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ABSTRACT
Cyber-Physical Systems (CPS) play an important role in 
the modern high-tech industry. Designing such systems is 
an especially challenging task due to the multi-disciplinary 
nature of these systems, and the range of abstraction levels 
involved. To facilitate hands-on experience with such sys-
tems, we develop a cyber-physical platform that aids in both 
research and education on CPS. This paper describes this 
platform, which contains all typical CPS components. The 
platform is used in various research and education projects 
for bachelor, master, and PhD students. We discuss the 
platform and illustrate its use with a number of projects 
and the educational opportunities they provide.

Keywords
Cyber-Physical Systems; embedded systems; education

1. INTRODUCTION
Cyber-Physical Systems (CPS) are becoming increasingly 
ubiquitous in society. CPS can be found in day-to-day situ-
ations such as traffic-light networks, smart homes, advanced 
automotive systems and smart energy systems, but also in 
almost any high-tech domain, such as medical imaging, elec-
tron microscopy, professional printing, and chip fabrication. 
These systems tightly integrate computation and commu-
nication and physical processes, where embedded comput-
ers and networks control those physical processes. Conse-
quently, these systems pose several challenges due to their 
complexity and multidisciplinary requirements in all system 
development phases: design, analysis and implementation.

Designing a CPS is a challenging task, since exploring differ-
ent design alternatives requires designers to understand and 
identify many different abstraction layers and very different 
domains and how they relate and interact. For instance, 
close to the physical-layer, local continuous feedback con-
trollers are used to ensure correct functioning of actuators, 
while at a higher level, discrete supervisory controllers or-
chestrate the interactions among local controllers and glob-
ally control the entire system.

Even at the analysis stage of a design choice, predicting 
and evaluating performance and checking system require-
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ments becomes highly complex because of interactions be-
tween different disciplines and system layers. Consider high-
performance systems where control signals are required at
very high frequencies. Therefore, computation and commu-
nication delays can no longer be neglected and must be taken
into account to design the controllers.

Finally, looking at the implementation phase, new method-
ologies are needed that guarantee that the requirements are
actually satisfied at all different layers of the system. Re-
search in this area is focussed on automated synthesis tech-
niques that provide guarantees (e.g. safety) and efficiency
(e.g. maximal throughput) by construction.

All these challenges require not only research and innova-
tion, but also a change of view in the domain and field,
such that future engineers and researchers have a solid un-
derstanding as well as practical experience to address these
challenges. Academic research and education play a crucial
role by developing and disseminating methods and solutions
to address the various issues described above.

In this paper we present eXplore Cyber-Physical Systems
(xCPS), a platform of industrial complexity for research and
education on CPS. It embeds a wide range of typical CPS
components and is used as a vehicle for CPS education and
research. It allows for experimentation, research and devel-
opment of components relating to different disciplines, as
well as multi-disciplinary aspects of a complex system. Fur-
thermore, it gives students and researchers the chance to
obtain a global view for all the steps in the development,
from design [11] and analysis [24], to implementation [12] of
CPS.

The focus of this paper is to demonstrate how the xCPS
platform can help preparing students to face complex prob-
lems presents in today CPS industry. For this purpose, we
illustrate the xCPS platform with current education projects
being executed on it and show how these projects can im-
prove learning and consolidation of acquired skills. More-
over, we describe current active research lines within the
xCPS and provide examples that demonstrate their impor-
tance for CPS platforms.

Section 2 introduces the xCPS platform, Section 3 discusses
education and research opportunities in different subjects
using ongoing projects. Section 4 discusses the connections
between the projects and the opportunities for integration
and multidisciplinary approaches. Section 5 discusses re-
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Figure 1: Top and side view of the xCPS platform.

lated work and Section 6 makes concluding remarks.

2. THE XCPS PLATFORM
The xCPS platform (Figure 1) is a small scale machine mim-
icking a production line that can assemble and disassemble
objects. The cylindrical assembly pieces of xCPS (Figure 2)
come in two complementary shapes, and three colours (sil-
ver, black or red). The cylindrical shape simplifies the trans-
port and assembly process and different coloured pieces en-
able the creation of different jobs the platform is able to
execute.

For reasons of cost and effort students cannot easily get ac-
cess to perform experiments on actual industrial machines.
Assumptions made by students, in the absence of measure-
ments, cannot be validated and may be unrealistic for prac-
tical industrial platforms. Systems such as xCPS provide
students and researchers with a realistic platform for mea-
surements and analysis, enabling development of novel tech-
niques that are closer and more applicable to practice.

2.1 Platform Overview
The system layout (Figure 3) illustrates the main compo-
nents of the platform. The platform consists of one storage
area, six conveyor belts, two indexing tables, two gantry
arms, and several actuators and sensors. The storage area
is a grid where 25 components can be stored.

There are six actuators called ‘stoppers’ in strategic po-
sitions along the assembly process that can obstruct the
movement of pieces, effectively creating buffers accumulat-
ing pieces on the conveyor belts. Switches make it possible
to change the route of individual objects. A turner can flip
pieces. The platform also contains two actuators for assem-
bly and disassembly of pieces. The pick & place actuator can
clamp a part and combine it with a complementary part. A
separator can disassemble two combined pieces. The xCPS
platform is equipped with 15 sensors that can detect the
presence of an object in the surrounding area. These sen-
sors cannot distinguish the type of an object or its colour. To
detect the type, colour, and location of an object, a camera
can be added to the set-up.

There are many possible use cases of the xCPS platform.

Figure 2: Assembly pieces in the xCPS.
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Figure 4: Architectural overview

One can for example simulate an assembly process where
individual parts arrive on the first conveyor belt, are sub-
sequently assembled and then put back into the storage.
The gantry arms and storage area can be used as a sorting
station, where the storage is sorted according to selected cri-
teria, but it can also be used for games such as tic-tac-toe
and four-in-a-row. Each of these use cases carry different
objectives and learning goals.

2.2 Hardware Abstraction Layer
The mechanical hardware of the xCPS platform (i.e., belts,
arms, picker) is controlled by electrical motors, servos and
pneumatic actuators. These actuators are controlled by sig-
nals from several data acquisition and control input/output
cards inside a general-purpose computer platform.

The Hardware Abstraction Layer (HAL) is essential to use
the xCPS platform as an educational platform. This ab-
straction layer allows students to access and operate the
physical system without detailed knowledge of the underly-
ing realization. When desired, students can study the un-
derlying layers and get hands-on experience in programming
and controlling a real CPS.

