,m3}.

4. COMPARISON OF MODE CHANGE IM-
PLEMENTATIONS

To compare the shortcomings and bottlenecks of different
mode change implementations, scheduling tables for a link l
are presented in Figure 2. The figure assumes mode o1 with
messages m1 and m2 and mode o2 with messages m3 and
m4. For all messages, the phase is 0 and the period is 5 units
(i.e. the HP is 5 units). All messages have unit transmission
time except m3 which requires 2 units for transmission.

t0 1 2 3 4 5

O1/2 m1 m2 m3 m4

(a) Super schedule

t0 1 2 3 4 5

o1

o2

m1 m2

m3 m4

(b) Deferred mode change schedule

t0 1 2 3 4 5

o1

o2

m1 m2

m3 m4

(c) Immediate mode change schedule

Figure 2: Comparison of mode change implementations

The super schedule approach is presented in Figure 2a,
where all messages are scheduled sequentially, irrespective
of their operation mode. The advantage of this approach is
its ease of implementation. However, using this approach,
scheduling is hard for more than trivial loads. Moreover,
this approach has very bad bandwidth utilization and does
not support adaptation.

The scheduling tables for networks capable of handling
mode changes can be seen in the Figure 2b and 2c. In this
paper, this approach is referred to as individual schedule ap-
proach. This approach is easy to implement and to schedule.
However, the scope of adaptivity in this approach is limited
to operation modes, and implicit adaptation (see Section
5.4.2) is not possible without overprovisioning.

The dark circles on the time-line in Figure 2c represent
mode change blackouts [4]. A mode change blackout defines
that changing modes at this point in time will lead to either a
message not being transmitted completely or a queued mes-
sage being discarded. In COTS network controllers, mode
change blackout information cannot be utilized, which fur-
ther limits the scope of the individual schedule approach.
Note that the mode change blackout is only required for im-
mediate mode changes. In deferred mode changes, the mode
change can only occur at the end of HP , which is always a
safe point to switch for systems with implicit deadlines[10].

5. STACKED SCHEDULING APPROACH

5.1 Definitions
The description of SSA requires the definition of two terms.

SSA makes use of the stackability of two or more messages to
stack messages into TT transmission slots in the TT sched-
ules of the network.

The definition for the stackability relation between two
messages in a system is provided in Definition 1.
Definition 1. For a given TT transmission slot w ∈Wl, two

or more messages are termed stackable, if, during runtime,
only one of the messages is ready to be transmitted dur-
ing this transmission slot based on system or environmental
state.

Examples for stackable messages include messages sent
from a sender node to different receiver nodes based on dif-
ferent environmental/system state (XOR constraints as per
Fohler [4]) or messages sent during different modes of op-
erations. The definition of stacked TT transmission slot is
provided in Definition 2.
Definition 2. A TT transmission slot w ∈ Wl is termed a
stacked TT transmission slot, if |Mw| > 1 and all messages
mi ∈Mw are stackable.

An example for a stacked TT transmission slot is provided
in Figure 1 where w1 is a stacked transmission slot with two
messages, m1 and m3 assigned to it.

5.2 Methodology
SSA can be implemented as an extension to existing TT

network schedulers.
During scheduling, the scheduler can assign the message it

is currently scheduling to a transmission slot which already
contains one or more messages if the resulting message set
only contains stackable messages. A message cannot be as-
signed to a transmission slot that occurs before the message
is ready to transmit. Without SSA, these messages would
be assigned to separate transmission slots. SSA results in a
single schedule, which utilizes network bandwidth more ef-
ficiently than a super schedule approach (see Figure 2a) by
occupying less TT transmission slots and does not require
online network reconfiguration since only a single schedule
is used.

In order to use SSA with existing TT networks, only the
following two conditions need to be satisfied during run-
time:
Condition 1. Stackability constraints hold during system
operation.
Condition 2. The network controller accepts schedules
containing stacked transmission slots and services requests
for all messages contained in stacked TT transmission slots
during runtime.

Condition 1 can be satisfied by the system designer by,
for example, using mode changes and making sure that all
nodes switch modes simultaneously. Condition 2 relates to
the capabilities of the COTS network controller. Due to
the stacking of messages, different modes of operation and
(implicit) adaptations are now possible.

