
WCTT bounds for MPI Primitives in the PaterNoster NoC

Alexander Stegmeier
University of Augsburg, Germany

alexander.stegmeier@informatik.uni-
augsburg.de

Martin Frieb
University of Augsburg, Germany

martin.frieb@informatik.uni-augsburg.de

Jörg Mische
University of Augsburg, Germany

mische@informatik.uni-augsburg.de

Theo Ungerer
University of Augsburg, Germany

ungerer@informatik.uni-augsburg.de

ABSTRACT
This paper applies several variants of application indepen-
dent time-division multiplexing to MPI primitives and in-
vestigates their applicability for different scopes of commu-
nication. Thereby, the scopes are characterized by the size
of the network-on-chip, the number of participating nodes
and the message size sent to each receiver or received from
each sender, respectively. The evaluation shows that none of
the observed variants feature the lowest worst-case traver-
sal time in all situations. Instead there are multiple schedule
variants which each perform best in a different scope of com-
munication parameters.

Keywords
Real-Time NoC, WCTT, MPI Primitives, TDM

1. INTRODUCTION
As hard real-time (HRT) systems must meet deadlines, a

worst-case execution time (WCET) analysis is necessary to
prove the program finishes before its upper timing bound is
met. Furthermore, for parallel software the communication
between parallel executed threads becomes a relevant issue
and processors featuring a large number of cores utilize a
network-on-chip (NoC) to connect all cores. Several pro-
cessors connected by a NoC additionally provide distributed
memory to all cores and communicate via explicit messages.
Thus, the worst-case traversal time (WCTT) of those mes-
sages is relevant to calculate the overall WCET of parallel
applications.

Most existing approaches for calculating a WCTT on NoCs
provide application specific traversal times. This strategy
causes some disadvantages. If multiple applications run on
the same chip in parallel, the applications’ WCTTs influence
each other. This is because the traffic flows of applications
are not isolated against each other within the NoC. Thus,
the entire chip and traffic must be considered for the calcu-

Copyright retained by the authors

lation of the application’s WCTTs. Another disadvantage
occurs when an application already running on the proces-
sor needs to be extended or adapted. As changed and added
parts of the software affect the legacy component’s timing
behaviour, the entire application has to be analysed from
scratch. Moreover, since the considered application’s com-
munication may change, all other applications concurrently
running on the same chip must also be analysed to ensure
that they still meet their timing constraints or to adapt their
communication, respectively.

To overcome these shortcomings, a WCTT estimation in-
dependent from traffic generated by nodes which are unin-
volved to a considered communication is needed. The mes-
sage passing interface (MPI) is the de-facto standard for
message passing in distributed memory systems and encap-
sulates all communication to primitives applicable indepen-
dent from applications. Therefore, if they feature a WCTT
independent from other traffic, they have to be analysed
only once on a specific processor and afterwards can be uti-
lized for multiple programs without further WCTT analy-
sis. Hence, it seems appropriate to provide MPI for message
passing in HRT systems based on NoCs. However, an im-
plementation is needed that provides such an upper bound
for the WCTT.

There are already concepts available dealing with the is-
sue of upper bounds for traversal times independent to un-
involved traffic. One of them is the guaranteed service (GS)
for the PaterNoster NoC [8], which forms the basis for this
paper. It enables several variants of time-division multiplex-
ing (TDM) to calculate an application independent WCTT.
So far only the communication of multiple senders transmit-
ting one flit each to a single or multiple receivers has been
considered for calculating an upper bound for WCTT [8].

In this paper the calculation rules for the different TDM
variants are extended to calculate WCTTs for complete MPI
primitives. Based on [8], rules are specified for a commu-
nication of one sender to a number of receivers (1:N) and
for a communication of a number of senders to one receiver
(N:1). Furthermore, concrete implementations of MPI prim-
itives suitable for the applied NoC are chosen and their traf-
fic structure is extracted. Afterwards, the MPI primitives’
communications are parsed to 1:N and N:1 communications
to deduce rules for determining their WCTT. Besides pro-
viding calculation rules several variants of TDM are com-
pared and a statement about their applicability to different
scopes of communication structures is given.