The HAL for the xCPS platform is currently a C++-based
Application Programming Interface (API) that consists of
several functions that help the user program the system
without requiring idetailed knowledge of the hardware layer.
Figure 4 depicts the current architecture for xCPS. The
highest abstraction includes the framework of behavioral
models, schedulers and controller synthesis methods that are
discussed in the next sections. This layer relies fully on the
HAL to abstract from the underlying system details. For ed-
ucational and research purposes, the HAL is implemented in
two-levels. The low-level HAL consists of several functions
that act as device drivers for the actuators and sensors. It is,
for example, possible to control the gantry arms by sending
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Figure 3: xCPS system layout.

them commands to move to specific 3-dimensional (x, y, z)
locations. Such location commands are used by a high-level
controller to hide the complex series of required physical
signals beneath the HAL that operate the machine.

The high-level HAL for the HAL raises the abstraction so
that the user does not need to concern him- or herself re-
garding the geometry and safety of the system. For instance,
the user no longer needs to provide 3-dimensional locations
in physical space, but instead can use function calls to move
the gantry arms to logical locations for functional purposes,
e.g., pick a piece, or go to homing positions. Furthermore,
the API at this level also enforces certain minimal safety re-
quirements, such that any series of command calls made by
the user will not result in physical damage to the machine.
Such damage could occur when trying to move to unreach-
able locations, or from colliding with other resources.

These projects allow students to get real experience develop-
ing and architecting software. Doing so, they develop skills
related to both theoretical aspects and practical exercises.
Theoretical aspects include functional correctness and safety
with encapsulation, class organization, and API definition.
Practical exercises include activities such as implementing
the function calls of the API which need to comply with
concurrent activations of actuators. In particular, the phys-
ical state of the machine needs to be maintained to ensure
proper execution of a series of commands.

2.3 Virtualised platform
Especially during early development stages, it is often too
expensive or time consuming to develop a physical proto-
type of each component in a system. The API introduced
in Section 2.2 captures the higher-level behaviour of the me-
chanical hardware and can therefore be defined before a real
prototype has even been developed. Such APIs are used to
simulate the mechanical hardware (Simulator-in-the-Loop)
for early development stages, to facilitate rapid prototyping
and early design of control algorithms and software appli-
cations. On the other hand, Hardware-in-the-Loop simula-
tions enable testing of individual hardware components in
circumstances that are hard to reproduce in a real environ-

ment. Students can use simulations and visualizations when
the real xCPS platform itself is not available or when it is
not supporting certain functionality yet. Visualizations may
show the physical environment, or focus on specific aspects
of the activities, such as Gantt chart visualizations that fo-
cus on the ordering of activities in the system over time.

The xCPS machine has been modelled in the Blender 3D
rendering software; renders of the model are shown in Fig 5.
The actuators and mechanics that are essential for mov-
ing the pieces around are rendered. The physical interac-
tions of the pieces and the actuators are modelled with the
Blender physics simulation engine. The sensors are emulated
by checking collisions with invisible regions. The simulation
uses the same API as the real platform.

We have created a model in Parallel Object-Oriented Spec-
ification Language (POOSL) [26] that can simulate an en-
vironment (for instance non-deterministic or a predefined
sequence of events) to test the robustness of controllers or
software implementations for xCPS [14].

3. TEACHING AND RESEARCH OPPOR-
TUNITIES IN THE XCPS PLATFORM

Exposing students and researchers to a platform such as
xCPS gives them an opportunity to grasp the complexity
of CPS. The overall layering of the system, from software-
level to servo-level, creates an environment where multidis-
ciplinary and cross-layer works are explored. Moreover, the
different use cases for xCPS allow for a wide and diverse
range of areas of expertise to be explored. Figure 6 depicts
different development stages (Design, Analysis, Implemen-
tation), abstraction layers (System, Resources, Servo, Phys-
ical) and research areas that are investigated. In the next
sections we address a number of these areas and explain why
and how they can be used in education and research.

3.1 Example product flow
We consider an example product flow that uses a part of
the machine to illustrate the techniques and learning out-
comes. The product flow uses the following parts of the sys-



(a) Virtual xCPS overview render.

(b) Virtual xCPS detail render.

Figure 5: 3D visualization renders of the virtual xCPS in
Blender.

tem (see Figures 3 and 9): bottom and top pieces are loaded
by Gantry arm 1 onto conveyor belt 1. The piece is trans-
ported to the turner, which detects its position and places
the right side up, The pieces continue onto conveyor belt 2,
where switch 2 enforces whether they are loaded onto index-
ing table 2 or move further to conveyor belt 3. The pieces
move towards the pick & place unit, where one top and one
bottom are assembled into a single piece. The assembled
pieces will travel on the indexing table until switch 3 forces
it onto conveyor belt 4, where it finally gets unloaded after
reaching the end of conveyor belt 5. We consider that ei-
ther one top, or one bottom piece can be loaded at a time.
Where necessary, the assumptions and abstractions made
in the described product flow are refined to enable analysis
capabilities of a particular technique.

3.2 Supervisory Control
Supervisory control coordinates and orchestrates actuation
at the system level to achieve system goals (for instance
that objects get assembled / disassembled). High-level con-
trol actions at supervisory control level are translated to
fine-grained instructions sent to lower level controllers. The
supervisor has to ensure that the system is free of deadlocks
and eliminates any unsafe behaviour, such as gantry arms
colliding.

High-tech CPS, such as the xCPS platform, typically con-
sist of many sensors and actuators. Due to the number of
components and the high level of interaction among them,
proper modelling of the system and requirements is far from
trivial. Requirements have to be at the right abstraction
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Figure 6: Positioning of the research areas that are explored
using xCPS.

level, and the model should allow for local changes when the
system configuration evolves. Due to the large state space,
there are challenges in the synthesis step to automatically
derive a supervisory controller that ensures satisfaction of
the requirements.

In a bachelor level project [8] a student has modelled part
of the platform to develop a supervisory controller following
the synthesis-based model-based systems engineering pro-
cess [4, 28]. In this process the uncontrolled system and the
control requirements are modelled independently and in a
modular way, using small, loosely coupled models based on
the formal model of extended finite automata (EFAs) [23,
29]. The CIF 3 tool set [28] has been used to carry out the
modelling.

