
FTT-OpenFlow, on the way towards real-time SDN

Cédric Ternon
Computer Science

Department
Université Libre de Bruxelles

cternon@ulb.ac.be

Joël Goossens
Computer Science

Department
Université Libre de Bruxelles

jgoosens@ulb.ac.be

Jean-Michel Dricot
OPERA Department -

Wireless Communications
Group

Université Libre de Bruxelles
jdricot@ulb.ac.be

ABSTRACT
Software-defined networking proposes a new paradigm to
operate computer networks. Where routers and switches
execute predetermined distributed protocols, OpenFlow of-
fers to replace them with devices where the logic that de-
termines the flows of packets is freely programmable and
centralized. Applied to the field of real-time networks, this
freedom would allow design networks to overcome existing
standards and to make experimentation easier. However,
neither OpenFlow nor Ethernet were designed having real-
time constraints in mind. FTT-Ethernet is a master-slave
protocol allowing the meeting of real-time constraints using
commodity Ethernet hardware. This paper’s aim is to study:
(i) how FTT (Flexible Time Triggered) principles could be
applied to OpenFlow, allowing its usage in a hard real-time
context; (ii) which benefits OpenFlow can bring to the FTT
paradigm.

Keywords
FTT: Flexible Time Triggered; SDN: Software Defined Net-
working; real-time; OpenFlow

1. INTRODUCTION
Devices composing a computer network are designed to

implement predefined network protocols (like IP, MPLS)
and operate according to them. The behavior of a given net-
work is only configurable to the extent provided by the used
protocols. A new paradigm remove these protocol limita-
tions by means of network programmability. This paradigm
is SDN [6] standing for Software Defined Networking. A
contemporary implementation of the concept is OpenFlow
[6]. The standard defines network switches as machines ma-
nipulating packets with an instruction set and provides a
language to program them. The logic determining flows of
packets is no longer distributed among network devices but
centralized in a software controller. This paradigm shift al-
lows one to design computer networks in a more flexible
way. Using it allows one to implement existing protocols

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

RTN’2016 July 5th, 2016, Toulouse, France
c© 2016 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

and design new behaviors. According to the authors of the
standard, this will make research and experimentation in the
network field easier [11].

In the context of real-time task scheduling, designers are
free to conceive any scheduling policy e.g. RM, DM, EDF,
etc. [16] later implemented in the operating system’s sched-
uler by means of software. In the context of real-time net-
works, such a freedom does not exist. A multitude of norms
and technologies exist, forming a straightjacket that it is im-
possible to escape without creating a new protocol. Would
the argued flexibility of software defined networks permit
their use in a real-time network context? Does the expres-
sivity of OpenFlow free one to conceive arbitrary packets
scheduling policies and implement them through it? If so,
it would generate a new and unprecedented freedom in the
domain of real-time networks. A novel research field like
mixed criticality systems [3] could be considered beyond the
existing technologies. Moreover, as OpenFlow switches may
be dynamically configured, multi-operation mode [14] net-
works may be defined. Such behavior is interesting e.g. in
the field of avionics. Aircrafts go through different phases:
parking, taxiing, take-off, cruising and landing. It might be
desirable that the network adapts to those different phases.

FTT (Flexible Time Triggered) [2, 13, 8, 10] is a paradigm
developed for hard real-time communications which has been
ported to different network technologies. Its Ethernet ver-
sion enables the meeting of real-time constraints using com-
modity Ethernet hardware. This paper studies first how
FTT principles could be applied to OpenFlow, allowing its
usage in a hard real-time context. Our contribution is pre-
sented afterward: FTT-OpenFlow, a novel protocol based
on the FTT paradigm and taking advantage of OpenFlow
possibilities for sporadic flows handling.

The remainder of this paper is organized as follows: Sec-
tion 2 states the related work on FTT; Section 3 presents
the proposed protocol; Section 4 concludes the paper and
lists future works while Section 6 eventually produces the
references.