5.3 Advantages
Using SSA in a TT network provides numerous advan-

tages to the system designer. Compared to scheduling tech-
niques without SSA, assuming stackable messages exist, less
network bandwidth is now required, which allows to imple-
ment additional functionality or provide more bandwidth to
existing functionality. SSA can provide the ability to add
functionality to legacy systems. In such systems, the ex-
isting functionality is already scheduled. SSA can be used
to create stacked TT transmission slots containing legacy
messages and new messages if they are stackable. Finally,
compared to other approaches such as super schedules, SSA
can, in some cases, improve the response time of a message
by moving the it to an earlier TT transmission slot contain-
ing only messages which are stackable.

5.4 Applications

5.4.1 Mode Changes
By definition, messages that belong to two modes of oper-

ations o1 and o2 are stackable. We exploit this property of
the operation modes and employ SSA to support multiple
operation modes in COTS TT network controllers that do
not implement mode change functionality.

Deferred mode changes can be implemented using SSA
without major modifications to the scheduler for systems
with constrained deadlines. In addition to stacking the mes-
sages of the different modes, a message for mode change
requests has to be added to the network. This message is
used to exchange mode change requests among the nodes.
If such a message is received, the processing nodes change
modes at the end of the HP .

In order to implement immediate mode changes using
SSA, the following conditions, corresponding to the argu-
mentation in the Section 2, have to be satisfied in addition
to Conditions 1 and 2 in Section 5.1.
Condition 3. Mode change blackout [4] information is pro-
vided by the scheduler.
Condition 4. Changing mode in a node and not in the
others also leads to a valid operation mode.

Note that, in the case of an immediate mode change us-
ing SSA, a TT message for a mode change request is not
required.

5.4.2 Implicit Adaptation
Mode changes allow the system to switch between states

that influence a large portion of the system. However, some
adaptations may be too minor to warrant a full system mode
change because they are limited to a single node or a single
application. These implicit adaptations focus on changes in
the message parameters (see tuple 2 in Section 3).

With SSA system designers can implement small, implicit
adaptations by defining multiple redundant messages with
different parameter sets and stacking them into the same TT
transmission slot. During run-time, the node will select the
message with the parameter set that is best suited for the
applications’ current requirements. Hence, only one message
from the stacked transmission slot is selected at any given
time and the stackability condition holds (Condition 1 in
Section 5.4.1).

Example: Electronic Stability Program (ESP).
We illustrate such an implicit adaptation by defining the

following example:
A car manufacturer wants to develop a new electric car,

with one motor used for acceleration as well as braking of
each tire. The car is also equipped with an Electronic Sta-
bility Program (ESP), which helps the driver avoid over- or
under-steering by selectively braking a single tire at a time.
The network topology is depicted in Figure 3. The ESP ap-
plication is running on a single ECU (nESP) built into the
dash of the car. A switched Ethernet network, consisting of
a single switch (nSW) and five physical links (l1 through l5),
is used to transmit messages from nESP to the nodes con-
trolling the tire motors (nFrontRight, nFrontLeft, nRearRight

and nRearLeft). The transmission of messages is modeled
through flows (virtual end-to-end communication channels),
for which a schedule is generated offline and stored in all
involved devices. We compare two approaches to schedule

nESP nSW

nFrontRight

nFrontLeft

nRearRight

nRearLeft

l1

l2 l3

l4 l5

Figure 3: ESP Example Network Topology

these flows without the use of SSA to an approach which
utilizes SSA.
Single Flow without SSA(SF-noSSA) A single multi-
cast flow is used to carry the information for all 4 tire nodes.
The advantage of this approach lies in the efficient usage of
transmission slots, since only one transmission slot has to be
used on all network links. However, this approach also in-
troduces unnecessary network activity in all links from nSW

