
A mixed criticality approach for the security of
critical flows in a Network-on-Chip

Ermis Papastefanakis†‡, Xiaoting Li∗, Laurent George‡
∗ECE Paris, 75015 Paris, France

†Thales Communications and Security, 92622 Gennevilliers, France
‡Université Paris-Est, LIGM / ESIEE, Champs sur Marne, France

Email: ermis.papastefanakis@thalesgroup.com, xiaoting.li@ece.fr, laurent.george@univ-mlv.fr

Abstract—In this paper, we explore a new approach for
the security of flow transmission in a Network-on-Chip. This
approach is based on a dual mixed criticality approach where
the criticality of a flow (HI or LO) is associated to timeliness and
security constraints on flow transmission. Flow of HI criticality
should be protected from Denial of Service (DoS) and side
channel attacks while LO flows are assumed to be non secured.
We propose a solution to detect abnormal flow profiles in a
Network-on-Chip, that can result from a security attack and we
provide a mixed criticality approach to mitigate the impact of an
attack. This is done by switching the nodes of a Network-on-Chip
subject to a security attack from LO to HI criticality and taking
protection measures in HI mode to contain the security attack.
Our solution relies on a mechanism, configured and managed by
a hypervisor applied in all IPs connected to the Network-on-Chip.

Keywords—Network-on-chip, security, safety, mixed criticality.

I. INTRODUCTION

Embedded architectures gain momentum as they advance
to nanoscale technologies that will allow them to include
hundreds of cores (manycores) while maintaining a compet-
itive performance to power ratio. Apart from the standard
General Purpose Processors (GPPs) and Graphics Processing
Unit (GPU), new architectures demonstrate a high degree of
heterogeneity by integrating Intellectual Property (IP) elements
such as Digital Signal Processors (DSPs), dedicated accelerator
cores and Field Programmable Gate Arrays (FPGAs) fabric.
The high number of cores and their diversity provide an
increase in processing power and allows handling larger, more
complex computation loads and greater information volume.
As a result these architectures unlock new sets of possibilities,
being present in domains such as Internet of Things (IoT)
infrastructures (gateways), Cyber-Physical Systems (CPSs) ,
where they play important roles in systems that interact heavily
with the physical world. Security as well as safety in such
domains is taken more and more under consideration and
will inevitably become mandatory through standardization and
evaluation or certification schemes.

When considering the evaluation of a system, a certain
level of security is targeted. Protection profiles is a term intro-
duced by Common Criteria [1] for a document that specifies
security requirements (security functionalities, assets to be
protected, threats, attacking agents, etc.). They are specific
for a category of systems and their definition depends on
the system’s function, application domain, criticality etc. As
a result security schemes can be restrictive or permissive
according to the system’s protection profiles with the objective
to reflect the level of evaluation required. Security features

can be implemented in various levels starting from hardware
and reaching up to the higher levels of software. They are
designed so that a security feature in one level exposes a
configuration interface to the higher level. That way, a solution
can be adapted to best serve the system’s security requirements.
Consequently when conceiving security implementations it is
beneficial to include assumptions that have been identified in
protection profiles. This way an implementation can possess
qualities making it a suitable candidate for evaluation.

Manycore embedded systems increasingly rely on the
Network-on-Chip (NoC) paradigm that allows them to over-
come the scalability limitations posed by buses at the in-
terconnect level [2]. The idea behind them is to implement
routing principles taken from the computer networks inside
the System-on-Chip (SoC)’s ecosystem. This involves adapting
them to fit the constraints that SoC design imposes (chip sur-
face, power consumption, clock distribution). Their advantage
lies in the fact that as the number of IP elements increases,
a NoC becomes more efficient in aspects such as throughput,
Quality of Service (QoS), IP compatibility,

The NoC can be a powerful link in the chain of elements
and partially shape the SoC’s potential performance. It is a
key component in the SoC’s communications and has a great
impact on guarantying the timing determinism and throughput.
NoC have a modular and distributed structure and has capaci-
ties in reconfiguration and redundancy. This makes NoC a good
candidate to implement security mechanisms to grant that its
performance cannot be compromised due to security attacks.
In manycore platforms an important component is the resource
manager which can be responsible for task placement, resource
monitoring, redundancy, reconfiguration, statistics, etc. This
role is often assigned to a hypervisor which is a low-level
software block that is necessary in manycores and is in charge
of managing the different operating system instances executing
on the platform. We consider that enhancing security in these
two elements (NoC, hypervisor) can have an impact on the
real-time properties of a system. Security is mostly treated as
a standalone subject, we consider that there is an interest to put
its impact in perspective with other aspects such as timeliness
of the communications in the NoC.

