
Using Segmentation to Improve Schedulability of
Real-Time Traffic over RRA-based NoCs ∗

Meng Liu, Matthias Becker, Moris Behnam, Thomas Nolte
Mälardalen University, Västerås, Sweden

Email: {meng.liu, matthias.becker, moris.behnam, thomas.nolte}@mdh.se

ABSTRACT
Network-on-Chip (NoC) is the interconnect of choice for many-
core processors and system-on-chips in general. Most of the exist-
ing NoC designs focus on the performance with respect to average
throughput, which makes them less applicable for real-time appli-
cations especially when applications have hard timing requirements
on the worst-case scenarios. In this paper, we focus on a Round-
Robin Arbitration (RRA) based wormhole-switched NoC which is
a common architecture used in most of the existing implementa-
tions. We propose a novel segmentation algorithm targeting RRA-
based NoCs in order to improve the schedulability of real-time traf-
fic without modifying the hardware architecture. According to the
evaluation results, the proposed segmentation solution can signifi-
cantly improve the schedulability of the whole network.

1. INTRODUCTION
The complexity of today’s embedded applications is steadily in-

creasing. Many industrial domains face the shift away from single-
core platforms towards multi-and many-core platforms in order to
fulfill the applications growing demand for computational power,
while still satisfying the requirements on low power consumption.

The interconnect of choice on such platforms is the Network-
on-Chip (NoC) [2]. Typically a many-core platform is arranged
into a number of nodes, where each node can have one or multi-
ple cores as well as local memory. A node contains further a net-
work interface which connects to a NoC router. These routers are
in turn connected to each other and they thus comprise the NoC.
Wormhole-switching is implemented in most of the existing NoC
designs [8]. In contrast to store-and-forward switching, wormhole-
switching requires significantly smaller buffers on each router. This
is the case since a packet is transmitted in so called flow control dig-
its (flits), the elementary unit of transmission on a NoC. A header
flit is transmitted first through the network. As long as the next
link on the path is free and the buffer on the next router can accom-
modate at least one flit, the header continues its transmission. The
remaining flits follow in a pipelined manner. During this transmis-
sion, the flits of one packet can span over multiple routers, hence
the name wormhole-switching.

Our current work targets applications with mixed timing require-
ments. A subset of tasks and packets has strict timing requirements
(called real-time traffic), while others have no timing requirements
at all (called best-effort traffic). One industrial example for such a
system is a Programmable Logic Controller (PLC) which is used
to control processes in factory automation. Apart from the actual
control algorithms which are time critical, many such devices al-
low a user to connect to the system via web-services in order to

∗Copyright retained by the authors

parameterize or observe the process variables. These parts do not
face any timing requirements. However, since the NoC is shared
among real-time and best-effort traffic, the timing analysis, which
is required to obtain the Worst-Case Traversal Time (WCTT) of
real-time packets, must consider all packets [5]. This means that
a system designer must specify parameters such as packet size and
period for best-effort traffic as well. Due to the system character-
istics, prior knowledge of such information about best-effort traffic
might be difficult or even not possible. Thus, a method to integrate
both real-time and best-effort traffic on the NoC while satisfying
all the timing requirements is of importance for many applications.

In order to provide real-time guarantees, many network/flow
control mechanisms have been proposed (e.g. [6][9][10][4]).
However, most of these solutions require support from specific
hardware designs. Consequently, for many of the existing im-
plementations, those solutions cannot be directly applied. In this
paper, we propose a novel segmentation algorithm for RRA-based
NoCs, which aims to improve the schedulability of all the real-time
traffic in a NoC. The proposed algorithm can be used at software
level such that no modification of hardware is required.

The contributions of this work are:

• A novel packet segmentation algorithm is proposed. The al-
gorithm aims to improve the schedulability of real-time traf-
fic without modifying the hardware design.

• Extensive evaluations have been performed. According to
the evaluation results, applying the proposed segmentation
approach can significantly improve the schedulability of the
whole network.