East Out

North Out

West In

Send
Buffer

Recv
Buffer

South In

Corner
 Buffer

Figure 1: Network structure and router of PaterNoster NoC.

2. RELATED WORK
The Intel Labs presented the Intel Single-chip Cloud Com-

puter (SCC) [5] and Scheller [14] investigated real-time pro-
gramming for this chip. However, the SCC cannot guaran-
tee bounded timing behaviour for each case, as [11] reveals.
CompSOC [2] is another platform which focuses on timing-
predictability.

There are several methods for GS. The most common ones
are rate control for routers or virtual circuit switching ap-
plying TDM [3]. Generally, TDM allows each requester to
get access to a shared resource for a fixed portion of time
within a time interval. The granted time slots are ordered
in a way that no conflicts occur when accessing the resource.

There are several approaches to achieve TDM on a spe-
cific platform. One option is utilizing a custom schedule, as
applied in [3, 19, 15] in different variants. Such schedules
are statically defined for the communication of a specific
application and require detailed knowledge about the inter-
nal communication at design time. Other approaches do
not target application specific schedules but apply a generic
static schedule independent of the actual communication.
Schoeberl et al. [16] propose the use of an All-to-All sched-
ule. This schedule enables each node to send one flit to each
other node within one period.

There is a variant of the MPI standard targeting real-time
systems [6, 17], but this approach is not very widespread.
Sørensen et al. [18] also focus on a time-predictable MPI im-
plementation for a NoC. Thereby, it focuses on end-to-end
WCET, but only one TDM schedule is investigated and the
NoC size exhibiting 9 nodes is relatively small. In contrast,
we concentrate on pure WCTT, but in return explicitly com-
pare different TDM schedules due to their scalability for
NoC size, number of participating nodes and message size.
Furthermore, Frieb et al. [1] used the results of this paper
to calculate the end-to-end WCET of an application.

3. PATERNOSTER NOC
We assume the predicable variation of the PaterNoster

NoC [8] to calculate the WCTT bounds. Figure 1 displays
the topology of this NoC. Thereby, unidirectional horizontal
and vertical rings form a quadratic n×n torus. Hence, each
node can only send flits to the east and north neighbours
and receive flits from the south and west neighbours.

We consider a node as a router connected to a local pro-
cessing element possessing its own memory. In each router
flits are forwarded within one processor cycle. When a flit
waits in send- or corner-buffer to be forwarded, it can be
injected to the NoC if no other flit is forwarded to the same
target concurrently.

A strict dimension-ordered routing is applied for deliver-
ing flits. At the start of a send action the processing element
puts the flit in the send-buffer of the router, where it waits
until the insertion to the horizontal ring of the NoC is pos-
sible. After insertion in the ring the flit is forwarded buffer-
less to its target column and stored in the corresponding
router’s corner-buffer. Here the flit waits until it is inserted
in the vertical ring which applies bufferless forwarding as
well. When the flit meets its target node it is stored in
the receive-buffer where the local processing element can
take it for further processing. Subsequently, we consider the
WCTT of a flit delivery as the period in time between stor-
ing it in the send-buffer and putting it in the receive-buffer
of the target. We exclude the time when the flit waits in the
receive-buffer because it is mainly influenced by the local
WCET of the processing element.

4. GUARANTEED SERVICE WITH TDM
The proposed option for GS is TDM [8]. Applying this

method to the considered NoC each send- and corner-buffer
gets fixed time slots for forwarding a flit to the horizontal
and vertical ring. Thereby, the slots are ordered in a way
that no other flit occupies the requested location in the NoC.
As there are fixed points in time to insert a flit into the
NoC and conflicts are avoided, an upper bound for the time
needed to admit and to transport a flit through the NoC can
be given. Hence, the WCTT for sending a flit is calculated
by adding the admission time ta and the transportation time
tt of the flit.

