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ABSTRACT
The course in Compiler Construction is part of the Com-
puter Science masters program at Lule̊a University of Tech-
nology (LTU). Since the fall of 2014, the course is given
by the Embedded Systems group. This paper outlines the
course syllabus and its relation to CPS/IoT and embedded
systems in general. In particular, the course introduces do-
main specific language design with the outset from the im-
perative RTFM-core language. Students are exposed to de-
sign choices for the language, spanning from programming
model, compiler design issues, back-end tools, and even run-
time environments. The intention is to give a holistic per-
spective and motivate the use of compilation techniques to-
wards robust, efficient, and verifiable (embedded) software.
Of course, developing basic skills is not overlooked and as
part of the laboratory assignments, students extend the min-
imalistic Object Oriented language RTFM-cOOre and de-
velop the compiler accordingly targeting the RTFM-core
language as an intermediate representation. As the RTFM-
core/-cOOre compilers are implemented using OCaml/Men-
hir, the students are also exposed to functional languages
and to their advantages in the context of compiler construc-
tion. However, for their own development they may choose
alternative design tools and languages. This gives us the
opportunity to review and correlate achievements and effi-
ciency to the choice of tools and languages and it is an outset
for future course development.

1. INTRODUCTION
Robustness, real-time properties, and resource efficiency

are key requirements to- and properties of- embedded de-
vices of the CPS/IoT era. In this paper, we present the
newly designed course syllabus of the compiler construc-
tion course at LTU, based on the domain specific language
approach RTFM-core (alternatively referred to as -core in
the following). The language is geared towards facilitating
the software development for lightweight embedded devices,
such as embedded sensors, actuators, and controllers com-
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mon to CPS and IoT applications. The paper discusses a
new approach for teaching the important topic of compiler
construction in computer science studies and shows how the
concepts are presented using the example of a language spe-
cialized for embedded real-time development. The design
and compilation of the language is presented in context of
showing its capabilities for specification and verification of
real-time properties.
The -core compiler produces highly efficient implementa-

tions amenable for static verification of real-time properties
and resource utilization. The programming model of -core
is reactive, based on the familiar notions of concurrent tasks
and (single-unit) resources. The language is kept minimalis-
tic, capturing the static task, communication, and resource
structure of the system. Whereas C-source can be arbitrar-
ily embedded in the model (and/or externally referenced
and linked) the step to mainstream development is minimal
and smooth transition of legacy code is possible. A pro-
totype compiler implementation for the -core language has
been developed (implemented in the OCaml language [1], us-
ing the modern Menhir tool [2] for parser generation). The
compiler generates C-code output that compiled together
with the RTFM-kernel primitives [3] runs on bare metal.
The RTFM-kernel guarantees deadlock-lock free execution
and efficiently exploits the underlying interrupt hardware
for static priority scheduling and resource management un-
der the Stack Resource Policy [4]. This allows a plethora
of well-known and state of the art methods for static verifi-
cation (response time analysis, stack memory analysis, etc.)
to be readily applied.
Another target for the C-code output of the -core compiler

is the thread based run-time system RTFM-RT [5]. Different
from the RTFM-kernel, it executes -core programs on main-
stream and widespread thread based operating systems like
Windows, Linux, and Mac OS X.
A common construction of a compiler is shown in Figure 1.

Its front-end creates an internal representation of the input
text. The structure used for that is called abstract syntax
tree (AST). Subsequently, the back-end emits the output
text from this AST.

1.1 Goal
Our primary goal is to demonstrate the potential of compi-

lation techniques to address domain specific challenges. Set-
tings of CPS/IoT typically involve requirements on robust-
ness, reactive real-time performance, and power efficiency of
the target devices. To this end, the specific design choices
for the -core language, spanning from programming model,
compiler design issues, back-end tools, and even run-time
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Figure 1: Common Compiler Architecture.

environments are motivated and scrutinized. The -core com-
piler allows the students direct hands-on experience. Due to
its simplicity, the discussed problems and solutions can be
presented and demonstrated in terms of their concrete im-
plementations. The complete compiler including common
definitions (Common.ml), error handling (Error.ml), com-
mand line parsing (Cmd.ml), source code lexing and pars-
ing (Lexer.mll/Parser.mly), AST representation and
pretty printing (AST.ml), and Main.ml amount in total
only to a few hundred lines of code.