In existing research, work has been done to address dif-
ferent aspects of security in NoC-based architectures. In [3]
the authors propose a mechanism to protect against packet
injection and information extraction through filters between
secure and non-secure areas in the NoC applied at routing
level. In [4] a framework is presented implementing the prin-

Copyright retained by the authors

ciples of key exchange and encrypted communications between
IP elements. In [5] and [6], solutions are proposed to prevent
illegal memory accesses and packet injection by implementing
firewall-like wrappers to the IP elements. Finally in [7] a
mechanism against DoS and side channel attacks is presented
based on the principle that giving an attacker priority will make
it impossible to exploit resource sharing to extract information
from communication channels. At the same time setting a
static threshold on channel utilization will prevent the attacker
from exploiting the priority given in order to perform DoS
attacks. From a QoS perspective Kalray’s MPPA architecture
[8] provides a mechanism to locally manage traffic quotas
that can potentially be used for applying security mechanisms
similar to the one proposed in this paper. Also in [9] and
[10] the authors propose protocols that guarantee timing in
mixed-criticality context. The difference of our approach is
that the attack is mitigated at the node subject to a security
attack occurs, without broadcasting a criticality switch to other
nodes, changing HI/LO modes locally at the node(s) instead
of globally in the whole SoC.

From the different types of threats our scope is DoS and
side channel attacks. In a DoS scenario the goal is to occupy
the maximum amount of shared resources, having for objective
to render the system (all or parts of it) inoperable. In a similar
scenario where a side channel attack is performed, the goal is
to extract information indirectly by probing the communication
channels. In this paper we consider two criticality levels LO
and HI for the flows sent in the NoC. The criticality is
associated to security and timeliness constraints that should
be granted for highly critical messages. We adopt a mixed-
criticality approach, in which we separate the NoC flows in
two criticality levels, high (HI) and low (LO), which represent
the levels of importance in terms of security, safety and
timeliness. We focus on the impact that a security attack can
have on critical flows (worst-case traversal time (WCTT))
and as a result to their execution time. The challenges we
identify are, firstly to improve the NoC’s ability to deal with
abnormal behavior coming from a node (security aspect) and
secondly to guaranty performance and timing requirements for
HI criticality flows.

Our contribution: Our implementation is at NoC and
hypervisor levels and will allow NoC traffic to be managed
in an efficient and intelligent way. We propose a mixed-
criticality approach such that the system is able to shift
between criticality levels to protect itself from attacks. We
propose a mechanism that will allow a hypervisor to configure
the hardware with the criteria on which the system detects
anomalies in the traffic of each IP as well as with the limit
to impose locally to the attacking node. In this state, our
proposed mechanism provides the possibility to apply quotas
locally to the misbehaving nodes in the NoC limiting rogue
traffic. In addition, the hypervisor is given the possibility to
monitor the mechanism, reconfigure it on runtime and take
further action. The goal is to make sure that critical tasks will
always have access to resources they require and will maintain
their performance. As a result their timeliness constraints will
be preserved even in the case of security attacks.

In section II, we introduce the problem considered in this
paper by characterizing the use case, the attack scenarios
and the mixed criticality model in the context of security

and timeliness problems. Section III presents the platform
and network model we consider for our NoC system. Then,
in section IV we describe the solution we consider to limit
the effect of an attack on the timeliness constraints of a
highly critical task communicating to the NoCs. As a proof of
concept, we show the behaviour of our solution with illustrative
examples. Finally we conclude this paper.