Mische and Ungerer [8] present several schedules. These
are the schedules called All-to-All (AA), One-to-All (1A),
All-to-One (A1) and One-to-One (11). The AA schedule is
the same as the schedule presented in [16] (see section 2).
The 1A schedule allows each node to send at most one flit
per period but each node may receive one flit from each other
node within one period. The counterpart to 1A is the A1
schedule which allows each node to send one flit to each other
node but restricts the total number of sent flits by allowing
each node to receive at most one flit in a period. Finally,
the 11 schedule restricts the communication by allowing each
node to send at most one flit and each node also may only
receive one flit per round. To enable communication with
different other nodes, several rounds form a 11 schedule that
is periodically repeated.

In contrast to custom schedules the schedules AA, 1A,
A1 and 11 limit the traffic of all nodes to an amount that
enables a statement about the upper bound without consid-
ering uninvolved communication. This approach normally
leads to a higher upper bound as for a custom schedule,
but guarantees application independent temporal isolation
of traffic within the NoC. Thus, only traffic of the regarded
communication must be considered for the calculation of an
upper bound and no other application parts or the place-
ment of the application within the NoC has to be taken into
account. As these schedules guarantee a WCTT which is
independent from the position of participating nodes in the
NoC, no complex method for an optimal placing of tasks is
needed.

5. DESIGN OF MPI PRIMITIVES
MPI [9] as de-facto standard for message-passing in dis-

tributed memory systems provides the most common com-

s0 r0 rχ−1

(a) broad-
cast

s0 r0 rχ−1

(b) scatter

s0 r0 rχ−1

(c) barrier

s0 r0 rχ−1

(d) gather

s0 r0 rχ−1

(e) reduce

Figure 2: communication structures of MPI collectives im-
plemented for PaterNoster NoC

munication primitives. Thus, we implement a basic subset
of MPI for the communication on the PaterNoster NoC. The
concept of groups and communicators and also basic point-
to-point and collective communication are implemented. Con-
versely, e.g. no derived data types are allowed and we con-
sider the network is free of hardware faults.

Logically a MPI primitive can be split in several 1:N and
N:1 communications. The implementation of such multicast
communications can algorithmically take place in different
ways, classified as unicast-based and path-based [21]. [7, 12,
13] describe several different unicast-based and path-based
algorithms.

Path-based solutions rely on sending one flit to multiple
destinations keeping a copy of the flit at the passed tar-
get node. These solutions require hardware extension for
sending the flit to multiple destinations and copying it at
the destination node. Since the PaterNoster NoC does not
support such hardware, path-based algorithms are not con-
sidered subsequently. Unicast-based algorithms follow an-
other approach. They compose several unicast messages to
form a multicast. As they are based on unicast messages
no additional hardware is needed and therefore, they are
appropriate for the usage in PaterNoster NoC.

Several algorithms exist for unicast-based collective com-
munication [12, 20, 4]. Examples are separate addressing
and recursive doubling. Separate addressing is a very sim-
ple way to implement a 1:N communication. It performs
an unicast from the sender to each receiver and needs N
communication steps. However, [10] states that separate ad-
dressing can be efficient for short messages and small group
sizes. Thus, as a first step, we concentrate on separate ad-
dressing and leave other algorithms to future work.

The MPI standard knows several collectives which are im-
plemented for the PaterNoster NoC. These collectives are
barrier, broadcast, gather, scatter and reduce. The com-
munication structures exhibited by the PaterNoster imple-
mentations utilizing separate addressing are shown in figure
2. Each of them can be subdivided in 1:N and N:1 com-
munication phases and local execution phases. Broadcast
begins with a 1:N communication (sending the first flit) fol-
lowed by a local execution (storing the flit and generating
an acknowledgement (ACK)) in each receiver. Afterwards, a
N:1 communication is performed to send the ACKs back to
the sender which in turn processes the received flits locally
and delivers all remaining flits by performing a 1:N com-
munication for each flit. The ACKs are needed to check if
the receivers are ready to receive further data. With small
differences the same holds true for scatter and barrier com-
munication. As scatter sends different data to each receiver
and also data for itself, the sender additionally must per-

form a local execution to copy the fraction of data intended
to itself after all flits are sent. The second phase of sending
flits to the receivers is bounded to one flit for barrier.