1.2 Method
We strongly believe that the succinctness of representation

due to the functional language (OCaml) for the compiler im-
plementation can be of great help to convey principles and
facilitate understanding. To this end, our compiler imple-
mentation relies only on the standard libraries of OCaml,
which are well designed, excessively proven by use, and very
well documented. With that said, we are aware of alter-
native and additional libraries (like Core/Batteries), which
may allow even more succinct, efficient, and elegant solu-
tions. However, simplicity was the key for our decision and
introducing additional libraries adds to the instep for un-
derstanding. One exception is the choice of Menhir. While
being (to a high degree) backwards compatible to ocamly-
acc, Menhir offers more flexibility and better error reporting
and is to be considered as the preferred choice for new devel-
opments (as stated, e.g., in the excellent Real World OCaml
textbook [6]).

As the RTFM-core compiler is developed using OCam-
l/Menhir, the students are exposed to the advantages of
functional languages in the context of compiler construction,
here used to implement an imperative language. For their
own development, they may chose alternative design tools
and languages (such as ANTLR/Java [7]). If doing so, they
themselves have to cover the ground of re-implementing the
necessary parts of the -cOOre compiler into their language
of choice. A seemingly daunting task, however, the -cOOre
implementation is even smaller than the -core compiler, so
it is indeed feasible for the determined student.

1.3 Content
Of course, key content of the course aims at developing

basic skills in the area of compiler construction and is not

overlooked. The main part of the laboratory assignments
is dedicated to manifesting theories and principles by hands
on experience into extending a compiler for the (minimalis-
tic) RTFM-cOOre Object Oriented language. W.r.t. code
generation, the students target the RTFM-core language as
an intermediate program representation. To this end, we
step aside of the tradition of focusing low-level, register al-
location methods, stack layout schemes, etc. This is a very
deliberate choice based on the strong belief that students
are more likely to deploy compilation techniques at much
higher level (rather than new back-ends to non-supported
target architectures or to compete with/improve on existing
compiler back-ends).
Nevertheless, back-end issues and compiler optimizations

are not left out of the course. On the contrary, they are im-
portant and discussed, but not in the traditional way. Pro-
grams in -core and the OO -cOOre (fronted) language are
purely static. This hugely facilitates analysis and methods
to program specialization (omitting costly pointer derefer-
encing during run-time) are introduced. Targeting light-
weight embedded systems RAM is likely a sparse resource
in comparison to FLASH/program memory storage. (E.g.,
the Cortex M3 LPC 1769 features 16/32 kb of RAM, and
512 kb of FLASH.) Hence, the duplication of code (due to
specialization) can be argued for and is favorable not only
w.r.t. speed (CPU cycles), but also register pressure (for
the intermediate addresses during dereferencing), for func-
tion calls (omitting parameters where target addresses are
known), etc. Also w.r.t. power consumption, the reduced
number of clock cycles allows the processor to return to low-
power operation earlier. In the case of off-chip memory ref-
erencing, memory operations per-se may also be a factor to
the overall power consumption.

1.4 Student Qualification
Students are expected to have good knowledge of imper-

ative and object-oriented programming, discrete mathemat-
ics (functions and relations, set theory, state automata), and
algorithms (searching and sorting, common data structures
like queues, stacks, lists, trees, and graphs), as well as basic
skills in real-time systems and micro-computer engineering
(specifically stack-based assembly programming and analy-
sis of automatically generated assembly code from C).

1.5 Syllabus Overview
In brief, lecture 1 gives an introduction to compilers in

general and the challenges specific to CPS/IoT settings, such
as resource constrained targets, support for reactivity/con-
currency, and resource management as well as analyzability
w.r.t. to resource usage, e.g., memory and power, as well as
real-time properties.
Lectures 2-10 cover basics of compiler construction, all the

way from parsing and static analysis (well-formedness etc.)
to code generation. Theory is followed closely by practice.
The students work on extending the RTFM-cOOre language
and compiler. The distinctive characteristic of both -cOOre
and -core is their static nature. Hence, models can be put
to static analysis and offer a highly predictable behavior,
required in many CPS/IoT settings.
Lectures 11-15 introduce our prior, current, and future