1.1 Related Work
The predictability of timing behavior is important for real-time

applications. Targeting such type of applications, a number of
research works have been presented in the literature, such as
time-triggered NoCs (e.g. [6][9][10]), the Back Suction flow-
control scheme [4], flow regulation [3], and fixed-priority based
NoCs [11][12]. These solutions resolve the scheduling problem
of real-time traffic in NoCs from different aspects, however, they
either require specific hardware support or runtime monitoring
of traffic. For example, a time-division multiplexing based
solution typically requires routers that can support time-slot based
transmission, and synchronization among all the nodes in the
network has to be carefully considered. A fixed-priority based
NoC requires implementation of multiple virtual-channels in order
to achieve preemptions between different priority levels, which
can also result in high buffer cost. In this paper, we address
the timeliness issue in NoCs from another perspective - packet
segmentation. The proposed segmentation algorithm is an off-line
solution, and it can be simply applied on most of the existing

R
o

u
n

d
 R

o
b

in
 b

as
ed

A
rb

it
ra

ti
o

n Output
Link

Buffer
Control

Input Input buffer

W

E

N

S

L

Figure 1: The abstracted architecture of an example NoC.

Commercial-Off-The-Shelf (COTS) implementations without
requiring any hardware modification.

The remainder of the paper is organized as follows. In Section 2
the system model is introduced. In Section 3, we illustrate the seg-
mentation approach for real-time traffic in RRA-based NoCs. The
evaluations are presented in Section 4, and Section 5 concludes the
paper.

2. SYSTEM MODEL
In this paper, we focus on an m×m 2D-mesh based wormhole-

switched NoC using XY-routing (as shown in Figure 1). Such type
of design has been utilized in many existing NoC implementations
(e.g. [1][13]). At each router, a Round-Robin Arbitration (RRA)
mechanism is used to control the link access. Under such a mecha-
nism, each input buffer can deliver at most one packet to the output
link within one round-robin cycle.

The network contains a set of real-time flows (denoted as Srt). A
flow is a series of packets with the same characteristics. Each real-
time flow fi is generated periodically or sporadically, and it can be
characterized by fi = {Li,Ti,Di,Sri,Dsi}. Li represents the size of
a complete packet of fi. Ti is the period of a periodic flow or the
minimum inter-arrival time of a sporadic flow. Each real-time flow
has a relative deadline Di. A flow is defined as schedulable if its
WCTT (denoted as Wi) is no larger than its deadline (i.e. Wi ≤ Di).
The network is defined as schedulable if all the real-time flows meet
their deadlines. Moreover, each flow has a fixed path/route which
starts from its source node Sri and ends at its destination node Dsi.

3. SEGMENTATION FOR NOCS WITH
REAL-TIME TRAFFIC

In this paper, we focus on RRA-based NoCs containing only
real-time traffic. A motivation example is shown in Figure 2, where
the NoC contains 5 real-time flows. Now we consider f1 as the flow
under analysis. We notice that, f1 can get direct blocking from f2,
f3 and f5 because of shared links, and indirect blocking from f4
because of back-pressure on f2. Therefore, the transmission of all
the other 4 flows can affect the WCTT of f1 (i.e. W1). Assume that
f1 misses its deadline (i.e. W1 > D1). In order to make f1 meet its
deadline, W1, which consists of the basic transmission time (i.e. the
transmission time without any blocking) and blocking delay from
other flows, has to be reduced. For most applications, the basic
transmission time of a flow is difficult to decrease, since it requires
reduced data payload. Therefore, reducing the blocking caused by
other flows is more practical. In this section, we propose a packet
segmentation based solution to reduce the blocking that a flow may
experience during its transmission, such that its worst-case traver-
sal delay can be decreased accordingly.

Assume that fi is the flow under analysis, and that k occurrences
of f j are involved in Wi. An RRA-based NoC typically uses a
non-preemptive policy. The length of each occurrence of block-
ing from f j then depends on the size of a complete packet of f j.