2. RELATED WORK
FTT is a paradigm developed for hard real-time commu-

nications. It has been developed with the goal to handle
time triggered traffic (periodic flows) as well as event trig-
gered traffic (sporadic flows). It is a centralized architecture
with a master in charge of the scheduling of transmissions
on the network. The choice of the scheduling policy is free
and this one must only be running in the master. The mas-
ter also runs an online admission mechanism to accept new

valya_000
Rectangle

Figure 1: FTT-SEwATS and FTT-OF sporadic message transmission timeline

flows only if they are schedulable by the policy in use. The
paradigm has been implemented on different network tech-
nologies like CAN [2] and Ethernet [13, 8, 10]. The different
versions developed for Ethernet are hereafter detailed.

2.1 FTT-Ethernet
With its non deterministic handling of medium contention,

Ethernet is not suited to handle real-time traffic [4]. How-
ever its widespread diffusion went along with high availabil-
ity and low prices. This led players of the real-time network
industry to use it partially, AFDX and TTEthernet being
such examples. More specifically, FTT-Ethernet [13] goes
further as it allows hard real-time communications using
non modified Ethernet hardware. This is realized by dele-
gating the scheduling of any transmission on the network to
a master node. The master may use any scheduling policy.
As the master schedules transmissions in non overlapping
timeframes, any non deterministic contention is completely
avoided. In practice, the time is divided in EC (Elementary
Cycles) of a fixed duration, all starting with a TM (Trig-
ger Message) sent by the master. Every EC includes two
windows: (i) one dedicated to periodic traffic (synchronous
window) and (ii) a second one dedicated to sporadic and
non real-time traffic (asynchronous window). Every TM in-
cludes transmission times of periodic messages scheduled in
the consecutive synchronous window. For sporadic and non
real-time traffic, the master polls the stations during the
asynchronous window.

2.2 FTT-SE: Switched Ethernet
As long as only one station is connected to each port,

the use of a switch rather than a hub allows an enhance-
ment of the FTT-Ethernet protocol. This enhancement is
called FTT-SE for Switched Ethernet [8]. In such a micro-
segmented setup, collisions are no longer possible. How-
ever the overflow of an output queue will lead to message
loss. Using the FTT paradigm completely avoids such over-
flows. If inversions of messages inside a given synchronous
window are acceptable, micro-segmentation offers a chance
to reduce the time constraints on the stations. In FTT-
Ethernet, transmissions of periodic messages have to occur
within precise temporal bounds. In FTT-SE, all stations
with a message scheduled by the TM are allowed to trans-
mit it at the start of the synchronous window. The switch
will then transparently serialize them with its queuing mech-

anism.

2.3 Asynchronous Traffic Signalling
The use of micro-segmentation in combination with full

duplex links leads to an improvement of the FTT-SE proto-
col hereafter referred to as FTT-SEwATS [10]. The improve-
ment lies in the fact that the download link of the master
is left free during its transmission of the TM and the fol-
lowing turn-around window. This window is the amount of
time required by the stations to be able to react to the TM.
The master download link is used during this free period as
a channel allowing sporadic traffic senders to request band-
width. They do this by sending the master their sporadic
traffic queuing status. This avoids periodically polling the
senders and reserving bandwidth based on their minimum
inter-transmission times. The timeline of transmission of a
unique sporadic message not competing with other ones is
given on Figure 1. Though not modifying the worst case,
this scheme allows better average latency of sporadic mes-
sages and better use of available bandwidth. The price is
a limitation on the amount of sporadic flows. Indeed, it is
necessary that the serialization of sporadic senders queuing
status by the switch doesn’t incur after the free period. The
maximum amount of sporadic flows is computable and de-
pends on:

• trigger message transmission time;
• turn-around time;
• queuing status transmission time.