A high-level, abstract, model has been used that partitions
the conveyor belts into segments to simplify the control of
the product flow. This abstraction is valid because of the
stoppers that are present in xCPS, which enable a buffer-
ing mechanism. The student made the design decision that
segments are allowed to hold at most one object. This sim-
plifying restriction eases the reasoning about the needed re-
quirements and the behaviour of the system for the student.

Examples of EFA models for a stopper (Stopper1 ), a sensor
(Sensor Optical1 ), and an area (Area1 ) are shown in Fig-
ure 7. Circles represent states and edges represent events
that may change the state. Solid edges and dashed edges
represent controllable and uncontrollable events [20, 21] in
these automata, respectively. Controllable events are those
which may be enforced or prevented by the supervisory con-
troller; uncontrollable events cannot be prevented from oc-
curring by a supervisory controller.

Requirements are formulated that specify correct operation
of the actuators, and enforcing a correct product flow. The
complete set of requirements (and requirement models) is
presented in [8]. An example of such a requirement is that
the number of items never exceeds the finite capacity of
the areas on the conveyor belt and the indexing table. It
can be formally expressed as an EFA. Figure 8 shows an-
other example of a requirement model, expressed as an in-
variant propositional logic formula with propositions refer-
ring to properties of the machine state. The requirement
states that the camera may only scan a work piece (no-
tation → {Camera1 .on} denotes the possibility to execute



Stopper1

Not Stopped Stopped
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Generator1 .generate
do P := UNKNOWN

Sensor Optical1 .off
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Figure 7: Example CIF 3 uncontrolled system models [8].

→ {Camera1 .on} ⇒ Stopper1 .Stopped ↓
∧ Sensor Optical1 .On ↓
∧ Area1 .P = UNKNOWN

Figure 8: Example of a requirement model in CIF 3 [8].

event on in automaton Camera1 ) when there actually is
a non-moving (Stopper1 .Stopped ↓ denotes that automaton
Stopper1 is in a location with name Stopped) workpiece in
front of it (Sensor Optical1 .On ↓) that has not been scanned
before (Area1 .P = UNKNOWN , where Area1 .P refers to
the value of the variable P in automaton Area1 ).

Based on the models for the uncontrolled system and the
requirements, we tried to apply monolithic controller syn-
thesis techniques to automatically derive a supervisory con-
troller. Due to the large state-space however, this did not
succeed. The student is confronted with the issues of state-
space-explosion in state-based modelling of concurrent sys-
tems and is challenged to find solutions to overcome this
challenge. Modular supervisory controllers have been devel-
oped by hand in this project. Complete models are available
in [8]. In order to validate the correctness of these manu-
ally developed supervisory controllers, hybrid (combined dis-
crete and continuous) models are added to represent timing
aspects and physical position information of the products.
For this hybrid model, a visualization (Figure 9) was added

?

Figure 9: Visualization of the product flow in CIF 3.

to visually validate the controlled system, i.e., the system
together with the developed supervisory controllers. The
CIF 3 tool provides means to simulate and visualize such
hybrid models.

Current research in a PhD project uses xCPS as a case study
to develop modular synthesis techniques to overcome or re-
duce the algorithmic scalability challenges.

3.3 Combinatorial optimization
Supervisory control ensures maximum flexibility of actions
while ensuring safe operating boundaries. However, it does
not provide any scheduling mechanism that optimizes the se-
quence of actions to achieve certain performance goals. For
example, the goal of xCPS may be to assemble components
as fast as possible, or to play tic-tac-toe with the lowest num-
ber of moves. Developing algorithms that generate optimal
or close-to-optimal schedules can be challenging, due to the
computational complexity associated with such scheduling
or optimization problems. Even more so if the optimization
needs to be done online, in real-time.

As it is nearly impossible to optimize all aspects of a machine
for all use cases, system designers need to make design-time
decisions to optimize for certain typical use-cases and op-
erating conditions. Moreover, multiple different objectives
play a role and they are often conflicting, for instance pro-
ductivity, quality and cost. Most designs have some degree
of freedom in the high-level configuration of the system. De-
signers can in that case exploit the reconfigurability towards
use cases for different customers.

Besides design-time decisions and system-level configura-
tion, CPS often also require online decision making or schedul-
ing, for instance because the jobs that need to be performed
are not known a priori. The quality of such scheduling has
an impact on system productivity or processing time. Due
to the discrete and often non-linear nature of the system,
such scheduling problems are usually of very high compu-
tational complexity and solved to near-optimality by online
combinatorial optimization algorithms. The computational
complexity of the optimization problem is typically highly
correlated with the way models are constructed. If complex-
ity allows, it is often insightful to look at offline computed
optimal solutions for the resulting models, as this typically
gives deeper insight into the behaviour of underlying systems
and allows to improve online optimization.

3.3.1 Example combinatorial optimization model
We demonstrate the non-linear behaviour of the design pa-
rameters of the xCPS platform over its performance in the
example product flow described in Section 3.1. In this ex-
ample, we show that changing the speed of a belt influences
the performance of the system. We assume that the arms
take constant time to place a piece or take a piece from a
belt. If we now assume that the belts and indexing table
are always moving at constant velocity then we can model
how the pieces move along the belts or indexing table. The
pieces moving over the indexing table have a slightly longer
travelling time than those on the belts, as the indexing ta-
ble’s speed is lower. For simplicity, we assume also that the
indexing table is a disc that can instantaneously load items
at any point in time. The only constraint we impose, is
that two pieces need to be at the exact right moment at the
pick & place unit to be combined.



Figure 10: Snippet of the formulation of the system compo-
nents and constraints in the MiniZinc language

We are interested in finding the loading times of the bot-
tom and top pieces that minimize the makespan of merging
and unloading the pieces. To achieve this we have created
a MiniZinc [18] model (see Figure 10) to capture the be-
haviour with a constraint programming formulation. Solv-
ing this constraint program yields the optimal loading times.
From these loading times we deduce which loading pattern is
optimal, considering the travelling times of the pieces along
different paths. As an experiment, we have varied the trav-
elling time of one of the segments, i.e., varied the belt speed,
to see what impact it has on the total makespan. The results
are shown in Figure 11a, which shows on the horizontal axis
the assumed travelling time of the belt and on the vertical
axis the corresponding optimal makespan. We observe that
a decrease in the speed of the belt can lead to an increase in
the performance of the system (i.e. lower makespan), which
seems counter-intuitive since slowing down a system compo-
nent often increases the performance of the system.