II. THE CONSIDERED PROBLEM

A. Use Case

We consider an architecture based on the NoC platform
described in Figure 1. The hardware platform consists of
many processing elements such GPPs, GPUs, DSPs, etc. or
Input/Output (I/O) peripheral controllers. The hypervisor is
responsible for virtualizing, separating and managing hardware
resources by means of Partitions. Partitions are executing
individual tasks or running a full Operating System (OS) on
a subset of the available hardware resources provided by the
hypervisor. In such an architecture multiple partitions might
co-exist and share resources, each performing its own tasks
potentially ignoring the existence of the other. Partitions will
try to occupy resources while the hypervisor is in charge of
monitoring and enforcing the operation of the entire platform.
Depending on the application domain these partitions might
be statically defined at design time or created dynamically and
operated by third parties. For example in cloud infrastructures
the owner of a container might not be aware of other owners
he might be sharing the hardware platform with. Similarly
in telecommunication infrastructures, communication gateways
can provide the possibility to different service providers to
co-exist in the same hardware, each delivering services for
his subscribers. Finally in IoT gateways, partitions can be
predefined and it is not normally expected to have third parties
residing in the platforms. However the risk here is that such
platforms are usually placed in locations that provide physical
access to third parties and as a result an attacker can potentially
tamper with the platform and install malicious software (e.g.
a backdoor or rootkit).

In all three cases, it is essential that the virtualized environ-
ment guarantees isolation in terms of data confidentiality and
resource availability to the partitions that require such features.
Ensuring such policies is part of the role of the hypervisor,
who will try to maintain performance while supervising the
activities of each partition. However since this supervision
is implemented in software, there is performance penalty
resulting from the time it takes the hypervisor to approve
each partition’s access requests and enforce the necessary rules.
To tackle this issue, hardware assisted virtualization involves
providing mechanisms to take place at a hardware level. In
such a case the hypervisor configures the policies and delegates
the supervision to the hardware, reclaiming an important part
of performance that would otherwise be lost.

We aim at proposing a proof of concept for our solution.
Therefore we consider the case where a bare metal partition is
composed of a simple task in charge of communicating through
the NoC. We also use the term Partition to refer when needed
to the single task (executing on one or more cores) in charge of
sending a flow. We consider a critical partition (A) and a non-
critical partition (B) launched by a hypervisor. When partition
(B) performs a DoS attack, it will continuously try to retrieve

memory locations occupying the main memory. By doing that
it is not allowing partition (A) to utilize the bandwidth that
would be available under normal conditions. As a result the
latency of flows coming from partition (A) should increases,
impacting the task’s execution time. In a CPS with real-time
constraints this could have undesired outcomes ranging from
environmental damage to equipment damage or even worse.
In a similar fashion, at a side channel attack, partition (B)
will try to estimate the algorithm or even extract data such
as cryptographic keys, by profiling the channel usage of tasks
using the same NoC paths. An example of such an attack is
described in [11]. Such attacks can lead to data corruption,
information theft or system compromise.

Fig. 1. Basic representation of a virtualization platform

B. Attack scenarios

We proceed by explaining how a DoS attack can take place
on a NoC-based platform. We consider as point of entry, a
vulnerable partition (B) that lacks security features due to
the fact that has a non-critical role. The attacker will execute
partitions that access memory locations in a way that in relation
to the chip’s architecture will limit or block the execution of
critical partition (A). From a hardware perspective this can be
made possible through the cache memory hierarchy and the
interconnect among other things. When a partition is running,
the execution of an instruction involves memory transactions
that generate traffic in the NoC. Accessing a memory location
triggers the cache coherency mechanism that will verify if
the requested data can be found in a close proximity to the
requesting IP. An attacker will try to access memory in such
a way that this mechanism will not be able to cope with the
requests ending up soliciting the information at the source,
the external memory, a peripheral etc. This will result in the
creation of high load for caches as well as high network traffic.
Large caches with a high degree of associativity can absorb
part of the load but they will not stop the attack. At the same
time NoC architectures can offer resource partitioning using
distributed caches and dedicated networks for traffic within a
partition. As a result a part of the generated traffic will occupy
dedicated channels and will not traverse shared NoC channels
again alleviating part of the attack but will still not being
able to prevent the external memory from being accessed.
Eventually the data source will need to respond to requests
coming from critical partition (A) and to high frequency
requests coming from the attacker partition (B) using shared
channels. At this point the critical partition will delay its
execution waiting for data that would otherwise take less
time to be delivered. Consequently it will execute in a much
larger timeslot than the one it was provisioned at design time.
Considering systems that have real-time constraints this can

potentially prevent the system from performing its functions
correctly.