In other words, the packet size of f j can directly affect Wi. Un-
der the RRA policy, without changing the period of f j, the number
of occurrences of f j considered in Wi is fixed. Therefore, if we
can decrease the length of each occurrence of blocking from f j, Wi
can be reduced accordingly. To achieve this, we propose to apply
packet segmentation on f j. Packet segmentation means dividing a
packet into a number of sub-packets. After the segmentation, f j
may cause less blocking to fi because the length of each block-
ing occurrence is reduced. However, since each sub-packet has to
wait for one round-robin cycle at a router, f j itself may thus ex-
perience more blocking which can result in a larger W j. Thus, a
smaller sub-packet of f j can provide shorter Wi by inducing less
blocking, which on the other hand can result in a larger W j by con-
taining a higher number of sub-packets. Therefore, the selection of
sub-packet sizes needs to be considered carefully.

A B C D

𝑓1 (A  C)

A B C D

𝑓2 (B  D)

𝑓3 (B  C)

𝑓4 (C  D)

𝑓5 (A  C)

𝑓𝑖 (𝑆𝑟𝑖𝐷𝑠𝑖)

Figure 2: An example of five real-time flows in a NoC.

Alg. 1 Segmentation for real-time flows
1: Input: Srt

2: UnschedulableFlows ← ∅
3: for all fi in Srt do
4: Wi ← ComputeWorstCaseLatency(fi)
5: if Wi > Di then
6: add fi into UnschedulableFlows
7: end if
8: end for
9: for all f j in UnschedulableFlows do

10: result ← Alg. 2 (f j)
11: if result =UNSCHEDULABLE then
12: return UNSCHEDULABLE
13: end if
14: end for
15: return SCHEDULABLE

The complete segmentation approach is presented in Alg. 1.
First, the algorithm checks the schedulability of the flow set
without applying the segmentation process (Alg. 1, line 3-8).
Note that, to compute a packets WCTT, the applied schedulability
test must consider that a packet may be transmitted in multiple
segments. If all the flows can meet their deadlines, the algorithm
can directly terminate since the timing requirement is already
fulfilled while each packet keeps its original payload size. On the
other hand, if the timing analysis shows that certain flows cannot
meet their deadlines, the algorithm starts to apply a segmentation
process in order to save these flows from missing their deadlines
(Alg. 1, line 9-14).

The segmentation process is presented in Alg. 2, where fi is the
flow which may miss its deadline without segmentations. In order
to reduce the blocking caused to fi, we only need to consider the
flows in SI

i (representing all the flows which have potential to affect
Wi). Furthermore, not all the flows in SI

i actually contribute to Wi.
For example, in Figure 2, both f2 and f3 are included in SI

1 since
both of them can cause blocking to f1. However, f2 and f3 come

Alg. 2 Segmentation to make fi meet its deadline
1: Input: fi
2: while SIA

i 6= ∅ do
3: for all f j in SIA

i do
4: k ← L j

LS
j

5: while True do
6: pre_k ← k
7: Increase(k)
8: LS

j ←
L j
k

9: if LS
j < σ then

10: LS
j ←

L j
pre_k

11: break
12: end if
13: valid ← True
14: for all fm in Θ j ∪{ f j} do
15: analyze fm using the current LS

j
16: if Wm > Dm then
17: valid ← False
18: break
19: end if
20: end for
21: if valid = False then
22: LS

j ←
L j

pre_k
23: break
24: end if
25: analyze fi using the current LS

j
26: if Wi ≤ Di then
27: return SCHEDULABLE
28: end if
29: end while
30: end for
31: update SIA

i
32: end while
33: return UNSCHEDULABLE

from the same source node, therefore, they cannot cause blocking
to f1 at the same time due to the RRA policy. An analysis thus only
takes the flow which causes the maximum blocking into account.
We use SIA

i , which is a subset of SI
i , to denote the set of flows which

can actually contribute to the current Wi. Accordingly, in order
to reduce the blocking involved in Wi, we only need to apply the
segmentation process on the flows in SIA

i (Alg. 2, line 3 - 30).
While segmenting a flow f j (f j ∈ SIA

i), we increase the number
of segments gradually, and the size of one segment decreases ac-
cordingly (Alg. 2, line 7 - 8). The increasing function can be a
step function to keep it simple or a binary search to make it more
efficient. For each given segment size, we need to check if it is
acceptable (Alg. 2, line 9 to 24). When the size of one segment1