research directions related to the RTFM-lang development
at LTU. RTFM-lang is in this context the collection of lan-
guages, run-time systems, and tools for analysis, developed



to address problems targeting challenges of embedded, real-
time, and multi-core/multi-cpu software. In this way, the
challenges stated in the course are revisited and students see
how their own developments relate to the current state-of-
the-art research in the field of embedded real-time systems.
In contrast to standard courses in compiler technology, their
own developed compiler is not just a mere toy compiler for
a toy language, but rather a useful extension (and abstrac-
tion) to an already useful domain specific language. The
challenges and concepts discussed towards the end of the
course can all be related to their own developments, which
hopefully may inspire students to dig deeper into the field.

2. SYLLABUS, LECTURE BY LECTURE
Each subsection amounts to a lecture or a seminar of the

course. In this paper, we focus on the context and learning
outcomes, not the detailed content.

The course is given as weekly lectures and seminars (15*90
minutes), accompanied by 6 laboratory assignments. Exam-
ination and grading is done on the evaluation of laboratory
work and a final exam (given at the end of the course).

Required tools are to a large extent installed and con-
figured by the students (which also adds to their skill set).
Course material (background readings and references, slides,
examples, as well as installation and configuration instruc-
tions) is offered online and made publicly available [8]. This
allows students, engineers, and researchers worldwide to dig
in. The RTFM-core compiler is intended to be free to use
in non-commercial settings. In this way, the course mate-
rial serves multiple purposes, on the one hand for educa-
tional purposes and on the other hand for engineers and
researchers that like a deeper insight into the design choices
behind the -core and -cOOre languages and their supporting
tools (compilers and run-time systems).

2.1 Introduction

2.1.1 Background
The first lecture gives an introduction to compiler con-

struction at large, covering language design (static and dy-
namic semantics), lexing and grammar rules formulation, in-
termediate (internal representation) compilation steps (well-
formedness, etc), and code generation. The RTFM-core lan-
guage and its compiler rtfm-core are used as a running
example, relating each introduced concept to its concrete
-core counterpart.

2.1.2 The RTFM-core language
The driving challenges of embedded software are presented

and concepts of reactivity/concurrency, resource manage-
ment, and real-time/resource analysis are covered in the
context of -core and the RTFM-kernel. Key characteris-
tics of -core are its static task, communication, and resource
structure. This lends models/programs in -core exception-
ally well to compile time analysis, as well as to compilation
into efficient executables.

The complete tool chain, from -core source to bare metal
executables, is demonstrated. Furthermore, driving chal-
lenges to multi-core and multi-CPU targets are presented
and concepts of threads and parallelism are covered in the
context of the run-time system RTFM-RT. It executes -core
models by exploiting the available parallelism of the thread-

based hosting environments Mac OS X, Linux, and Win-
dows.
We choose RTFM-RT as the preferred run-time environ-

ment for the compiler construction course. However, stu-
dents may choose to evaluate their developments under the
bare metal target at will.

2.1.3 Assignment 1:RTFM-core
The students set up the tool-chain for RTFM-core. It con-

sists of the OCaml/Menhir installation, a development en-
vironment (Eclipse OcaIDE plugin), and the graphviz tool-
suite for visualizing task sets and resource utilization of -core
programs.
Optionally, the back-end tools for executing RTFM-core

on bare metal are installed. Internally we target the LPC1769
ARM-Cortex M3MCU under the Eclipse based LPCXpresso
environment.
First trials with the -core compiler are applied by the

students and they explore the compiler options for source
code analysis, as well as the debugging options provided by
the back-end RTFM-RT and (optionally) debugging facil-
ities provided by gdb under either RTFM-RT or the bare
metal RTFM-kernel.
In order to finish the assignment, the students solve a

set of control questions together with a given programming
problem in -core. A set of given examples determines the
control questions on syntax and semantics. The correctness
of operation of the programming problem is shown by ex-
ploiting the compilers debugging options.

2.2 -core Compiler 1

2.2.1 OCaml from scratch 1
In order to efficiently work on the -core compiler, a gentle

introduction to OCaml is given. For additional references,
we suggest the Real World OCaml book (available free as
web content [6]). It also includes a chapter on parsing using
Menhir.