Further investigation reveals how the behaviour can be ex-
plained. To show how, we have rendered activity traces for
some values of the parameters in the experiment. The two
activity traces for different belt speeds are shown in Fig-
ure 12 depicting the loading activities of the arm and the
time instants that the pieces arrive at a specific location.
As a bottom piece is loaded into the system, the loading
moment for the corresponding top piece becomes fixed to
some future time instant. When the time window permits,
we can load an extra bottom piece before we have to load a
top piece (see the bottom trace in Figure 12), and we can im-
prove the resulting performance by decreasing the idle time
of the gantry arm. However, when there is not enough time
between two subsequent loads, no block can be loaded, and
the time is wasted idling.

The MiniZinc model of xCPS reveals non-monotonic be-
haviour of system component speed versus performance. In
this particular case, it is important to tune the relative trav-
elling times such that xCPS is effectively utilized. By this
activity we have also explored the constraint programming
language and solvers, and gained better understanding of
the system. Given this model, a system architect can assess
the impact of design decisions.

The assumptions used in the MiniZinc model ensure that the
domain can be relatively easily mapped to the constraint
programming model. Taking into account effects such as
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(b) Robustness experiment: Observing the impact of decreasing
belt speeds on schedule robustness. Lower belt speeds and/or
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Figure 11: Example performance and robustness experi-
ments with combinatorial models.

stopping a belt with multiple pieces on it is harder to model
and would lead to a model with higher computational com-
plexity. The discrete slots of the real indexing table also
remain to be modelled, but the continuous approximation
will yield higher productivity, providing an upper bound on
the real performance of the system. Furthermore, the MiniZ-
inc model assumes perfect system components. However, in
reality the system operations have variations, the effects of
which are investigated in the following section.

3.3.2 Robust combinatorial optimization
The signals that control the various sensors and actuators
in the xCPS platform are produced by control tasks that
are mapped onto general purpose platforms. These plat-
forms suffer from low predictability resulting in variations
in task execution times. This uncertain timing behaviour is
also apparent in the xCPS platform: not only in the data
processing but also in the pick & place actuator that may
need a varying number of attempts to pick the pieces using
suction in vacuum. There is a need for robust combinatorial
optimization techniques that generate sequences in which
such variations are less likely to lead to significant drops in
performance or productivity.

We consider a slightly different variant of the product flow
used in Section 3.3.1 so that we can assess the relative ro-
bustness of these schedules. We earlier assumed that the
tray had constant loading time. In reality there is a varia-
tion in the time required to load a piece onto the tray result-
ing from multiple attempts, or slipping conveyor belts. We
model these variations by introducing distributions based
on measurements of the load execution times. To study the
impact of these variations, we assign deadlines to the merge
operations that are 5% higher than their completion times
observed in the experiment of Section 3.3.1 and observe the
likelihood that these deadlines will be missed due to varia-
tions. We analyse robustness of the schedules obtained for
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the range of belt speeds shown on the x-axis of Figure 11b
using the technique presented in [2]. Robustness of a sched-
ule is quantified in terms of the expected number of tasks
that meet their deadlines in the schedule. This corresponds
to the expected number of pick & place operations that do
not exceed beyond 5% of their completion times under vari-
ations. The higher the value is, the more robust the sched-
ule is. The robustness values are plotted in Figure 11b. The
blue graph with y-axis on the left shows again the makespan,
while the grey graph with y-axis on the right shows the corre-
sponding robustness. We observe that schedules with larger
makespans are often more robust owing to the presence of
gaps in the schedules to absorb the variations. Considering
such combinations of optimization criteria such as makespan
and robustness to make design decisions is an even harder
challenge requiring efficient trade-off analysis.

3.3.3 Application in industry and education
The two experiments of Sections 3.3 and 3.3.2 are performed
on a relatively simple part of the xCPS platform. Such ex-
periments in a real system can become quite complex to
interpret and therefore these experiments give a hint of the
complexity of the optimization problems in real CPS. Even
in these simple examples we reveal trade-offs that can be in-
fluenced by controller design, physical layout, and schedul-
ing decisions. It is essential for the performance of high-tech
systems that such a multi-disciplinary view is adopted at an
early stage in the design process.

The xCPS platform can be used to simulate real indus-
trial machines such as chip fabrication machines and large-
scale production printers. This kind of industrial machines
perform different actions taking different amounts of time:
changing lithography masks or adjusting the print head
height for thicker/thinner paper respectively. We can simu-
late such behaviour by constraining the execution of certain
physical tasks on the xCPS platform. For example, the red
item takes ten seconds to process, while the black and silver
components can be processed in five seconds. Some ma-
chines also take some time to re-adjust between processing
different (kinds of) items; e.g. a reconfiguration penalty of
five seconds may be imposed when processing a black item
directly after a silver item. The order in which these actions
have been scheduled can heavily influence the performance.
This behaviour is known as sequence-dependent setup and is
a crucial aspect in scheduling problems such as production
printing [31] and wafer scanners [1].

The xCPS platform is used to teach students different as-
pects of performance modelling and combinatorial optimiza-
tion. The students can learn which aspects of the optimiza-
tion problem are essential to achieve a high quality model.

For example, choosing which decision variables to take into
account in what way, which solution-space search strategy
works better and determining the selection of derived con-
straints to reduce the search space. These aspects are usu-
ally key in getting good solutions to the optimization prob-
lem in a limited time budget.

xCPS facilitates exploration of the strong and the weak
points of different modelling and optimization approaches.
For example, we can use Synchronous Data Flow (SDF) [13],
genetic algorithms [9] [6], (meta-)heuristics [6] and con-
straint solving based approaches [18] to find schedules for
the xCPS platform. Comparing these approaches on an in-
dustrial high-tech system is very challenging due to the com-
plexity and/or even impossible due to intellectual property
restrictions or cost. The xCPS platform shows key ingredi-
ents that are of interest for an industrial system or can be
easily extended to incorporate such components. Optimiz-
ing machines with e.g. setup times, buffering, pipelining,
and/or timing variation, in a reduced complexity setting
allows students to explore the combinatorial challenges of
modern high-tech systems.

3.4 Timing Analysis
Manufacturing systems have key-performance indicators
based on throughput and latency, e.g. the number of prod-
ucts produced per hour while satisfying certain deadlines in
the system. Latency metrics are defined as the time distance
between two specified events in the system, for instance be-
tween the start of processing and the output of a product.
These metrics must be considered in the design-space ex-
ploration, scheduling decisions, or for validation purposes.
Therefore, timing analysis of CPS is an important subject
to study or research, which can be facilitated with the xCPS
platform.