If the computed amount falls under requirements, two ap-
proaches are proposed. First one is to reduce the rate at
which sporadic senders transmit their queuing status below
once per EC. This supports an arbitrary amount of spo-
radic flows with a negative impact on latency. The other
one is to extend the signaling period to the synchronous
window. This implies adapting the periodic message sched-
uler to count for this extra traffic on the master download
link. The advantage is an absence of impact on the slaves
application given that no master directed application level
messages are required. A noticeable drawback lies in the
fact that without such extension, some periodic message
sets would result in empty synchronous windows in some
EC. With such extension, a minimum length of synchronous
window is needed for queuing status transmission. This has

a negative impact on bandwidth usage and sporadic mes-
sages schedulability.

2.4 HaRTES
The protocols mentioned in Sections 2.1–2.3 use COTS

(Commercial off-the-shelf) components. While this was a
key aspect of their development, this absence of control on
the switch also has certain drawbacks. For example, (i) the
system is based on strict compliance of the nodes to the
protocol. Hence, a unique malfunctioning or non FTT node
is able to jeopardize the whole system. Also, (ii) by de-
sign, all the traffic of a given EC has to be be cleared off
inside it. Consequently, a single node having its receiving
path full in a given EC may force to delay some broadcast
or multicast traffic. (iii) The signaling scheme used in Sec-
tion 2.3 adds latency and presents some scalability issues.
To overcome those drawbacks, HaRTES: Hard Real-Time
Ethernet Switching, an implementation of FTT in a switch
using FPGA technology is proposed in [15].

3. FTT-OPENFLOW

3.1 FTT through OpenFlow layer
As Ethernet, OpenFlow was not built with real-time con-

straints in mind. There are no mentions to time except in
the “Time scheduled bundles Extension” [12]. However, this
extension only applies modifications on a set of OpenFlow
switches in a synchronized manner. Moreover, like on tra-
ditional switches, priorities are managed with the help of
output queues. The amount of queues available is usually
not sufficient to implement a fixed priorities policy (e.g. RM)
in a realistic manner, for example. The research conducted
on the FTT paradigm will therefore be an excellent start-
ing point to enable OpenFlow usage in a real-time context.
OpenFlow and FTT-Ethernet are two centralized systems
with the OpenFlow controller on one side and the FTT mas-
ter on the other. Intuitively, these two components may be
combined.

It is possible to implement traditional network compo-
nents in an OpenFlow switch. More specifically, an Open-
Flow controller may inject rules in an OpenFlow switch lead-
ing it to act as a traditional layer 2 switch [7]. Therefore, as
the FTT-SEwATS paradigm (detailed in Section 2.3) only
requires a layer 2 switch to function, it can be directly used
in such a setup. No modifications are needed and all the
properties of the protocol will remain unchanged.

The subject of the next section is to propose an improve-
ment of the FTT-SEwATS protocol taking advantage of
OpenFlow possibilities.

3.2 Sporadic traffic
The different versions of FTT-Ethernet handle periodic

traffic in an elegant way. The centralized architecture cer-
tainly produces an overhead. This one is however diminished
by a unique TM scheduling all the periodic traffic of a given
EC. FTT-SE reduced the time constraints on the periodic
traffic producers, allowing them to directly emit their mes-
sage once scheduled by a TM. Sporadic traffic handling is the
field where improvements can be brought. In FTT-Ethernet
and FTT-SE, the master periodically polls the sporadic pro-
ducers. The period is the minimum inter-transmission time:
Tmit. The deadline of a sporadic flow can therefore not be
smaller than its Tmit. The activation time: Tact is the de-

lay between sporadic message deployment in a slave queue
and its inclusion in the master scheduler. In the worst case,
Tact = Tmit − ε, this happens when the message arrives just
after the last poll. Moreover, bandwidth is statically re-
served and will be lost if no message is present when the sta-
tion is polled. FTT-SEwATS does better: bandwidth is now
dynamically allocated. At the beginning of each EC, dur-
ing TM transmission and the following turn-around period,
the stations transmit their sporadic queuing status to the
master. In the worst-case, Tact is reduced to 2 EC and does
not depend anymore on Tmit. The queuing status message
preparation by the stations can not be considered atomic.
Hence, at the end of each EC, there is a period ε, in which
the time left is too scarce to permit inclusion of a new spo-
radic message in the following queuing status transmission.
The worst case delay between message arrival and end of
transmission is therefore given by:

ε+ ECi + ECi+1 + TMi+2 + TA + SWi+2 + AM

as detailed on Figure 1. The message arrives during the
end of ECi−1, at the beginning of the ε period, just after
the last instant allowing it to be transmitted in the con-
secutive EC. ECi is thus lost before the queuing status can
be sent to the master in ECi+1. The message is eventu-
ally scheduled in ECi+2 after TMi+2 + TA + SWi+2 + AM.
The improvement brought by FTT-OpenFlow concerns the
sporadic traffic handling and is based on two key elements
hereafter detailed.

3.2.1 Arming mechanism
In FTT-SEwATS, when a sporadic sender has a message

to transmit, he sends the master his queue state. This is
the same as a transmission request. One will therefore ob-
serve a series of events like: request - transmission - request
- transmission... Another way to proceed is to use an arming
mechanism and allow the sender to transmit only when he is
armed. After transmission, the sender must thus be rearmed
before being allowed to transmit again. If the sender is ini-
tially armed, one will observe a series of events like: trans-
mission - rearming - transmission - rearming... The second
series also allows to constrain transmission, with the advan-
tage of being able to offer a better latency. Furthermore, in
bus based networks like shared Ethernet or CAN, the sta-
tions know when their messages have been transmitted with
success. This knowledge is lost in switched Ethernet as the
packet may be queued or dropped. Transmitting a rearming
message during transmission of a given message returns this
information to the sender, like on a bus based system. This
mechanism will be used for sporadic flows in the overcoming
proposition.

3.2.2 Packet-in, packet-out and buffering
In the OpenFlow specification [1], there is a possibility

to set rules ordering the switch to send some packets to
the controller by means of a packet-in message. It may be
specified if the entire packet is to be transmitted or only
an arbitrary number of starting bytes, usually covering the
header. In case of partial transmission, the switch places the
packet in a buffer and transmits the relevant buffer identifier
in the packet-in message. This is usually the case when no
rules specify the switch how to treat the packet, allowing the
controller to add one. In the same way, the controller may

Figure 2: FTT-OpenFlow architecture

ask the switch to send a packet with a packet-out message.
The controller may send the entire message to the switch or
refer to a buffer identifier from a previous packet-in message.
In the overcoming proposition, sporadic messages will be
buffered and their headers transmitted to the master. The
master will be in charge of their scheduling and order their
transmission by means of a packet-out message.

3.3 Protocol description
A diagram of the architecture is given on Figure 2. For the

sake of simplicity, in this first proposition of FTT-OpenFlow,
multi-cast possibilities are neglected and a bus behavior with
real-time traffic broadcasted to every station is assumed.
With this approach, a sporadic message is sent back to the
initial sender upon transmission on the network, playing the
role of the rearming message. The transmission of periodic
messages follows exactly the same rules as in FTT-SE. For
sporadic transmissions, an armed sender is allowed to di-
rectly transmit his entire message during the time slice com-
posed by TM + TA where TA is the turn-around time. Upon
reception, the switch identifies it as being part of a sporadic
flow. It’s set of rules instruct it to buffer the message and
transmit the header and relevant buffer identifier to the con-
troller. At that moment, the controller who also plays the
role of the FTT master is in charge of scheduling this par-
ticular message. Following the arbitrary scheduling policy
in use, when the effective transmission has to occur in the
asynchronous window, the controller sends the transmission
order to the switch. All the sporadic traffic is thus buffered
by the switch and sent over the network when the master
orders to do so. If the OpenFlow processing delay of a TM
message differs from the one of a sporadic message trans-
mission order, the timeliness of the forecasted schedule may
not be respected. In case of a difference between those two
delays, the induced shift shall be compensated. This can
be done by sending the order in advance to enable its trans-
mission and consecutive switch processing to end just before
the instant of scheduled message transmission.