(denoted by LS
j) becomes smaller than the size of a single flit (de-

noted by σ), such a segment size is not acceptable since a flit is al-
ready the minimum transmission unit in wormhole-switched NoCs
(Alg. 2, line 9 - 11). As discussed earlier, increasing the number
of segments of f j may increase the blocking caused to f j. If the
scheduling policy used at the output-port of the source node is also
RRA, we only need to recheck the schedulability of f j itself since

1Note that a new header is added to each segment so that a segment
can be transmitted as normal packets. A header is typically one
single flit, which is much smaller than the data payload. To simplify
the presentation, the size of the header flit is included in LS

j .

other flows cannot get increased blocking by the reduced LS
j . How-

ever, such a situation may not be practical for most cases. When
a packet is generated by a source task, it is inserted into the buffer
at the source node which typically uses a FIFO mechanism. The
RRA policy, where the access of the output-link switches between
different packets within one local buffer, is difficult to implement
and causes extra overhead. In a more general case, the output-port
at the source node simply uses a FIFO mechanism. Consequently,
the real-time flows which are generated from the same source node
of f j (denoted by Θ j) may also be affected by the segmentation of
f j. This is because the extra blocking caused to f j can also delay
the transmission of these flows if they are pipelined behind f j at the
source node. Therefore, given a new segment size of f j, we need
to recheck the schedulability of both f j and all the flows from the
same source node of f j (Alg. 2, line 14 - 20). If the new segment
size makes any of the above flows miss its deadline, such a segment
size is not acceptable.

If the given segment size is not acceptable, the algorithm stops
the segmentation process on f j and starts to investigate another
flow in SIA

i (Alg. 2, line 11, 23). On the other hand, if the given
segment size is acceptable, we can use it to reanalyze fi. If fi be-
comes schedulable, the algorithm terminates with a success (Alg. 2,
line 25 to 27). Otherwise, the algorithm continues by increasing the
number of segmentations of f j or other flows in SIA

i .
Note that the flows included in SIA

i may vary during the segmen-
tation process. For example, before the segmentation, f j causes the
maximum blocking to fi at a certain router. After the segmenta-
tion, the blocking caused by f j decreases. Consequently, the maxi-
mum blocking at the same router can be caused by another flow fm
(fm ∈ SI

i). In this case, in the following segmentation process, fm
which is not considered in the initial SIA

i should also be taken into
account. Therefore, the flow set SIA

i needs to be updated continu-
ously (Alg. 2, line 31). While updating SIA

i , the flows which cannot
be segmented any more will be removed. When there is no flow
remaining in SIA

i , the algorithm terminates since no more flows can
be segmented. In this case, the algorithm returns a result of fail-
ure, which means that segmentation cannot save fi from missing
its deadline (Alg. 2, line 33).

As presented earlier, while segmenting a certain flow, the
schedulability of all the flows which may be affected by the
segmentation is examined. Only if all the affected flows are
schedulable, the segmentation becomes effective. Therefore, we
can guarantee that if a flow is schedulable in a NoC without
segmentation, it remains schedulable after applying the segmen-
tation policy; on the other hand, if a flow misses its deadline in
a framework without segmentation, it is potentially schedulable
using the segmentation mechanism. In other words, the proposed
segmentation algorithm achieves either better or equal but never
worse performance compared to NoCs without segmentation.