For xCPS, we look at performance analysis at the system
level and at the resource level. The particular challenge is
to capture the timing behaviour of tasks in the product flow
taking into account the tasks themselves, the resources they
use, as well as their mutual dependencies. For example, the
product flow relies on synchronizing events between differ-
ent actions of actuators or sensors. This can be modelled as
tasks with dependencies. Such systems also have resource
dependencies when resources are shared between multiple
tasks. Besides task and resources dependencies, these sys-
tems depend on the pipelined processing of multiple prod-
ucts to increase performance. This causes additional depen-
dencies between subsequent products, for example while one
product is being assembled, a second product can already
start to be processed.



3.4.1 Example of SADF modeling of xCPS
We are exploring the use of data flow models-of-computation,
such as Synchronous Data Flow graphs [13] or extensions of
this model such as Scenario-Aware Data Flow (SADF) [27],
since they can naturally capture (cyclic) task dependencies,
resource dependencies and pipelined behaviour. Task dura-
tions (execution times) and synchronizations are also natural
ingredients of data flow models. Moreover, data flow models
have good analyzability properties due to their deterministic
and time-monotone behaviour. For the analysis we employ
our research data flow analysis tool SDF 3 [24] to determine
throughput and latency.

In a data flow model an actor represents a task (usually a
small computation). Edges between actors represent task-
dependencies where data is transmitted through tokens, mod-
elled by black dots on edges. Each input and output port of
an actor has a set of rates that defines the number of tokens
consumed or produced by that actor. An actor fires when all
tokens are available at the input edges of the actor. When
an actor fires, it consumes a number of tokens matching the
rate of each input edge. When the firing is finished the ac-
tor produces a number of tokens matching the rates of each
output edge. This makes this abstraction suitable to model
concurrency in applications with cyclic, direct data depen-
dencies and pipelining dependencies. For the models in this
paper we assume all rates of the ports to be one, i.e., each
port consumes and produces a single token. We consider the
tokens to model one piece. This way we can view the token
flow in the data flow graph as a model of the flow of pieces
in the xCPS system. However, modelling resource sharing
is not trivial. For this reason, we use a more expressive data
flow model, SADF. SADF permits the use of different sce-
narios to express more dynamic aspects of applications, such
as different execution times, port rates, but particularly also
resource arbitration decisions.

As an example of what can be studied using SADF models
of the xCPS system, consider the example described in Sec-
tion 3.1, where we assume that the objective is to assemble
a piece, composed of a top and bottom piece, as fast as pos-
sible. For this purpose, the system has a decision point on
conveyor belt 2, where using a pusher a piece can either be
passed onto conveyor belt 3 (bottom) or to the index table
(top). We demonstrate how to model this example using
SADF and considering fixed execution times for tasks, max-
imum capacity of resources and a fixed sequence of of inputs
for the pieces (input a bottom always before a top).

We model these different flows for bottom and top pieces as
two different scenarios. In Figure 13a we capture the flow of
a bottom piece. The src actor models the input of a piece,
the c2a actor is the task of transporting the piece on the
conveyor belt 2 (up to the stopper) and the index actor is
the task of transporting the piece on the index table 2. In
Figure 13b the flow of the top piece is captured. The flow
is the same for actors src and c2a, but reaching the decision
point in this case, the piece keeps flowing through the rest of
conveyor belt 2 onto conveyor belt 3, instead of being passed
over to the index table 2. This is captured by actors c2b and
c3a, modeling the conveyor belt 2 after the stopper and the
portion of conveyor belt 3 up to the pick-and-place unit.
Finally, actor p-p models the action of the pick-and-place
unit, where the two pieces are assembled.

Since we require that both the src and the p-p are synchro-
nization points, we can only insert one piece at a time and
the assemble operation requires the two blocks to be ready.
We model such inter-scenario dependencies using persistent
labelled tokens, tokens that can be shared between differ-
ent scenarios in an SADF model. Therefore, we have two
distinct types of tokens in our model. Unlabelled tokens
model the piece flow, labelled tokens model synchronization
or resource dependencies. In an SADF model, if a token is
consumed by an actor in one scenario, this token becomes
unavailable in all scenarios of the model. Therefore, if we
add a persistent token on the self-cycle of actor src in both
scenarios, this forces that there is no concurrency between
src actors of different scenarios. The same holds for the
shared resource of conveyor belt 2, actor c2a is used in both
scenarios, modelled by persistent token b. The last case,
the synchronization of two pieces at the pick-and-place, is
in this case modelled by a persistent token c. This token is
produced after each execution of the actor index, symbol-
izing the piece reached the pick-and-place unit in Scenario
1, whilst in Scenario 2 this token symbolizes a requirement,
that in order for actor p-p to fire, it requires token c to have
been produced. This, however, forces that for the correct-
ness of the model, the scenario execution order needs to be
fixed. In this case, Scenario 1 needs to always precede an
execution of Scenario 2. In SADF this can be expressed in
the finite-state machine that defines the possible orderings of
Scenarios within the model, Figure 13c. We could relax this
assumption by using a different modelling approach, such as
the one in [5]. We model resource sharing and capacity in a
similar fashion. Persistent labelled tokens labelled c2a1,c2a2
are used to model the limited capacity of conveyor belt 2,
such that a maximum of two pieces can be simultaneously
on the belt.

3.4.2 Timing Analysis using SADF
With the SADF model we can analyze the maximal achiev-
able throughput for the fixed input bottom-top, using the
SDF 3 data flow analysis tool. For this particular exam-
ple model, we get a value of 1/60 pieces per time unit.
Moreover, the tool can perform a simulation of a selected
sequence of scenarios to obtain a Gantt chart that visual-
izes the behaviour and the resulting execution trace can be
studied to obtain parameters such as latency, throughput
and to discover potential bottlenecks. Figure 14 depicts the
Gantt chart of the system for a scenario sequence of 4 pieces
{a, b, a, b, a, b, a, b}. The execution of the actors in the same
scenario and also same iteration are shown with the same
colour. The latency of a complete assembly of a piece, is the
time difference between the start time of the first actor src
firing (i.e., entrance time of the first bottom object) and the
end time of the last actor p-p firing (i.e., output time of the
last assembled object). As shown in Figure 14, for example,
the latency of assembling the second object equals 116 time
units. The throughput of this system is equal to the average
firing rate of actor p-p in Scenario b, which is depicted in the
last row of the Gantt chart. Furthermore, it is also possible
to obtain the bottleneck of the system. In this example, it is
visible that actor index creates a bottleneck in the system,
i.e. by decreasing the execution time of actor c2a from 27
to 15 the throughput of the system increase from 1/60 to
1/45.