To resolve this issue we need to guarantee that critical
partition (A) will continue to run correctly even in a high load
scenario. In order to be able to shift the node subject to an
attack between LO and HI criticality, to guaranty the resources
for critical partition, we need to provide a mechanism that will
allow the hypervisor to detect the abnormal behavior and to
limit a partition’s resource usage to a degree that will limit or
block the attack.
C. Mixed-Criticality

We consider a mixed-criticality system that can switch
nodes between two criticality levels (LO and HI), depending
the level of security required by the the system. In LO mode,
all partitions are guaranteed to continue functioning maintain-
ing their performance. This corresponds to the case where not
security threat is detected. In the case of a security attack, the
criticality of the node subject to an attack switch to HI. In
that case, no guarantee is given for lower criticality partitions
which, depending on the chosen policy, can continue with less
resources or be completely stopped. This signifies that the
resource allocation can shift towards high criticality partitions
through for example arbitration scheme change, bandwidth
allocation throttling or other mechanisms.

We assume that partitions having security, timeliness and
safety constraints are critical (denoted partition A in our
experiments) and other partitions are non-critical (denoted
partition B in our experiments). In addition we consider that
non-critical partitions are more vulnerable to an attacker. When
the node is functioning in LO mode, its partitions have the
necessary resources and can execute as planned. When a node
executing a non-critical partition is compromised, an attacker
can potentially occupy additional system resources. This can
be part of an effort to perform a side channel attack or to
saturate the NoC in an effort to perform a DoS attack. In such
a case the system finds itself in a limited performance state
where critical partition (A) might not be able to occupy the
necessary resources resulting in a degradation in performance
and consequently in the response time of the system itself. To
avoid such an outcome the system must shift to HI criticality
mode and be able to ensure that critical partitions continue
using the same resources unaffected. This can happen at the
cost of delaying or even stopping non-critical partitions.

III. PLATFORM AND NETWORK MODEL

Before proposing our mixed criticaly mechanism, we define
the reference platform we use in order to implement it and
validate its functionality.

A. Platform

We use a 4x4 2D mesh NoC topology such as the one
presented in Figure 2. The IP elements that are connected
to each node can be processing cores, accelerator cores or
peripheral controllers. A Network Interface (NI) serializes/de-
serializes their requests and transfers them to and from the
routers. XY dimension routing is used to determine the paths
that packets will take to traverse the NoC. To manage the flows,
wormhole switching is used, to use small-sized buffers in the
routers. On/Off flow control is used to help neighbor router to
determine whether they can send/receive more traffic.

Fig. 2. 2D mesh NoC architecture

Each router Rxy consists of five links, four located at the
edges North, East, West, South (NEWS), used to connect
with neighbor routers and the fifth is used to connect with
the Local (L) IPxy . An illustration of a router Rxy is given
in Figure 3. For example, Rxy W signifies the West link of
router Rxy . Here x and y are the coordinates of the router
inside the 2D mesh and they range from 0 to 3 for a 4x4
NoC. In order to traverse a router, there are two steps that

Fig. 3. Architecture of a NoC router Rxy

a flow control digit (flit) has to pass, each taking one clock
cycle. In the first one, buffering and routing take place while
the second deals with arbitration and output. From a time
standpoint, during the first cycle a header flit enters a router
and is stored in a small size buffer that can hold up to four
flits. At the same cycle it passes through a routing mechanism
to determine which output link it wants to reserve. During the
second cycle the arbiter (one in each output) will decide which
of the potentially competing inputs will take over the output
link. At the same time the output register (no output buffers)
holds the flit that will traverse the link. These two steps are
pipelined and initially two steps are needed to forward the
header flit but each of the payload flits will only require one
cycle to follow through the path. In this work, we consider
round robin arbitration in which we guarantee that all inputs
will be allocated to an output channel through a token that is
assigned successively to each input in a circular manner.