For gather, the node which will receive all data starts with
sending an ACK to all participating nodes (1:N) indicating
that it is ready to receive data. After receiving and process-
ing the ACKs all senders begin with transmitting the flits
to the receiver applying multiple N:1 communications. For
reduce, the structure in terms of communication is the same
as for gather.

6. CALCULATION OF WCTT BOUNDS
Since the WCTT bounds of primitives implemented with

separate addressing are composed of 1:N and N:1 communi-
cations, the bounds of these communications are determined
first. Thereby, the calculation is based on [8]. There are
small differences compared to the time of the original work,
because the additional flit needed for the one-ported buffers
was not considered originally. Afterwards, selected primi-
tives are investigated in more detail. The other collectives
are omitted because of their similarities in communication
structure with other collectives and due to space reasons.

6.1 1:N and N:1 communication
As stated in section 3, n indicates the dimension of the

considered NoC, which exhibits n2 nodes. Furthermore, let
χ be the number of receivers (1:N) and the number of senders
(N:1), respectively. We use f for the number of flits in one
message. The time needed to perform one round is indicated
as T . Within one round it must be possible to transport a
flit to each node of the currently considered ring. Since each
hop from one node to the next one takes one cycle and the
maximal distance in a ring is n − 1 hops, the round takes
at minimum n − 1 cycles. Additionally to transportation,
the one-ported fashion of the buffers has to be considered.
As it is possible to insert flits to buffers (corner-buffer and
receive-buffer) from two directions, the length of a round
needs to be extended by one cycle to enable the avoidance
of conflicts. Hence, one round needs n cycles.

To meet the constraints needed for performing an AA
schedule, [8] states that the admission time ta must be set

to n2(n+1)
2

. Additionally, in AA a flit stays maximal n2

2
cy-

cles in corner buffer and is transported n cycles per ring.

Thus, AA’s transportation time tt is set to n2

2
+ 2n. Since

the schedule prohibits sending multiple flits from the same
sender to the same receiver, the admission time has to be
considered for each flit f . Therefore, the WCTT for a 1:N
communication utilizing AA is

WCTTAA =
n2(n+ 1)

2
· f +

n2

2
+ 2n (1)

The argumentation also holds true for N:1 communication
with AA and hence, exhibits the same WCTT.

The schedules A1, 1A and 11 require equal time for trans-
portation, particularly maximal one round for each direction
(horizontal and vertical) and thus, tt equals 2 · T = 2n. As
the corner buffers are only used to store flits arrived early
to wait for the next round, the time a flit stays in a corner
buffer is already included. In contrast to the transportation
time, the admission time differs for the considered schedules.
While 1A and A1 are characterized by different admission
times for 1:N and N:1 communication, the 11 schedule re-
quires equal time for both cases.

Since each flit must be sent to all χ receivers (1:N), in
11 it takes χ rounds until one flit is fully delivered to all
destinations. Therefore, the admission of f flits takes ta =
T · χ · f = nχf cycles:

WCTT11 = nχf + 2n (2)

In the 1A schedule a node may only send one flit per
period but is allowed to receive n2 flits in a period consisting
of n rounds. As a round takes T = n cycles, a period lasts
n · T = n2 cycles. When considering 1:N communication,
each flit has to be sent to all χ receivers. Hence, χ periods
are needed to deliver one flit. Thus, a 1:N communication
utilizing 1A takes ta = n·T ·χ·f = n2χf cycles for admission.
In summary the WCTT is

WCTT 1:N
1A = n2χf + 2n (3)

In contrast a flit can be received from all senders within
one period. Therefore, the admission takes ta = n · T · f =
n2f cycles for N:1 communication:

WCTTN :1
1A = n2f + 2n (4)

The A1 schedule behaves vice versa to 1A. A node can
send n2 flits and receive only one flit per period. Hence, the
schedule exhibits admission times vice versa to 1A for 1:N
and N:1 communication. It needs n · T · f = n2f cycles for
admitting 1:N communication and n ·T ·χ · f = n2χf cycles
for admitting N:1:

WCTT 1:N
A1 = n2f + 2n (5)

WCTTN :1
A1 = n2χf + 2n (6)

6.2 MPI Primitives
The basic primitive in MPI is the point-to-point commu-

nication, which involves exactly two nodes. These nodes are
the sender and the receiver of a message. Thus, for the cal-
culation of a WCTT bound, a point-to-point communication
can be seen as a special case of 1:N or N:1 communication
with χ = 1.