3.3.1 Transmission order latency
The latency between start of transmission of a packet_out

message by the controller and beginning of the related spo-
radic message transmission by the switch is made of these
components:

• ∆ttrans transmission delay: amount of time spent trans-
mitting data on the link;

• ∆tprop propagation delay: delay of the signal in the

physical medium;
• ∆tqueue queuing delay: amount of time the packet will

wait in switch’s queue;
• ∆tproc processing delay: amount of time required for

the switch to process the packet.

The transmission delay depends on packet size s and data
rate r: ∆ttrans = s

r
.

The propagation delay depends on the medium used and
it’s length.

For the queuing delay, one of the key elements of FTT-
SE and FTT-OF to manage hard real-time constraints is
to avoid queuing or restrict it to precise boundaries in the
case of periodic message serialization. The messages going
trough the controller/master upload link are:

• TM: trigger messages;
• packet_out messages: orders to transmit buffered spo-

radic messages;
• answers of online admission control mechanism;
• OpenFlow controller-to-switch messages like configu-

ration modifications.

The TM and packet_out messages shall not suffer any
queuing in any case as it would jeopardize the precise sched-
ule enabling to meet hard real-time constraints. Online ad-
mission control and OpenFlow configuration messages shall
therefore be sent in periods where they would not compete
with previous ones. For OpenFlow configuration messages,
one such period starts just after the TM message transmis-
sion with a sufficient delay before the asynchronous window.
For online admission control, idle periods of the network can
be used. With such cautions, the queuing delay can be as-
sessed as zero.

The processing delay is considered in Section 3.4. This
delay will depend on the particular switch being used. If it
presents variations, a guarding window considering the worst
case shall be used at the end of the asynchronous window
to compensate. This will ensure that the consecutive TM
message transmission does not suffer any delay at the price
of a negative impact on bandwidth usage.

3.3.2 Transmission timeline
The timeline of transmission of a unique sporadic message

not competing with other ones is given on Figure 1 for FTT-
SEwATS and FTT-OF. In such case, the FTT-OF worst
case delay between message arrival and end of transmission
is given by:

ε+ ECi + TMi+1 + TA + SWi+1 + AM

an improvement in latency of one EC compared to FTT-
SEwATS [10].

3.3.3 Schedulability impact
In the proposed design, every sporadic message is first

buffered by the switch. Effective transmission occurs after-
wards following an order to do so emitted by the controller.
When several sporadic messages have to be transmitted con-
secutively, the controller has to emit the transmission or-
ders serially. If the minimum length sporadic message has
a smaller size than the transmission order, a series of min-
imal length sporadic messages can not be transmitted at
full speed if the controller uses the same connection speed

Figure 3: Two consecutive sporadic messages transmission

than the stations. The sporadic messages will be spaced by
a gap equalling the difference between transmission order
and minimum sporadic message length. Provided that the
switch is capable of processing multiple messages simulta-
neously, the impact can be incorporated into schedulability
analysis considering sporadic messages as having a minimum
size equalling the transmission order size.

It should be noted that the amount of sporadic senders
is limited to the same extent as in FTT-SEwATS. Research
on this field will be conducted in future work.

3.3.4 Predictability
Periodic message handling follows exactly the one devel-

oped in FTT-SE. Therefore, the same outcome applies: mes-
sage inversions are possible within one EC. This is the price
paid for reduced time constraints on periodic senders. With
a time scale resolution of one EC, the timeliness of the sched-
ule is however respected. Sporadic traffic does not suffer this
outcome. Their transmissions are ordered by the master and
the queuing mechanism of the switch is not used. The el-
ements that may jeopardize the timeliness of the schedule
are avoided by construction. Those are:

• Answers of online admission control mechanism by the
master;

• OpenFlow master/controller-to-switch messages like con-
figuration modifications;

• OpenFlow processing time variability.

The two first ones are emitted by the master and periods
avoiding contention are used. For the last one, a guarding
window at the end of the asynchronous window is used.