There are different routers in each node each leading to a
different network. These networks are responsible for handling
different kinds of traffic which is a common practice in existing
SoCs. Cache coherency within a partition is handled by one

network and main memory accesses by another. As a result
information exchanged between the nodes of one partition
will use separate resources that the ones to access the chip’s
memory. This allows take distribute the load to different
channels and makes it more difficult to saturate them.

The NI is in charge of serializing and deserializing packets.
Packets are then split into smaller size flits in order to travel in
the NoC. When an IP element makes a request for a memory
location the NI will encapsulate that into a packet, split it
into flits and send them one by one to the router. When they
reach their destination the local NI will reassemble the packet,
deserialize it and forward it to the IP element that will handle
the request. The same applies for the response.

This platform is implemented in Verilog and is able to
synthesize on a FPGA (Xilinx Virtex-7). Measurements can
be taken through a cycle accurate simulator or through data
logs of the FPGA output stream.

B. Network model

In this section we present how the network flows are
generated when a partition is executed. As explained in Section
II-B when a partition is executed it will inevitably generate
memory location accesses which will result in NoC traffic.
Whether it is accessing data from the chip’s external memory
or from a peripheral controller’s registers, a partition will
generate requests. The responses are locally stored in caches
close to the core running the partition in order to accelerate
further access. When more than one partitions run in parallel
we need to consider that multiple cores might be accessing the
same memory locations. There is a necessity to preserve data
coherency during concurrent accesses which can be done both
in software and hardware. The latter is mostly preferred due
to its high yield in performance however it is more difficult to
characterize in respect to timeliness.

When a core tries to access data that has been previously
modified by another core, the cache coherency mechanism will
ensure that all the copies of this data are up to date. The
more available cores, the more complex the memory hierarchy.
When requesting a memory location, a core will receive an
entire line that will be locally stored in its cache. In a similar
case when running out of space to place new lines, a cache
will start flushing lines writing them back to higher levels
in the memory hierarchy eventually reaching the chip’s main
memory.

In most platforms, as well as in ours, a cache line is
64 bytes long. In the example below we indicate a simple
algorithm that would generate cache misses constantly forcing
the memory hierarchy to look for the cache lines in high levels.
This method is known as cache thrashing and results in great
performance loss since the partitions will have to fetch their
data directly from memory which has a slower response time
and will become congested. We consider a last level cache of
3MB (3145728 Bytes) with a degree of associativity of 12. In
order to fill the cache we use a table of minimum size twice the
size of the cache equal to 6MB (6291456 Bytes). We declare
the array in such a way that a row has the same length as a
cache line (64 Bytes) and align it at the beginning of a line in
memory. We then perform enough iterations to overcome the
degree of associativity.

Listing 1. Simple cache thrashing implementation
1 char a r r a y [49152 ∗ 2] [6 4]

a t t r i b u t e ((a l i g n e d (6 4))
) ;

2 void c a c h e f i l l (void) {
3 f o r (i n t i =0 ; i <49152 ∗ 2 ; i ++) {
4 a r r a y [i] [0] = ’ a ’ ;
5 }
6 }

As seen in line 4 of Listing 1 we iterate twice the size of the
cache, although the same result could have been achieved with
less iterations and a smaller table, for the sake of simplicity
we take this approach. Assuming that the array is not already
present in the cache we normally expect cache misses for the
first 49152 lines. For the rest of the lines in the for loop the
cache will have to fetch the requested data replacing the first
part of the table. As a result as many times as we execute this
loop, the core will constantly generate writeback requests to
the main memory each containing a complete memory line (9
flit long). We can imagine that number being much larger if
we consider busrt mode accesses, when multiple cache lines
are transferred in sequence.
C. Use Case Flows

In order to represent the use case in Section II-A, we
consider two partitions hosted on the same platform. An
attacker i.e. a non-critical partition (B), and a critical partition
(A) are both under the supervision of the hypervisor. To
implement a scenario where the two partitions coexist in space
and time we assume that both partitions execute concurrently
and are placed in the cores as depicted in Figure 2.