The segmentation process can be accomplished at the software
level on each computing core. One solution is to add a middle-
ware (an intermediate software program) between software parti-
tions and network interfaces on each core. The middleware divides
each packet into a number of sub-packets based on selected seg-
ment sizes. Each segment has its own header flit which contains the
same information as included in the header of the original packet.
Therefore, on the hardware level, segmented packets are simply
treated as normal NoC packets (i.e. no hardware modification is
required).

4. EVALUATION
In this section, we present the evaluation results of the proposed

Nr. Of Flows

Sc
h

ed
u

la
b

ili
ty

R
at

io

0

1

2

3

4

5

6

0%

20%

40%

60%

80%

100%

5 15 25 35 45 55 65

NoSeg WithSeg MaxU

M
ax

. T
o

ta
l U

ti
liz

at
io

n

Figure 3: NoSeg vs. WithSeg. Packet size from [5, 25] flits.
Flow utilization from [0.003, 0.1].

Nr. Of Flows

Sc
h

ed
u

la
b

ili
ty

R
at

io

0

3

6

9

0%

20%

40%

60%

80%

100%

5 15 25 35 45

NoSeg WithSeg MaxU

M
ax

. T
o

ta
l U

ti
liz

at
io

n

Figure 4: NoSeg vs. WithSeg. Packet size from [5, 25] flits.
Flow utilization from [0.01, 0.2].

segmentation algorithm for real-time packets (i.e. Alg. 1). The
evaluation uses an 8×8 2D-meshed NoC with the XY-routing. The
source and destination of each flow are randomly selected but not
set to the same node, otherwise communication through NoC is un-
necessary. The overhead incurred by the segmentation policy (i.e.
extra headers) have been taken into account. For each experiment,
we create two frameworks with the same setting (including net-
work architecture and flow set), and the only difference between
these frameworks is that one framework uses packet segmentation
while the other one does not. Then we examine the schedulability
of both frameworks. To achieve a fair comparison, the schedula-
bility test TRC [7] is utilized for both frameworks. The evaluation
results are represented by the schedulability ratio2 achieved by the
two frameworks with respect to the number of flows in the network.

Six groups of experiments have been generated. In the first
group, the packet size of each flow is randomly3 generated from
a range of [5,25] flits. The utilization of each flow is randomly
selected from [0.003,0.1]. The number of flows in the network are
selected from 5 to 65 with a step of 5. For each setting, we generate
100 experiments. The results are shown in Figure 3. When the
network only contains 5 flows, the schedulability ratio achieved by
the framework with the segmentation policy (marked by WithSeg
in the figure) is 100%, while the framework without segmentation
(marked by NoSeg in the figure) achieves the same schedulability
ratio. As the number of flows goes up, the schedulability ratios
of both frameworks decrease since the total utilization of the flow
set4 increases (e.g., as shown in Figure 3, as the number of flows
goes up from 5 to 65, the maximum observed total utilization
increases from 0.73 to 5.67). However, the schedulability ratio of
the framework without segmentation decreases obviously faster
compared to the other framework. When the number of flows is

2Given an experiment setting, the schedulability ratio is the per-
centage of schedulable flow sets among all the generated sets.
3In our experiments, all the randomly generated values are selected
from the given range following a uniform distribution.
4The total utilization of a flow set is the summation of the utiliza-
tions of all the included flows.

Nr. Of Flows

Sc
h

ed
u

la
b

ili
ty

R
at

io

0

1

2

3

4

5

0%

20%

40%

60%

80%

100%

5 15 25 35 45 55

NoSeg WithSeg MaxU

M
ax

. T
o

ta
l U

ti
liz

at
io

n

Figure 5: NoSeg vs. WithSeg. Packet size from [5, 50] flits.
Flow utilization from [0.003, 0.1].

Nr. Of Flows

Sc
h

ed
u

la
b

ili
ty

R
at

io

0

1

2

3

4

5

6

7

8

0%

20%

40%

60%

80%

100%

5 15 25 35 45

NoSeg WithSeg MaxU

M
ax

. T
o

ta
l U

ti
liz

at
io

n

Figure 6: NoSeg vs. WithSeg. Packet size from [5, 50] flits.
Flow utilization from [0.01, 0.2].