The WCTTs of the provided collectives base on the 1:N
and N:1 communication. Hence, it is possible to split the col-
lectives in several 1:N/N:1 communications. Subsequently,
the execution times for executed code is assumed to be 0
cycles because we focus on traversal times.

According to section 5, a broadcast starts with a 1:N
communication of one flit. Afterwards, the ACK is sent
back by an N:1 communication and lastly, all remaining
flits (f − 1 flits) are delivered applying 1:N communica-
tion. In the worst case a 1:N or N:1 communication is com-
pletely finished before the subsequent delivery begins. Thus,
and as we neglect local WCETs, the WCTT of broadcast
can be bounded by summing up the WCTTs of all utilized
1:N and N:1 communications, particularly WCTT bcast(f) =
WCTT 1:N (1) +WCTTN :1(1) +WCTT 1:N (f − 1). Apply-
ing the equations of section 6.1 the WCTTs for the different
schedules are:

WCTT bcast11 (f) = nχ(f + 1) + 6n (7)

WCTT bcast1A (f) = n2(χf + 1) + 6n (8)

WCTT bcastA1 = n2(f + χ) + 6n (9)

WCTT bcastAA =
n2(n+ 1)

2
(f + 1) +

3n2

2
+ 6n (10)

When ignoring the local execution in cores, the WCTT of
broadcast and scatter are the same. Furthermore, barrier
can be seen as broadcast sending two flits to all partici-
pants. Therefore, scatter and barrier are subsequently not
investigated in more detail.

Like with broadcast the WCTT of gather is calculated by
summing up the WCTTs of performed 1:N / N:1 communi-
cations. The collective begins delivering the ACK via 1:N
communication and proceeds with gathering the flits of all
participants using N:1. Hence, the WCTTs of gather for the
different schedules are as follows:

WCTT gather11 = nχ(f + 1) + 4n (11)

WCTT gather1A = n2(f + χ) + 4n (12)

WCTT gatherA1 = n2(χf + 1) + 4n (13)

WCTT gatherAA =
n2(n+ 1)

2
(f + 1) + n2 + 4n (14)

The collective reduce exhibits the same communication struc-
ture as gather. Like scatter and barrier, the collectives re-
duce is not further examined, due to similarities in commu-
nication structure.

7. EVALUATION
We evaluate each schedule using the formulas for 1:N and

N:1 to get a basic understanding of each schedule. After-
wards, the MPI collectives are investigated.

For the evaluation we assume different group sizes (χ),
NoC sizes (n2) and message lengths (f). Two of the men-
tioned parameters will be fixed and the schedules compared
as a function of the third parameter. Finally, a statement
about the applicability of the schedules is given.

7.1 1:N and N:1 communication
Figures 3a, 3b and 3c show the behaviour of considered

schedules for 1:N communication. As already stated, the AA
and 11 schedules exhibit the same behaviour for both kinds
of communication, while 1A and A1 behave differently.

Figures 3a displays the schedules’ behaviour as a function
of χ. Thereby, the dimension of the NoC is fixed to a size n =
8 and the delivered message comprises 4 flits. The WCTT of
AA and A1 is constant for all group sizes, while the schedules
11 and 1A increase linearly with χ. However, despite AA
is not increasing, its WCTT exhibiting 1199 cycles is the
highest for χ < 5 and the second highest time for 5 ≤ χ <
37. 1A performs worse than AA for χ ≥ 5 due to a high
gradient cause by a factor of n2 and 11 features a higher
WCTT for χ ≥ 37. However, the 11 schedule performs best
for group sizes smaller than n but is beaten for larger group
sizes by A1, which features a WCTT of 272 cycles for all χ.