The memory accesses of each partition generate requests
and the memory responds with flows that are defined as τA
and τB . Flow τB follows path:

PB = {IP33, R33 L, R32 E , R31 E , R30 E , R20 S , R10 S , R00 L, IP00}

while flow τA follows path:

PA = {IP30, R30 L, R20 S , R10 S , R00 L, IP00}

The rest of the paths follow the same logic.

We can observe that for their memory accesses (based
on XY-dimension routing) the two partitions share both the
NoC channels Pshared = {R00, R10, R20, R30} as well as the
access to the memory controller placed at IP00.

We assume that flow τB constantly access memory and
asks to modify locations as described in listing 1.

IV. PROPOSED SOLUTION

The solution we propose in order to limit the effects of
a DoS or a side channel attack is an implementation of a
monitoring and a control mechanism that will keep records
on the rate of incoming and outgoing traffic and will change
the NoC access quota at a node level.

The NoC access monitoring mechanism will measure the
bandwidth usage of a node for a timeslot. Should the node
exceed a certain threshold, its behavior will be considered
abnormal for that timeslot. If this behavior persists for a
specific number of timeslots a traffic shaping mechanism will
be triggered. This mechanism can limit the traffic that is
available for the node for the next timeslots. The number of

timeslots can be used to keep a balance between aggressively
ensuring execution times or tolerating legitimate traffic (e.g.
burst transfers). In the first case we might obtain false positives,
which can be considered acceptable when applied to non-
critical tasks since we can afford to slow them down at the
benefit of critical ones.

The hypervisor is responsible for the configuration of both
mechanisms during boot or dynamically during the chip’s
operation. In this use case the system starts and the hypervisor
sets a LO criticality mode and both partitions are given normal
access to the NoC. Partition (A) however is not allowed to
exceed a certain traffic quota for a long period of time. When it
launches a DoS attack that quota is used continuously until the
NoC system’s criticality changes to HI, the traffic shaper limits
the NoC access quota and the injection rate is constrained.
During this operation partition (B) maintains access to the
resources required to continue its execution and keep reaching
its deadlines.

A hypervisor can benefit greatly from such a mechanism
as it does not generate overhead apart from the configuration
phase, after that it can function autonomously. In addition a
hypervisor can use the information provided by the mechanism
to draw conclusions on the system’s behavior more globally.

In order to validate the mechanism we used Vivado’s cycle
accurate simulator with our NoC model. Partitions (A) and
(B) are placed at two source nodes and are launched almost
simultaneously (partition (B) preceding partition (A) by 1000
cycles). They have the same duration when launched separately
without any competition from other partitions. Sharing the
channels in the NoC path as well as the output to the sink node
that absorbs all the traffic. When the mechanism is disabled
we observe that both partitions have the same duration, as
expected since the round-robin arbiters are handling requests
without any distinction between the two flows generated by
the partitions. We also notice that this duration is increased
in comparison to the one of each partition when executed in
isolation.

When the mechanism is enabled and both partitions are
launched, we notice that the duration of partition (B) launched
by the attacker is increased in favor critical partition (A) that
is decreased. The limit in bandwidth we set in the attacker
partition will affect the degree at which we observe this
behavior.