30, the schedulability ratio of the framework with segmentation is
81%, which is 29% higher than the ratio achieved by the frame-
work without segmentation. When the number of flows reaches
50 (where the maximum observed total utilization is 4.55), the
schedulability ratio of the framework with segmentation decreases
to 14%, while the ratio achieved by the other framework drops to
0.

In the second group of experiments, we evaluate the frameworks
with higher utilization. The generation of packet sizes remain the
same as in the first group. Now the utilization of each flow is ran-
domly selected from [0.01,0.2]. The number of flows increases
from 5 to 50 with a granularity of 5. The results are presented in
Figure 4. Similar to the observation from the first group of exper-
iments, as the number of flows increases, the schedulability ratio
achieved by the framework with segmentation declines obviously
slower than the framework without segmentation. When the num-
ber of flows goes up from 5 to 30, the schedulability ratio of the
framework with segmentation decreases from 99% to 18%, while
the schedulability ratio of the other framework drops from 96%
to 1%. When the number of flows is 35 (where the maximum
observed total utilization is 6.33), the schedulability ratio of the
framework without segmentation becomes 0, while the framework
with segmentation still has a schedulability ratio of 6%. By com-
paring the first two groups of experiments, we can observe that
changing utilization of each real-time flow does not really affect
the benefit (in the sense of improving schedulability) yielded by
the segmentation approach.

In the third group of experiments, we investigate NoCs with
larger packet sizes. Now the packet size of each flow is randomly
generated from [5,50] flits, and the utilization of each flow is ran-
domly selected from [0.003,0.1]. The number of flows increases
from 5 to 60 with a step of 5. As shown in Figure 5, similar to
the previous results, as the total network utilization increases, the
schedulability ratio achieved by the framework without segmenta-
tion decreases obviously faster than the framework with segmenta-
tion. When the number of flows is 30, the schedulability ratio of
the framework with segmentation is 66%, which is 35% higher than

Nr. Of Flows

Sc
h

ed
u

la
b

ili
ty

R
at

io

0

1

2

3

4

5

0%

20%

40%

60%

80%

100%

5 15 25 35 45 55 65

NoSeg WithSeg MaxU

M
ax

. T
o

ta
l U

ti
liz

at
io

n

Figure 7: NoSeg vs. WithSeg. Packet size from [5, 100] flits.
Flow utilization from [0.003, 0.1].

Nr. Of Flows

Sc
h

ed
u

la
b

ili
ty

R
at

io

0

3

6

9

0%

20%

40%

60%

80%

100%

5 15 25 35 45

NoSeg WithSeg MaxU

M
ax

. T
o

ta
l U

ti
liz

at
io

n

Figure 8: NoSeg vs. WithSeg. Packet size from [5, 100] flits.
Flow utilization from [0.01, 0.2].

the ratio achieved by the framework without segmentation. When
the number of flows reaches 50 (where the maximum observed total
utilization is 3.86), only 1% of the generated flow sets are schedula-
ble for the framework without segmentation, while the other frame-
work still has a schedulability ratio of 10%. The schedulability ra-
tio of the framework with segmentation becomes 0 when the num-
ber of flows reaches 60 (where the maximum observed total uti-
lization is 4.72). The fourth group of experiments utilize the same
setting as used in the third group to generate packet sizes of real-
time flows, while the utilization of each flow is randomly selected
from [0.01,0.2]. As shown in Figure 6, the maximum difference be-
tween the schedulability ratios achieved by these two frameworks
is 38% (when the network contains 25 flows). When the number
of flows reaches 30 (where the maximum observed total utilization
is 5.08), the schedulability ratio achieved by the framework with-
out segmentation becomes 0. However, for the other framework,
schedulable flow sets can be observed until the number of flows
reaches 45 (where the maximum observed total utilization is 7.07).