3.4 Example analysis
The variables cited in Section 3.3.1 are here after fixed on

an example. This is an opportunity to have some highlights
on the order of magnitude of the considered delays and on
some OpenFlow details. The example is constituted by an
OpenFlow switch with gigabit ports and a 72 meters long
(Airbus A380 length) connexion between the controller and
switch. This connexion is made of a twisted pair cable.

The transmission delay of an order of sporadic message
transmission depends on it’s size. This one can be inferred
from OpenFlow specification as follows. Messages are ex-
changed between controller and switch through an Open-
Flow channel. This channel is usually instantiated using
TLS or plain TCP. Focusing on time constraints, encryp-
tion will be avoided and plain TCP/IP over Ethernet chosen.

The packet_out message will therefore be encapsulated in
a TCP/IP frame itself encapsulated in an Ethernet frame.
The layer 1 Ethernet packet size from preamble to frame
check sequence is 26 bytes excluding payload. As the mini-
mum payload of 46 bytes will be satisfied, no padding is nec-
essary. Minimum IP and TCP headers without any options
are 20 bytes each, leading to a size of 66 bytes + packet_out

size. The variable size elements of this packet_out are:

• ofp_match: packet pipeline fields;
• ofp_action_header: action list to apply;
• packet data.

As the packet is referred to with a buffer_id rather than
being transmitted, packet data will be void. The action
list is composed of a unique OFPAT_GROUP action: process
packet through a given group. Group processing allows to
send the packet back to the initial sender for rearming, a
behavior that is not possible another way. This leads to an
action list size of 8 bytes. Packet pipeline fields are fields
like ingress port, required for OpenFlow processing but that
can not be inferred from the packet headers. As they can’t
be inferred, those fields must be transmitted along in the
case of a packet_in or packet_out event. In this case,
the OXM_OF_IN_PORT (ingress port) is mandatory. With only
one field, the packet pipeline fields need 8 bytes. The non
varying elements of packet_out count for 16 bytes, giving
a packet_out size of 40 bytes and a total frame size of 98
bytes. With a gigabit connexion, ∆ttrans = 784 ns.

The propagation delay depends on the medium used and
the connexion’s length. Using twisted pair copper wire and
a propagation speed of two thirds the speed of light (2

3
×3×

108 m s−1), with a 72 meters cable, ∆tprop = 360 ns.
The OpenFlow processing delay is analyzed in [5] for a

NEC PF5240 switch. The studied case is not exactly the
same as this is the particular case of packet_out processing
delay which is here considered. However, the study brings
interesting highlights on the matter. The study infers pro-
cessing delay from a packet’s round-trip time. For this par-
ticular switch, it concludes that the processing delay is in-
dependent of frame-size and amount of flow table entries
configured in the switch. For a 1526 bytes long packet, the
mean processing delay is 4338.8 ns with a standard deviation
of 160.43 ns of the round-trip time.

Using the processing delay from the above referred study
and the parameters of the considered example, the latency
between start of packet_out and start of transmission of
referred sporadic message is estimated being 5482.8 ns.

Concerning the minimum sporadic messages length to con-
sider in schedulability analysis. The messages being buffered,
the size of the orders is independent of the sporadic mes-
sage’s size. packet_out layer 1 frames with adequate group
action does have a size of 98 bytes. Ethernet implies a 12
bytes interpacket gap and the minimum Ethernet layer 1
frame size is 72 bytes long. A minimum layer 1 size of
98 bytes rather than 72 bytes shall therefore be considered
in schedulability analysis. Figure 3 gives the transmission
timeline of 2 consecutive smallest size sporadic messages
with the parameters of the example and a 4338.8 ns Open-
Flow processing time.