The behaviour as a function of n is shown in figures 3b.
The groups size is fixed to χ = 4 and the same message
length is applied as for the investigation of χ. The AA sched-
ule increases fast as it is influenced by n3, whereas 11 raises
arithmetically. 1A and A1 feature a WCTT raising faster
than 11 but slower than AA, as both are characterized by
n2. However, the 1A schedule raises faster than A1 schedule.
The A1 schedule performs best for n < 4. For larger and

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 10 20 30 40 50 60

W
C

TT
 [c

yc
le

s]

chi

One-To-One
One-To-All
All-To-One

All-To-All

(a) WCTT (χ) of 1:N

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 2 3 4 5 6 7 8

W
C

TT
 [c

yc
le

s]

n

One-To-One
One-To-All
All-To-One

All-To-All

(b) WCTT (n) of 1:N

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 5 10 15 20 25 30

W
C

TT
 [c

yc
le

s]

f

One-To-One
One-To-All
All-To-One

All-To-All

(c) WCTT (f) of 1:N

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 10 20 30 40 50 60

W
C

TT
 [c

yc
le

s]

chi

One-To-One
One-To-All
All-To-One

All-To-All

(d) WCTT (χ) of broadcast

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 2 3 4 5 6 7 8
W

C
TT

 [c
yc

le
s]

n

One-To-One
One-To-All
All-To-One

All-To-All

(e) WCTT (n) of broadcast

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 5 10 15 20 25 30

W
C

TT
 [c

yc
le

s]

f

One-To-One
One-To-All
All-To-One

All-To-All

(f) WCTT (f) of broadcast

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 10 20 30 40 50 60

W
C

TT
 [c

yc
le

s]

chi

One-To-One
One-To-All
All-To-One

All-To-All

(g) WCTT (χ) of gather

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 2 3 4 5 6 7 8

W
C

TT
 [c

yc
le

s]

n

One-To-One
One-To-All
All-To-One

All-To-All

(h) WCTT (n) of gather

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 5 10 15 20 25 30

W
C

TT
 [c

yc
le

s]

f

One-To-One
One-To-All
All-To-One

All-To-All

(i) WCTT (f) of gather

Figure 3: WCTT of 1:N (left column), broadcast (middle column) and gather (right column) communication. Each function
varies one parameter while the other parameters are fixed to χ = 4, n = 8 and f = 4, respectively.

equal group sizes, the schedule featuring the lowest WCTT
is 11.

Figure 3c shows, that the WCTTs of all schedules increase
arithmetically with the number of flits. However, there are
big differences in their gradients. The highest WCTT of
all schedules exhibits AA. This holds true for all sizes of
a message. Even though its performance compared to the
other schedules would be better for larger group sizes than
displayed, it is always worse than utilizing 11. However, A1
performs better than 11 as soon as χ raises above a size of
n.

N:1 communication exhibits the same WCTTs for all sched-
ules as 1:N communication, except that 1A and A1 behave
exactly vice versa.

In summary, AA schedule is not suitable for performing
pure 1:N or N:1 communication. It is intended to perform a
all-to-all communication within one period. Since the con-
sidered communications send n times less flits than all-to-all,
a lot of free bandwidth remains unused and causes a huge
overhead in time. The schedules 1A and A1 are optimised
each for one kind of communication, 1A for N:1 and A1
for 1:N. They are able to perform their optimised commu-
nication within one period and therefore, are stable due to
different group sizes. However, the opposite communication
causes significant overhead and performs even worse than
AA for moderate and large group sizes. In contrast, 11 fits
to both communications, but its WCTT is dependent on the
group size. Hence, the schedule performs best for χ < n in
all cases compared to the other schedules and exhibits still
competitive traversal times for a moderate χ. Nevertheless,

its behaviour is becoming infeasible for large group sizes.

7.2 MPI Primitives
Figures 3d, 3e and 3f show the behaviour of considered

schedules for a broadcast communication and figures 3g, 3h
and 3i present the performance of the gather collective. Both
collectives are based on 1:N and N:1 communication and rep-
resent a large range of collectives, as each collective primarily
focusing on a different communication structure. Broadcast
mainly utilizes 1:N communication, while gather is domi-
nated by N:1 communication. Due to this communication
structure broadcast features behaviour similar to 1:N and
gather is related to N:1 communication.