to nodes belonging to tires that do not need to brake. On
these links, messages that carry no active information are
transmitted. This “inactive load” consumes bandwidth that
could be used, for example, by non-time-triggered traffic.
Individual Flows without SSA (IF-noSSA) Four indi-
vidual unicast flows are used to carry the information for
each respective tire node. nESP can now, depending on
which tire has to brake, release a message which will only
be routed to that specific tire node. As a result, no inac-
tive load will be introduced to the links from nSW to the
tires that do not need braking. However the overhead in
the schedule, especially on l1 is significant for this approach.
Four separate transmission slots have to be allocated to the
messages of the ESP functionality, even though only one slot
will have a message that is ready at any given time. More-
over, assuming that nESP , independent on which tire needs
to brake, releases a message at the same time, some mes-
sages may have a larger response time than others because
they have to wait longer for the transmission slot they are
assigned to.
Individual Flows with SSA (IF-SSA) As with the pre-
vious approach, four individual unicast flows are used for
each respective tire node. However, the four messages are
now stacked into one transmission slot on l1. As a result,
one singular transmission slot on l1 is utilized regardless of
which tire has to brake and the response time for all four
tires is identical. Finally, as in IF-noSSA, no inactive load
is introduced on the links to the three tires which are not
supposed to brake.

In this example, SSA allows to combine the efficient usage
of schedule space of the SF-noSSA approach and flexibility
of the IF-noSSA approach. While not significant, some mi-
nor overheads may be introduced in the nodes and switches
by using SSA. Nodes have to select the appropriate mes-
sage parameter set and switches need to service stacked TT
transmission slots. As a result, the system in this example
can now adapt to application requirements implicitly with-
out requiring a mode change of the whole system.

5.5 Limitation: Overprovisioning
TT networks can suffer from overprovisioning. Overpro-

visioning results in network bandwidth that is reserved but
not used, meaning that during run-time bandwidth may be
available, but not usable by others because of reservations.

Even though SSA, compared to other approaches, frees up
network bandwidth, there might be situations in which SSA
does not lead to maximum bandwidth reuse. Based on the
relation between the transmission slot size (ew−sw) and the
message transmission time ψm, the following cases can lead
to overprovisioning:
Case 1: Internal OP (ew − sw) = maxm∈Mw (ψm)

This overprovisioning is due to the fact that a message
always has to fit inside one TT transmission slot. As a result,
the slots have to be sized according to the largest message of
the set Mw. Consequently, if a smaller message is activated
in the slot, the remainder of the network bandwidth in the
slot is not utilized. An example for Case 1 is shown in
Figure 1. Both m1 and m3 are stacked into the same TT
transmission slot w1. However, m3 does not fully occupy w1,
leading to internal OP in that slot when m3 is activated.
Case 2: Inevitable OP (ew − sw) > maxm∈Mw (ψm)

Similar to Case 1, due to limitations in the system software
or the TT network hardware, it may be impossible to choose
an arbitrarily small transmission slot size. Instead, a slot
size, which is larger than all messages m ∈ Mw, has to be
used. Figure 1 depicts inevitable OP in w2. Even though m2

is the only message assigned to this transmission slot, the
slot size is larger than the message size, and thus network
bandwidth remains unused.

In addition to these two cases, another source of over-
provisioning, not related to message transmission time and
transmission slot size, has to be considered.
Case 3: Sequential OP

While SSA can improve the network bandwidth usage ef-
ficiency through stacked TT transmission slots, in some sce-
narios, messages may not be perfectly stackable. Such mes-
sages have to be assigned to different TT transmission slots.
If, during runtime, the system is in a mode of operation
where the messages assigned to these transmission slots are
not active, the network bandwidth remains unused. The re-
sulting overprovisioning of the network is termed Sequential
OP. An example for Sequential OP due to messages that are
not stackable is depicted in Figure 1. m2 and m4 are not
stacked into w2, because m2 is active in both modes. The
two messages can thus not be assigned to the same trans-
mission slot.

6. CASE STUDY: TTETHERNET
In a TTEthernet network, SSA can be applied for both

deferred mode changes, where messages from all nodes may
be stacked, if they satisfy Condition 1, as well as immediate
mode changes, where only messages from the same source
node are allowed to be stacked into the same transmission
slot. This helps to ensure that Condition 4 from Section
5.4.1 is satisified.

6.1 Network Description
TTEthernet is a TT Ethernet based network. It combines

event-triggered transmission of packets in compliance with
the Avionics Full Duplex Switched Ethernet (AFDX) with
scheduled transmissions of TT messages. TTEthernet spec-
ifies a global synchronization protocol to synchronize the
whole network to a global time base. This synchronization
protocol, along with specialized switches and network con-
trollers facilitate the transmission of TT messages according
to offline computed schedules. TTEthernet considers three
traffic types:

Time-Triggered traffic (TT) for scheduled safety-critical
time-triggered messages.