We ran both partitions multiple times, each time increasing
the bandwidth allocation for the attacker (partition B). The
obtained data-set is depicted in the graphs below (Figures 4,
5, 6). What follows are our observations on the mechanism’s
behavior. As we can see in figure 4 the more bandwidth
allowed to the attacker B the higher duration of the critical
partition (A), until the point after 80% where they share
resources equally. It is visible that as the bandwidth becomes
more limited the critical partition obtains an execution time
closer to the one it would have if it were executed in isola-
tion (dotted line). Concerning DoS attacks here we have the
possibility to apply a threshold that would allow the critical
partition to obtain a duration that would allow it to not lose
its execution deadlines. In figure 5 we can observe the same
thing; the gap between the two partitions becomes greater as
the bandwidth availability for the attacker decreases. In regard

Fig. 4. Partition (A) and (B) duration graph

Fig. 5. The gap between the execution times of the two partition (A) and
(B)

to side channel attacks, this mechanism offers the possibility
to apply it in such a manner that the gap remains wide
enough that would make it inopportune for the attacker to
obtain information from the critical partition. The quota for
the attacker needs low enough that the gap between the two
partitions will minimize arbitration for NoC access. As a result
the attacker’s capacity to extract information from the critical
partition will be limited. In figure 6 we can see how much
the execution time of the critical partition (A) increases as we
allow more bandwidth for the attacker B. In this particular
case we observe that if the mechanism is not activated the
critical partition would be impacted by a 25% increase in
execution time. This graph allows to determine (depending on
partition (A)’s deadline) until which point the critical partition
can maintain its timeliness. By using that information we can
decide how to configure the threshold in order to guarantee an
upper bound for the critical partition.

V. CONCLUSION

In this paper, we consider the problem of security in NoC in
the case of DoS and side channel attacks. We propose a mixed-
criticality approach for securing HI critical flows. HI flows

Fig. 6. The percentage of increase in duration for partition (A)

have security and timeliness constraints whereas LO flows
are supposed unsecured. We propose a solution preserving the
timeliness constraints and the security of HI flows in a NoC
in the case of an attack. The solution relies on a mechanisms
implemented in hardware that is managed by the hypervisor
and makes enforcing the security measures we propose more
efficient.

REFERENCES

[1] “Common criteria website,” https://www.commoncriteriaportal.org,
2016, [Online; accessed 25-May-2016].

[2] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Design Automation Conference, 2001.
Proceedings. IEEE, 2001, pp. 684–689.

[3] S. Evain and J.-P. Diguet, “From noc security analysis to design
solutions,” in Signal Processing Systems Design and Implementation,
2005. IEEE Workshop on. IEEE, 2005, pp. 166–171.

[4] C. H. Gebotys and R. J. Gebotys, “A framework for security on noc
technologies,” in VLSI, 2003. Proceedings. IEEE Computer Society
Annual Symposium on. IEEE, 2003, pp. 113–117.

[5] M. D. Grammatikakis, K. Papadimitriou, P. Petrakis, A. Papagrigoriou,
G. Kornaros, I. Christoforakis, and M. Coppola, “Security effectiveness
and a hardware firewall for mpsocs,” in High Performance Computing
and Communications, 6th Intl Symp on Cyberspace Safety and Security.
IEEE, 2014, pp. 1032–1039.

[6] S. Baron, M. Silva Wangham, and C. Albenes Zeferino, “Security
mechanisms to improve the availability of a network-on-chip,” in Elec-
tronics, Circuits, and Systems (ICECS), 2013 IEEE 20th International
Conference on. IEEE, 2013, pp. 609–612.

[7] Y. Wang and G. E. Suh, “Efficient timing channel protection for on-
chip networks,” in Networks on Chip (NoCS), 2012 Sixth IEEE/ACM
International Symposium on. IEEE, 2012, pp. 142–151.

[8] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo,
J. Reybert, and T. Strudel, “A distributed run-time environment for the
kalray mppa R©-256 integrated manycore processor,” Procedia Computer
Science, vol. 18, pp. 1654–1663, 2013.

[9] L. S. Indrusiak, J. Harbin, and A. Burns, “Average and worst-case
latency improvements in mixed-criticality wormhole networks-on-chip,”
in Real-Time Systems (ECRTS), 2015 27th Euromicro Conference on.
IEEE, 2015, pp. 47–56.

[10] A. Burns, J. Harbin, and L. S. Indrusiak, “A wormhole noc protocol
for mixed criticality systems,” in Real-Time Systems Symposium (RTSS),
2014 IEEE. IEEE, 2014, pp. 184–195.

[11] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE Symposium on Security and
Privacy, 2015, pp. 605–622.