With this SADF model an optimal or safe order can be
derived using combinatorial optimization or controller syn-



thesis techniques as discussed in other sections. Data flow
analysis results can then be used to find and resolve bottle-
necks within xCPS. This project is being pursued by a PhD
student. Another PhD student considers the use of data
flow models in design-space exploration. A data flow model
is created that abstractly represents the whole system. It
can then be used to explore different platform configura-
tions (e.g., number of resources, types of resources) and find
the optimal platform(s) based on one or more optimization
objectives (timing performance indicators or resource cost).
For instance one may explore the cost/performance trade-
offs from using faster or slower conveyor belts or processing
units. From these trade-offs one could for instance deter-
mine the lowest number of processing units to meet a cer-
tain throughput requirement. In the xCPS platform, the
use case is the design of input/output of products using the
pneumatic arms (Gantry arms 1 and 2 in Figure 3). Cur-
rently, the objective is to model the input/output flow using
SADF [27] to estimate product flow performance and explore
different platform designs considering speed of the arms (us-
ing different profile settings) or the use of both or only one
arm.

The above analysis techniques use worst-case task execution
timings, assumed to be known beforehand. Predicting the
timing behaviour of the xCPS system heavily depends on the
accuracy of the timing models. Dealing with unpredictable
platforms with large, stochastic variations, raises the need
for timing models to also take timing variations into account
giving rise to the PhD study of robust timing analysis. In-
dustrial CPS often have timing information limited only to
measurements. We need efficient techniques to obtain these
measurements and combine them into reasonable estimates
of execution time distributions. Another challenge is that
most performance measures are derived from the comple-
tion times of operations. Obtaining these completion time
distributions needs complex stochastic analysis involving an-
alytically hard max operations on distributions [2]. We have
studied the statistical analysis [1] of this behaviour. With
that information robustness analysis can be employed to
compute metrics which quantify the robustness of the sys-
tem towards achieving desired performance. An example of
a stochastic metric is the expected value of the number of
pieces assembled by xCPS per hour, as illustrated in Sec-
tion 3.3.2.

3.5 Automatic Verification
In this section we turn to a different type of analysis, namely
the use of automatic verification techniques. We also move
to a different level of abstraction compared to the previous
sections. Previously we considered course-grained actions
such as transport on a belt as indivisible tasks with an as-
sumed fixed (possibly worst case) execution time. Under
more detailed inspection, the execution of such an action or
task is the result of the dynamics of the underlying sub-
system, i.e., the actuator executing the task, possibly in
feedback control, and affected by noise, errors and physi-
cal disturbances. Therefore, the higher level abstractions
are valid only if the system sufficiently accurately satisfies
the assumed properties. Checking this conformance can be
achieved with verification techniques.

Specifically, in this section we zoom into the details of one
of such actions. We explore the use of abstraction tech-
niques for infinite-state and hybrid automata to verify that
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the properties assumed by the higher level models are re-
spected by their physical realization. To this end we employ
automata-based abstraction and verification techniques to
verify the validity of these properties.

To study the behaviour under all possible control inputs, we
need a suitable model of the system. In control theory, it
is common to derive a state space model of the dynamical
systems, in which the states represent the relevant physical
quantities of the system by real valued numbers. This model
however is not directly amenable to automata-based verifi-
cation techniques such as model-checking. The continuous
variables give rise to a system with an (uncountably) infi-
nite number of states and verification requires all reachable
states to be enumerated in finite time. This hurdle can be
overcome by making finite-state abstractions of the infinite
state model [25].

We present a simplified example that leads to a model with



only a few states, so we can visualize it and illustrate the
concepts involved. We consider the task of moving a piece to
a desired place (for instance at a turner) by a conveyor belt.
We consider the position x of the piece on the conveyor belt
to be a model of the (continuous) state of the system. We
assume the belt has only one possible control input (actuator
action): turning on the conveyor belt for a fixed period of
time. This action makes the piece move, and hence changes
the state x to a new state x′. Due to small (bounded) phys-
ical variations there is some disturbance, variation, in x′.
The verification question is whether it is possible to con-
trol the belt to leave the piece sufficiently accurately at the
desired position.

The finite abstraction applied to achieve a finite state-space
for analysis consists in a partitioning of the continuous state-
space (piece positions on the belt) that is sufficiently precise
to allow us to distinguish being positioned at the desired
place from being positioned at a wrong place. The unpre-
dictable variations in the state due to disturbances leads to
non-deterministic changes of the system state in the state-
spaces. Our analysis goal is to prove that we can guarantee
the placement of pieces at the desired place, despite the dis-
turbances. To express this quality of the system we define
the following formal properties:

• Property 1: There exists a sequence of control inputs
such that the piece stops at the desired place some-
where during the sequence.

• Property 2: There exists a sequence of control inputs
such that the piece ends up at the desired place at the
end of the sequence.

Property 1 states that irrespective of the error introduced
by variation in the response to control input, the piece ends
up at the desired place somewhere during the sequence, at
the end of one of the individual inputs. If this property is
satisfied then we can make sure that for all pieces starting
from the initial state, the piece will end up at the desired
place and can be pushed/rotated. We would need a sen-
sor to know exactly at what step in the sequence the place
is reached. If no such sensor is available however, we re-
quire the stronger Property 2. Property 2 states that we
can guarantee that at the end of the sequence the piece is
in the right place, irrespective of the random variation that
it experienced. In that case the sensor is not required to
confirm when the piece is in the right location.

Figure 15 shows finite state models of the belt controlled by
three different controllers having different activation times
for the belt, after abstraction. To construct these models it
is assumed that the conveyor has an unknown speed error,
but within a known bound. Abstract states in which the
piece is positioned in the desired spot are shown in green.
The states in yellow represent positions on the belt before
the target and the red ones are states in which the piece may
have passed the target position, in which case the target can
no longer be reached. Figure 15a shows that there exists
a behaviour in which the piece never stops in the desired
positions (passes a green state). The activations are too
long and the piece may go at once from a position before
the target to a position after the target (according to the
abstracted model). In Figure 15b a smaller activation period

(a)

(b)

(c)

Figure 15: Finite state models of the belt for three different
controllers

is used. We can see that the piece will eventually stop in
a green state, either after three or after four activations,
i.e., Property 1 is satisfied. However, neither a sequence
of three activations nor a sequence of four activations are
guaranteed to bring the piece to the right place at the end
of the sequence, so Property 2 is not satisfied in this model.
Finally, Figure 15c shows the abstract state-space according
to a different activation period, which is suitable for a feed
forward controller without sensor; after two activations the
piece is guaranteed to be at the desired position (Property 2
is satisfied). As we have now verified the behaviour of this
controller we may choose to implement this controller and
we know the fixed execution time of the task.