4. CONCLUSIONS AND FUTURE WORKS
FTT paradigm allows one to directly use non modified

OpenFlow in a hard real-time context. In the proposed pro-
tocol, worst case and average latencies of sporadic traffic are
improved compared to FTT-SEwATS [10]. Non real-time
traffic also benefits the improvement since it can be handled
as sporadic one with a minimum priority. Some drawbacks
addressed by HaRTES like non complying or non FTT nodes
can easily be handled with OpenFlow. Prototype experi-
mentation is the next step. OpenFlow possibilities lead the
way to new versions e.g. with relaxed timeframe for sporadic
emissions by the nodes or novel scheme for non real-time
traffic. Schedulability analysis developed for FTT-SE [9]
remains valid for periodic traffic as it is handled the same
way while sporadic traffic schedulability analysis is to be
conducted in further work. The proposal of new OpenFlow
extensions allowing sporadic traffic handling with reduced
controller intervention also constitutes a field for further re-
search.

5. ACKNOWLEDGEMENTS
Thanks go to Lúıs Almeida for his availability and the

discussions we had, and to Gary Farrelly for reviewing the
spelling of this paper.

6. REFERENCES
[1] Openflow switch specification, version 1.5.1. Open

Networking Foundation, 2015.

[2] L. Almeida, P. Pedreiras, and J. A. G. Fonseca. The
ftt-can protocol: Why and how. Industrial Electronics,
IEEE Transactions on, 49(6):1189–1201, 2002.

[3] S. Baruah and S. Vestal. Schedulability analysis of
sporadic tasks with multiple criticality specifications.
In Real-Time Systems, 2008. ECRTS’08. Euromicro
Conference on, pages 147–155. IEEE, 2008.

[4] J.-D. Decotignie. Ethernet-based real-time and
industrial communications. Proceedings of the IEEE,
93(6):1102–1117, 2005.

[5] F. Dürr and T. Kohler. Comparing the forwarding
latency of open-flow hardware and software switches.
Technical report, University of Stuttgart, Faculty of
Computer Science, Electrical Engineering, and
Information Technology, Institute of Parallel and
Distributed Systems, Germany, 2014.

[6] N. Feamster, J. Rexford, and E. Zegura. The road to
sdn: an intellectual history of programmable networks.
ACM SIGCOMM Computer Communication Review,
44(2):87–98, 2014.

[7] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A
network programming language. In ACM SIGPLAN
Notices, volume 46, pages 279–291. ACM, 2011.

[8] R. Marau, L. Almeida, and P. Pedreiras. Enhancing
real-time communication over cots ethernet switches.
In WFCS’06: IEEE International Workshop on
Factory Communication Systems, pages 295–302, 2006.

[9] R. Marau, L. Almeida, P. Pedreiras, K. Lakshmanan,
and R. Rajkumar. Utilization-based schedulability
analysis for switched ethernet aiming dynamic qos
management. In Emerging Technologies and Factory
Automation (ETFA), 2010 IEEE Conference on,
pages 1–10. IEEE, 2010.

[10] R. Marau, P. Pedreiras, and L. Almeida.
Asynchronous traffic signaling over master-slave
switched ethernet protocols. In 6th International
Workshop on Real Time Networks (RTN’07), 2007.

[11] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

[12] T. Mizrahi and Y. Moses. Software defined networks:
It’s about time. In IEEE INFOCOM, 2016.

[13] P. Pedreiras, L. Almeida, and P. Gai. The ftt-ethernet
protocol: Merging flexibility, timeliness and efficiency.
In Proc. 14th Euromicro Conf. Real-Time Systems,
pages 134–142. IEEE Press, 2002.

[14] J. Real and A. Crespo. Mode change protocols for
real-time systems: A survey and a new proposal.
Real-time systems, 26(2):161–197, 2004.

[15] R. Santos, R. Marau, A. Vieira, P. Pedreiras,
A. Oliveira, and L. Almeida. A synthesizable ethernet
switch with enhanced real-time features. In Industrial
Electronics, 2009. IECON’09. 35th Annual Conference
of IEEE, pages 2817–2824. IEEE, 2009.

[16] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin,
T. Baker, A. Burns, G. Buttazzo, M. Caccamo,
J. Lehoczky, and A. K. Mok. Real time scheduling
theory: A historical perspective. Real-time systems,
28(2-3):101–155, 2004.