As AA and 11 show no differences between 1:N and N:1
communication, they also feature the same tendencies for
broadcast and gather communication. Compared to the 1:N
or N:1 communication the AA’s and 11’s WCTT of broad-
cast and gather is only risen by the ACK flits, which cause
one additional admission time and one or two transportation
time periods in each schedule. In contrast, the schedules 1A
and A1 show significant differences compared to pure 1:N or
N:1 communication, since they need to perform both kinds
of communication for each collective even though they are
optimized for kind of these communication structures. As
a result neither 1A nor A1 is independent of the group size
any more.

As already stated the main difference for the WCTTs as
functions of χ are the numbers of A1 which are not constant
any more. Furthermore, 11 raises faster with the group size
for broadcast than for 1:N and AA exhibits with 1584 cycles

a larger constant WCTT for broadcast than for 1:N. There
are also differences in the WCTT as a function of n. Since
the additional ACK takes fewer time for 1A than for AA, 1A
performs slightly better than AA when broadcast and pure
1:N communication are compared. In contrary, A1 performs
worse than 11 for broadcast compared to 1:N, again due to
different costs for the ACK. Comparing broadcast and 1:N
for different message sizes (Figure 3c and 3f) it should be
noted that all schedules except 1A behave slightly worse
for broadcast. Thereby, the difference increases with the
number of flits sent.

All statements given for the comparison of broadcast and
1:N communication hold true for the comparison of gather
and N:1 except that 1A and A1 must be exchanged. A
comparison of broadcast and gather reveals no significant
differences except that 1A and A1 behave vice versa to each
other. Both schedules feature a higher WCTT than 11 for
the investigated MPI primitives in all possible situations.
Furthermore, 11 and AA exhibit the same performance for
1:N and N:1 dominated communication structures. Thus, a
statement about the applicability of the different schedules
can be given for all observed MPI primitives.

For most situations the 11 schedule features the lowest
WCTT. It exhibits the lowest growth rate for an increasing
n and f , respectively. However, disadvantages arise for large
group sizes χ, hence it increases with the number of group
members, while schedule AA remains constant. Therefore,
the broadcast WCTT of 11 exceeds the one of AA for χ > 37
when sending four flits to each receiver in a NoC of size
n ∗ n = 8 ∗ 8 = 64 nodes. Thereby, the break even point
when the WCTT of AA becomes lower than the one of 11 is
dependent from the NoC size (n) and the message size (f).
Generally speaking the size of χ at this point becomes lower
with an decreasing number of n or f , respectively. Thus,
in summary AA performs best for a combination of a small
NoC size, message size and a large group size. In other cases
11 exhibits the lowest WCTT. The schedules 1A and A1 are
both competitive for either N:1 or 1:N communication, but
MPI primitives require mostly both communication struc-
tures which neutralizes their positive characteristics.

8. CONCLUSIONS
In this paper we calculated the WCTTs of MPI primitives

and compared different schedules of TDM. Separate address-
ing has been chosen for the MPI implementation and broad-
cast and gather as representatives for the communication
structure are investigated in detail. Thereby, 1:N and N:1
communication acted as basis for calculating the WCTTs.

The results show that in our case the WCTT depends on
group size, NoC size and message size. The comparison of
the schedules exhibit that for the MPI primitives the low-
est WCTT feature 11 and AA schedule, respectively. Even
though 1A and A1 schedules show low WCTTs for ether N:1
or 1:N, they are not competitive any more for primitives in-
cluding both communications.

9. REFERENCES
[1] M. Frieb, A. Stegmeier, J. Mische, and T. Ungerer.

Employing MPI Collectives for Timing Analysis on
Embedded Multi-Cores. In 16th International Workshop on
Worst-Case Execution Time Analysis (WCET), 2016.