Rate-Constrained traffic (RC) for safety-critical event-
triggered messages at a constrained rate.

Best Effort traffic (BE) for non safety-critical traffic.

TTEthernet makes use of virtual links for sending mes-
sages. A virtual link (VL) defines a unidirectional virtual
message transmission channel from one sender to one or
more receivers. A virtual link can either be TT (TT VL) or
ET (RC VL). TT VLs utilize schedules computed offline to
transmit messages through the network, while RC VLs allow
for transmission at a constrained rate without the need of
scheduled transmission slots. If, during a scheduled trans-
mission slot, a TT message becomes ready, it is transmitted
through the network, if not, pending RC or BE messages
are transmitted. If a TT message arrives at a switch or net-
work controller outside of its scheduled transmission slot, it
is considered invalid and discarded. For this case study, we
focus on TT traffic and assume no RC or BE traffic to be
present in the network.

The TTEthernet schedule is divided into macroticks (net-
work parameter µΘ from Section 3). The size of the macrotick
can vary from several nanoseconds to a few hundred mi-
croseconds and is chosen during system design depending
on hardware and software choices [2].

The schedules for a TTEthernet network are computed
offline and uploaded to the devices before the system com-
mences normal operation. If the schedule in the network
has to be changed, a full reconfiguration is required. A re-
configuration consists of uploading the new schedules to all
devices and performing a network reset. During this reset,
synchronization is lost, and as a result, reconfigurations may
result in significant service outages of the network.

6.2 SSA Offline Scheduler
We have a generic scheduler [4][13] which uses the Itera-

tive Deepening A* (IDA*) [11] search algorithm to construct
scheduling tables offline. The search-tree node in our sched-
uler represents a (partial/complete) schedule for all modes
of operation until time t, where t is an integral multiple
of µΘ. The search-tree nodes are generated for each possi-
ble decision at a point in time defined by t. The cost of a
search-tree node depicts the earliest task/message response
time. In order for earlier elimination of the wrong path in
the search-tree, any search-tree node leading to a deadline
miss is pruned.

The SSA Offline Scheduler is an implementation of SSA on
our scheduler where search-tree nodes are generated for each
possible phase as a result of the phase generation method
for strictly periodic activities. Once the schedules for all
the modes are generated, the messages from all modes are
stacked as mentioned in Section 5 and written to the TTEth-
ernet XML files (see Section 6.4), which can then be used
to execute the generated schedules online. In this case study,
we only consider deferred mode changes to simplify the sched-
uler implementation. Due to the fact that the SSA Offline
Scheduler is not the main contribution of this paper, and due
to space limitations, the complete listing of the algorithm is
not presented here.

6.3 Overprovisioning Revisited
As discussed in Section 6.1, the size of the TT transmis-

sion slots can be larger than the maximum message size (see
case 2 and 3 in Section 5.5), and thus TTEthernet can suffer
from internal and inevitable OP. Depending on the stacka-
bility of the messages, SSA can also suffer from sequential
OP. With stacked TT transmission slots, the sequential OP
of SSA is, however, much lower than other approaches that
work on existing hardware and don’t require reconfiguration
(super schedule).

6.4 Proof of Concept
In order to show that SSA can be implemented in existing

COTS TT network hardware, we implement the example de-
scribed in Section 5.4.2 in the AVIonics NEtwork Laboratory
(AVINEL) of the Real-Time Systems Chair at TU Kaiser-
slautern. This laboratory utilizes the TTEthernet toolchain
and development hardware provided by TTTech. We syn-
thesize schedules both for the IF-noSSA approach as well as
the IF-SSA approach. These schedules consist of four TT
virtual links, each carrying network packets with a size of up
to 1518 bytes and a period of 8 ms to one of four receivers.
In the IF-noSSA case, each virtual link is assigned to a sep-
arate transmission slot on the link l1 between nESP and
nSW , while in the IF-SSA case all virtual links are stacked
into the same transmission slot. We insert the schedules of
both cases into the XML files utilized by the toolchain which
converts these XML files into binary device configurations
and uploads them to the hardware. To compare both cases,
we send 100000 packets through each virtual link for each
case. We determine packet-loss by counting packets on all
stacked virtual links using Wireshark, determine the validity
of the transmitted messages by using a TTEthernet end sys-
tem as destination and compare the distribution of packet
inter-arrival times. Initial experiments show the following
results:

• Applying SSA to the TTEthernet schedule does not
result in packet loss.