Additionally, we also generate two groups of experiments with
further increased packet sizes. In these two groups of experiments,
the packet size of each flow is randomly selected from [5,100] flits.
The flow utilization is generated in the same manner as used in the
previous experiments. The results are given in Figure 7 and Fig-
ure 8, from which we can obtain very similar observations as ac-
quired in the other experiments regarding the improvement accom-
plished by the segmentation approach. We notice that the maxi-
mum difference between the schedulability ratios achieved by these
two frameworks is 48% (when the NoC contains 35 flows) in the
fifth group (see Figure 7) and 46% (when the NoC contains 15
flows) in the sixth group (see Figure 8).

By comparing all six groups of experiments, we can observe that
the improvement achieved by the segmentation approach increases
as packet size goes up. For example, for the settings with flow
utilization from [0.003, 0.1] (i.e. Figure 3, Figure 5 and Figure 7),
as the maximum packet size increases from 25 to 100, the average
improvement raises from 11% to 20% and the maximum observed
improvement increases from 29% to 48%.

Generally, according to the above evaluation outcomes, we can
conclude that using the proposed segmentation approach can sig-
nificantly improve the schedulability of NoCs with real-time traffic.
We can also observe that the improvement can always be clearly ob-
served regardless different packet sizes and flow utilizations. Fur-
thermore, the segmentation solution achieves more improvement
when flows have larger packets.

5. CONCLUSION AND FUTURE WORKS
In this paper, we introduce a segmentation-based approach in or-

der to improve the schedulability of real-time traffic in RRA-based
NoCs. According to the evaluation results, the proposed segmen-
tation solution can significantly improve the schedulability of the
whole network.

In our ongoing work, we plan to solve the problem of transmit-
ting both real-time traffic and best-effort traffic in the same NoC.
The aim is to provide low latency for best-effort traffic while the
schedulability of all the real-time traffic is still guaranteed. More-
over, in this work, we assume that all the flows are already mapped
in the NoC. We can observe that the mapping of flows definitely
affect the WCTTs of flows which further affects the schedulability
of the whole network. Therefore, we would also like to address the
mapping problem in the context of NoCs with segmentation.

6. REFERENCES
[1] Adapteva Inc. Epiphany Architecture Reference, 2012.
[2] L. Benini and G. De Micheli. Networks on chips: a new soc

paradigm. Computer, 2002.
[3] B. D. De Dinechin, Y. Durand, D. Van Amstel, and A. Ghiti.

Guaranteed services of the noc of a manycore processor. In
International Workshop on Network on Chip Architectures.
ACM, 2014.

[4] J. Diemer and R. Ernst. Back suction: Service guarantees for
latency-sensitive on-chip networks. In NOCS. IEEE, 2010.

[5] T. Ferrandiz, F. Frances, and C. Fraboul. A method of
computation for worst-case delay analysis on spacewire
networks. In SIES, 2009.

[6] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal
network on chip: concepts, architectures, and
implementations. Design & Test of Computers, 2005.

[7] M. Liu, M. Becker, M. Behnam, and T. Nolte. Improving
schedulability of real-time traffic over wormhole-switched
nocs by applying segmentations. Technical report, MDH,
2016.

[8] L. M. Ni and P. K. McKinley. A survey of wormhole routing
techniques in direct networks. Computer, 1993.

[9] C. Paukovits and H. Kopetz. Concepts of switching in the
time-triggered network-on-chip. In RTCSA. IEEE, 2008.

[10] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki. A
statically scheduled time-division-multiplexed
network-on-chip for real-time systems. In NOCS. IEEE,
2012.

[11] Z. Shi and A. Burns. Real-time communication analysis for
on-chip networks with wormhole switching. In NOCS, 2008.

[12] Z. Shi and A. Burns. Real-time communication analysis with
a priority share policy in on-chip networks. In ECRTS. IEEE,
2009.

[13] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown III, and
A. Agarwal. On-chip interconnection architecture of the tile
processor. IEEE Micro, 2007.