[2] K. Goossens, A. Azevedo, K. Chandrasekar, et al. Virtual
execution platforms for mixed-time-criticality systems: The

CompSOC architecture and design flow. ACM SIGBED
Review, 10(3):23–34, 2013.

[3] K. Goossens and A. Hansson. The Aethereal Network on
Chip After Ten Years: Goals, Evolution, Lessons, and
Future. In 47th Design Automation Conference, 2010.

[4] T. Hoefler, T. Mehlan, et al. A survey of barrier algorithms
for coarse grained supercomputers. 2004.

[5] Intel Labs. SCC external architecture specification (EAS).
Technical report, Intel Corparation, 2010.

[6] A. Kanevsky, A. Skjellum, and A. Rounbehler. MPI/RT-an
emerging standard for high-performance real-time systems.
In 31th Hawaii International Conference on System
Sciences, pages 157–166. IEEE, 1998.

[7] P. K. McKinley, Y. jia Tsai, and D. F. Robinson. Collective
communication in wormhole-routed massively parallel
computers. Computer, 28(12):39–50, Dec 1995.

[8] J. Mische and T. Ungerer. Guaranteed Service Independent
of the Task Placement in NoCs with Torus Topology. In
22Nd International Conference on Real-Time Networks
and Systems, RTNS ’14, pages 151–160. ACM, 2014.

[9] MPI-forum. MPI: A Message-Passing Interface Standard
Version 3.0, 2012. available at http:
//www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[10] S. Oral and A. D. George. Multicast performance modeling
and evaluation for high-speed unidirectional torus networks.
Microprocessors and Microsystems, 28(9):477–489, 2004.

[11] W. Puffitsch, E. Noulard, and C. Pagetti. Mapping a
multi-rate synchronous language to a many-core processor.
In 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 293–302, 2013.

[12] D. F. Robinson, P. K. McKinley, and B. H. Cheng. Optimal
multicast communication in wormhole-routed torus
networks. IEEE Transactions on Parallel and Distributed
Systems, 6(10):1029–1042, 1995.

[13] D. F. Robinson, P. K. McKinley, and B. H. Cheng.
Path-based multicast communication in wormhole-routed
unidirectional torus networks. Journal of Parallel and
Distributed Computing, 45(2):104–121, 1997.

[14] J. Scheller. Real-time operating systems for many-core
platforms. Mém. de mast. Toulouse, France:
ISAE/ONERA, 2012.

[15] M. Schoeberl. A Time-Triggered Network-on-Chip. In 2007
International Conference on Field Programmable Logic and
Applications, pages 377–382, Aug 2007.

[16] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki. A
Statically Scheduled Time-Division-Multiplexed
Network-on-Chip for Real-Time Systems. In Proceedings of
the 2012 IEEE/ACM Sixth International Symposium on
Networks-on-Chip, NOCS ’12, pages 152–160, Washington,
DC, USA, 2012. IEEE Computer Society.

[17] A. Skjellum, A. Kanevsky, Y. S. Dandass, J. Watts,
S. Paavola, D. Cottel, G. Henley, L. S. Hebert, Z. Cui, and
A. Rounbehler. The Real-Time Message Passing Interface
Standard (MPI/RT-1.1). Concurrency and Computation:
Practice and Experience, 16(S1), 2004.

[18] R. B. Sørensen, W. Puffitsch, M. Schoeberl, and J. Sparsø.
Message passing on a time-predictable multicore processor.
In 18th International Symposium on Real-Time Distributed
Computing (ISORC), pages 51–59. IEEE, 2015.

[19] R. A. Stefan, A. Molnos, and K. Goossens. dAElite: A
TDM NoC Supporting QoS, Multicast, and Fast
Connection Set-Up. IEEE Transactions on Computers,
63(3):583–594, March 2014.

[20] R. Thakur and W. D. Gropp. Improving the performance
of collective operations in MPICH. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface,
pages 257–267. Springer, 2003.

[21] Y.-C. Tseng, D. K. Panda, and T.-H. Lai. A trip-based
multicasting model in wormhole-routed networks with
virtual channels. IEEE Transactions on Parallel and
Distributed Systems, 7(2):138–150, Feb 1996.