• Transmitted packets are not transmitted outside their
scheduled transmission slots (the receiving TTEther-
net end system considered all incoming packets as valid)

• SSA has no measurable impact on the packet inter-
arrival time

7. CONCLUSION
Time-triggered networks are widely used for safety-critical

applications but lack the flexibility and adaptivity these ap-
plications may require. Existing approaches incur significant
drawbacks, either by resulting in low network bandwidth uti-
lization or requiring expensive online reconfigurations. In
this paper, we proposed the stacked scheduling approach to
enable mode changes and implicit adaptation without online
reconfiguration for COTS TT networks. The drawbacks of
existing solutions, for example low resource usage efficiency
or expensive online reconfiguration are not present in SSA.
We described the requirements and limitations of SSA and
performed a case study using COTS TTEthernet network
hardware. We presented the benefits of SSA over traditional
scheduling approaches and verified, that SSA can be imple-
mented the COTS TT network hardware without impairing
normal operation.

8. REFERENCES
[1] M. Ashjaei, P. Pedreiras, M. Behnam, L. Almeida, and

T. Nolte. Dynamic Reconfiguration in Multi-Hop
Switched Ethernet Networks. In 6th Workshop on
Adaptive and Reconfigurable Embedded Systems, 2014.

[2] S. S. Craciunas and R. S. Oliver. SMT-based Task-
and Network-level Static Schedule Generation for
Time-Triggered Networked Systems. In Proceedings of
the 22nd International Conference on Real-Time
Networks and Systems, 2014.

[3] FlexRay Consortium. FlexRay communications
system protocol specification version 3.0.1. Protocol
Specification, 2010.

[4] G. Fohler. Flexibility in Statically Scheduled Real-Time
Systems. PhD thesis, TNF, Wien, Österreich, April
1994.

[5] T. Fuehrer, B. Muller, W. Dieterle, F. Hartwich,
R. Hugel, and M. Walther. Time triggered
communication on CAN (Time Triggered
CAN-TTCAN). 7th international CAN Conference,
2000.

[6] K. Klobedanz, G. B. Defo, W. Mueller, and
T. Kerstan. Distributed coordination of task migration
for fault-tolerant FlexRay networks. In International
Symposium on Industrial Embedded System (SIES),
2010.

[7] K. Klobedanz, A. Koenig, and W. Mueller. A
reconfiguration approach for fault-tolerant FlexRay
networks. 2011 Design, Automation & Test in Europe,
2011.

[8] K. Klobedanz, A. Koenig, W. Mueller, and
A. Rettberg. Self-Reconfiguration for Fault-Tolerant
FlexRay Networks. In
Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORCW), 2011
14th IEEE International Symposium on, 2011.

[9] H. Kopetz and G. Grunsteidl. TTP-a protocol for
fault-tolerant real-time systems. Computer, 1994.

[10] H. Kopetz, R. Nossal, R. Hexel, A. Krueger,
D. Millinger, R. Pallierer, C. Temple, and M. Krug.
Mode handling in the Time-Triggered Architecture.
Control Engineering Practice, 1998.

[11] R. E. Korf. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence,
1985.

[12] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei.
Timing analysis of the flexray communication
protocol. Real-Time Systems, 2008.

[13] A. Syed and G. Fohler. Search-tree exploration for
scheduling using pida*. Technical report, August 2014.

	Introduction
	Related Work
	System Model and terminology
	Comparison of Mode Change Implementations
	Stacked Scheduling Approach
	Definitions
	Methodology
	Advantages
	Applications
	Mode Changes
	Implicit Adaptation

	Limitation: Overprovisioning

	Case Study: TTEthernet
	Network Description
	SSA Offline Scheduler
	Overprovisioning Revisited
	Proof of Concept

	Conclusion
	References