In this small example we were able to visually check for the
desired properties of the system. However, in general, the
finite-state models can have many more states and there-
fore need model-checker tool support to check its properties
automatically. To this end, the model checkers require the
properties to be expressed formally in some logic. Since our
properties qualify in terms of sequences of states, we use
modal (temporal) logic [19] to express them. Modal logic can
express statements like whether eventually something good
must happen (liveness properties) or that something bad will
never happen (safety properties). For example, Property 1
is a liveness property.

Expressing desired properties in a formalism that allows for
tool-based automatic verification is not always straightfor-
ward. Translating physical properties into precise statement
in formal logic is an instructive challenge with educational
value. Moreover, different verification tools support differ-
ent classes of logical properties to be checked and different
types of properties have different complexity to be checked.
We have used the LTSA tool [15] to automatically check the
validity of our properties, because it supports our required
property types.

3.6 Image-based sensing control
Image-based controllers use sensor data that is extracted
from camera images by an image processing algorithm. As
the computational power of embedded devices increases,



Figure 16: The Matlab version of the image processing al-
gorithm working on a pre-recorded video stream, currently
tracking 11 pieces. The tracks shown are from the first 12
frames of the video. The circles of the colours correspond to
the object types. Purple denotes an empty object location
on the indexing table.

these controllers are becoming more common in CPS such as
robotics and Advanced Driver Assistance Systems (ADAS).
In ADAS, an image sensor is used to detect, track and clas-
sify objects. This information is used to either help the
driver control the vehicle or to autonomously control it [12].
In robotics, image based sensing is used to track a reference
(objects of interest) and guide a robot towards it [7].

Image based control involves multiple challenges. Firstly,
the image processing algorithm should have both a reliable
quality and a bounded execution time. Secondly, trade-offs
between quality of sensing, resource usage and quality of
control play an important role. Finally, the controller should
be able to cope with the latency induced by the image pro-
cessing algorithm providing performance guarantees. We are
studying and exploring these challenges in the xCPS plat-
form by trying to control the assembly/disassembly process
with a camera through multiple student projects.

3.6.1 Developing image processing algorithms
In a bachelor level project an image processing algorithm
was implemented in Matlab. Such algorithm obtains the
position of all the objects in one section of the product flow,
for example, the conveyor belts and the indexing tables [30]
(see Figure 16). The algorithm is summarized in Figure 17b.
The image is greyscaled and two Regions of Interest (ROI)
are extracted: one containing the conveyor belts and the
other the indexing tables. The histograms in both ROIs
are stretched to compensate for the differences in illumina-
tion. In the indexing table, a preprocessing procedure de-
tects the screws in the centre and extrapolates the position
of the pieces slots. The pieces on both parts of the image
are located using a Hough Transform for circles. The ex-
ecution time of the algorithm is one second. The quality
of the algorithm was evaluated using F1 score [22]. This
score measures the quality of an algorithm considering false
positives, false negatives, true positives, and true negatives,
in a range varying from zero (no detections) to one (perfect
detections). The average F1 score for the Matlab algorithm
is 0.9428. Despite of this high score, the algorithm leads
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Figure 17: Comparison of Image processing algorithms for
pieces detection. Yellow dashed blocks are only available in
the C implementation. Blue blocks are available in both
implementations.

to a slow assembly/disassembly process because of its rela-
tively long execution time. A successor internship project
ported the image processing algorithm to the programming
language C and extended its functionality. The compari-
son of both implementations is shown in Figure 17b. The C
implementation added an initialization procedure (see Fig-
ure 17a) which corrects for differences in zoom and rotation
of the camera, based on the detection of markers on the ma-
chine. A tracking list of the detected pieces is also added.
This functionality tags all the detected pieces, so that false
positives and false negatives are identified and corrected.
The execution time of such software is 10ms. The average
F1 score is 0.8835.

F1 scores for both implementations are compared on a pre-
recorded video in Figure 18. The Matlab implementation
outperforms the C implementation, because the libraries
containing the Hough transform are different in both En-
vironments. Therefore the C implementation shows more
false positives than the Matlab implementation. However,
it is important to highlight that the C implementation ex-
ecutes 100 times faster than the Matlab implementation. A
successor internship project considers implementing the cur-
rent image processing algorithm in an embedded platform.



3.6.2 Exploring image-based control trade-offs
Trade-offs between quality of sensing, resource usage and
quality of control are also being studied. A master thesis
project is analysing these trade-offs arising from alternative
image processing algorithms: one slower and more accurate
and one faster but less accurate. The goal of this project is
to improve the quality of control by developing an adaptive
controller that switches between the two algorithms (Fig-
ure 19), instead of using a single one.

An initial experiment was carried out to improve the qual-
ity of control of one of the conveyor belts in the product
flow example. The experiment considered a fixed control
strategy for both image processing algorithms and a limited
number of pieces. The decision diagram shown in Figure 20
was used to switch between the sensing algorithms. The di-
agram considers the use of the fast algorithm when the error
is larger than a threshold and the slow algorithm otherwise.
The threshold is found by running a set of simulations with
different thresholds values. The chosen value minimizes the
integral of the absolute error of the control loop. Figure 21
shows the performance of the controller following a step ref-
erence with three changes and multiple sensing algorithms.
The fast algorithm does not reach the reference due to the
sensing errors. The slow algorithm shows the largest over-
shoot in the graph because the sensing latency forces the
controller to actuate based on old information. The accu-
racy of the slow algorithm allows the controller to reach and
stay at the reference. Figure 21 also shows that the adap-
tive sensing strategy outperforms the use of a single sensing
algorithm: the overshoot is virtually equal to fast algorithm
and steady state response equal to the slow algorithm. This
improvement is explained because when the system is close
to the reference (inside the threshold), the controller can
drive the plant to the set-point within a few outputs; to do
this accurate sensing information is needed. On the other
hand, when the system is far from the reference (outside the
threshold), the controller needs a large number of controller
outputs to drive the system in to reference; for this accuracy
is less important. Extensions of this work include the design
of a decision diagram with more than one object and takes
into account the resources usage, the design of controllers
that compensate for the sensing latency of each algorithm
and the application of the analysis to other sections of the
machine.
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3.6.3 Coping with sensing latency
The development of control systems capable of dealing with
the sensing latency is being investigated in a PhD research
project. A classical hardware implementation of a control
system with image sensing (e.g. Figure 22a) produces a sam-
ple period larger than the sensing latency and therefore a low
control performance. An alternative to cope with this la-
tency is to pipeline the sensing algorithm (e.g. Figure 22b).
Pipelining the sensing algorithm allows for a reduction in
the sample period and an improvement of the control per-
formance.

In xCPS, a long sensing latency is present because a camera
and an image processing algorithm are used as sensor in the
control loop that regulates the speed of the assembly pieces.
A simulation comparing the performance of controllers with
a classical configuration and a two-core pipelined sensing
configuration is shown in Figure 23. The pipelined sensing
generates twice the sensing information samples (red round
markers) compared to the classical sensing (blue diamond
markers). The classical controller reaches the reference in
0.21 seconds whereas the pipelined controller reaches it 17%
faster.

A pipelined implementation leads to a trade-off between
hardware usage and quality of control, because it potentially
requires a large amount of resources in order to achieve a
significant reduction in the sample period. That is why, the
research is concerned not only with coping with the sensing
latency, but also of cross-layer co-design between hardware
resources and the quality of control strategies for image-
based sensing, a typical concern in CPS.

4. DISCUSSION
Different aspects of design and analysis have been high-
lighted in the previous sections. Examples of various ac-
tivities have been given and it has been shown how many
of these aspects are interdependent and interrelated. Espe-
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Figure 20: Decision diagram. P1 verifies the number of ob-
jects in the picture. P2 verifies if the error is within the
threshold. 1 and 2 correspond to the fast and slow image
processing algorithms respectively.
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cially in design of CPS, learning how to effectively master
these interrelationships to come to an overall optimal system
level design is of crucial value.

At the highest abstraction level, the supervisory control con-
structs the state space of all safe and deadlock free con-
figurations (built from abstract states and coarse grain ac-
tions). Combinatorial optimization techniques are used to
explore the state space of safe configurations to find the op-
timal behaviours and optimal (run-time) scheduling strate-
gies. Given a schedule, timing analysis techniques provide
the time-based performance metrics such as throughput or
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Figure 22: Hardware resources in image-based control. a)
Example of a classical implementation. The sensing (green
blocks), control computation (blue blocks) and actuating
tasks (yellow blocks) are executed in a single core. The sam-
ple period in this example is h = 4 time units. b) Example of
pipelined implementation with 2 sensing cores. The sample
period is reduced to h = 2 time units.
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and two-core pipelined implementations.

latency. At the lowest abstraction level, continuous feedback
controllers implement the abstract actions and verification
and synthesis techniques guarantee that the higher level ab-
stract models of the actions are sound, i.e., adhere to the
physical world behaviour.

xCPS as a platform facilitates research and learning on all
these aspects. Furthermore, the various activities on the
platform are often multidisciplinary in nature and encourage
collaboration between students with different backgrounds,
in Computer Science, Computer Engineering, Electrical En-
gineering and Mechanical Engineering, with the side-effect
of also developing non-technical skills challenged by such co-
operations.

5. RELATED WORK
Recently there has been a lot of interest in the develop-
ment of CPS platforms to be used both for research and
teaching. The xCPS platform presents more general con-
cerns than the automatic control platforms where the main
goal is to verify and experiment with the functionality of
traditional feedback control solutions. Axelsson et al. [3] in-
troduce MOPED, a mobile open platform for experimental
design of CPS. The platform consists of a model car chas-
sis, controlled by a set of three control units running the
automotive software standard AUTOSAR. It is designed to
be highly representative of real automotive systems in terms
of software, while simplifying other aspects. The platform
is extensible, to allow both students and researchers to add
new functionality and interfaces. A robot car platform is
developed by González-Nalda et al. [10], where a Raspberry
Pi board is used as processing unit and there is interaction
with the robot using WiFi.

In xCPS, image-based controllers are used as part of some
controllers. Mosterman et al. [17] introduce a manufactur-
ing facility that solves the Towers of Hanoi puzzle, where
image processing is also used in the control loop. Com-
pared to xCPS, there is also more focus on feedback and
feed-forward control for the actuators. The main aim of the
platform in [17] is to be used by students in project-based
learning whereas xCPS provides a flexible platform imitat-
ing industrial scale manufacturing systems.

CPS education is also provided in the form of a massive
open online course (MOOC) [11]. Here, the iRobot Roomba
autonomous vacuum cleaner is used as a platform for CPS
research. The platform is capable of driving, sensing the
surroundings, executing scripts and communicating with an



external controller. Similar to xCPS, a hardware abstrac-
tion layer is provided for programming. This layer allows
simulation of sensors and actuators within a simulator, and
linking executable models to the actual sensor and actuator
drivers. Although xCPS employs several similar techniques,
the approach focuses on imitating manufacturing systems,
which shows a wider range of challenges than focusing on
the implementation level. This puts more emphasis on ways
to cope with different models and different abstraction lev-
els.

Another line of research focuses on physical and virtual edu-
cation platforms for automatic control. The e-puck [16] is a
low-cost desktop size mobile robot designed for use in an ed-
ucational context. This physical device is used to teach sig-
nal processing, automatic control, distributed intelligence,
and path finding [16]. It focuses on automatic control ap-
proaches and teaching how to implement these. xCPS fo-
cuses more on the interaction between the disciplines; the
trade-offs between mechanical design, controller design of
the platform, and scheduling computational activities.

6. CONCLUSIONS
This paper presents the xCPS research and education plat-
form, that is designed to be representative of CPS with
industrial-size complexity. The platform contains various
types of sensors and actuators that allow many different
types of challenges to be investigated and CPS related com-
petencies to be explored and developed. From an educa-
tional and research point of view, students working with the
platform not only become familiar with the different types
of subsystems, their design trade-offs and models, meth-
ods, analysis and tools, but they also experience how the
parts interrelate and the importance of cross-layer design
considerations that are typical of cyber-physical systems.
More information about the xCPS platform is available at
www.xcps.info.
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