2.2.2 Lexing and Parsing
This lecture gives a brief introduction to the definition of

a language (grammar), different parsing methods, and their
strengths. Regular expressions, Menhir, and LR(1) parsing
is more elaborately presented. We first look at some ”text-
book” examples and later go in further detail on the core
source files Lexer.ml, Parser.ml, and AST.ml and the
AST output from core [- d_ast]. In particular, nested
parsing for inline C-code, single and multi-line comments
require a gentle introduction.

Finally, we define a new statement halt to the RTFM-
core language and see what necessary adaptations it requires
to the compiler front-end.

2.3 -core Compiler 2

2.3.1 From front-end to back-end
Following the previous introduction to the compiler (front-

end), we now follow the newly added halt statement through
the succeeding compilation stages, making necessary addi-
tions all the way from compiler to code emission.

2.3.2 Assignment 2: Making a statement
Students define their own statement/built-in function, ar-

gue its use, and implement it in the compiler. For passing



the assignment, the compiler needs to emit corresponding
code. For a higher grade, the added functionality needs to
be supported in the graphical output. For the highest grade,
dynamic semantics needs to be implemented and shown in
DEBUG mode of the RTFM-RT or logged by the RTFM-
kernel.

2.4 -cOOre 1
RTFM-cOOre is a minimalistic OO front-end to the -core

language.

2.4.1 Syntax and Parsing of RTFM-cOOre
A grammar similar to MiniJava [9] (without inheritance

at this point) is given to the students. MiniJava is popular
in teaching compiler construction and has been the outset
for the course previously given at LTU, which allows the
re-use of some bread-and-butter material. Here we cover
precedences and fixities (and exemplify on the expressions
of RTFM-cOOre). We look at the dangling else problem
[10].

A suggested AST is presented (in OCaml) and a set of
example programs is introduced (good suit/bad suit that
should be accepted/rejected by the parser).

2.4.2 Assignment 3: Parsing of -cOOre
The students start implementing their parsers for -cOOre.

2.5 -cOOre 2

2.5.1 Static Semantics
Here, we discuss the importance of compile time (static)

analysis to verify correctness, resolving ambiguities (e.g.,
overloading of operators), and to guarantee soundness. Prob-
lems of unknown values and the general halting problem [11]
are discussed.

2.5.2 Well-formedness of -cOOre
We discuss the type system of -cOOre and introduce infer-

ence rules for (a partially incomplete) well-formedness check-
ing. Suggested data structures and OCaml for type checking
is discussed (i.e, data types, associative lists/maps for envi-
ronments). Simplicity is preferred to performance.

2.5.3 Assignment 4: Well-formedness
The students complete the well-formedness inference rules

and their parser should now reject/pass the corresponding
test suits.

2.6 -cOOre 3
Code generation is introduced.

2.6.1 Dynamic semantics of -cOOre
We present a mapping from the OO model to tasks and

resources of the -core language. The mapping supports com-
plete state encapsulation and state integrity, even in a con-
current setting. Through the implemented prototype com-
piler we demonstrate that -cOOre code can be (safely) exe-
cuted by the RTFM-RT run-time. The prototype compiler
is accessible to the students as a reference to which they can
compare their compiler’s behavior.

2.6.2 Code generation
We look in detail at the transformations required to go

from -cOOre to -core.

2.6.3 Assignment 5: Code generation
At this point, the students start to implement code gen-

eration for the input language and iteratively enlarge the
supported subset until the input language is covered.

2.7 -cOOre 4
We give a general introduction to object orientation [12]

and inheritance and discuss alternative approaches.

2.7.1 Syntactic extensions
Syntax for inheritance for RTFM-cOOre is given.

2.7.2 Well-formedness criteria
The criteria for well-formedness is partially given in the

form of inference rules. Checking it involves computing the
transitive hull for cycles. A general algorithm in OCaml is
presented and discussed.

2.7.3 Assignment 6: The -cOOre compiler
Completing the RTFM-cOOre compiler involves

1. completing all prior assignments (1-5),

2. implement parsing and type checking for the extended
RTFM-cOOre language,

3. optionally completing the well-formedness inference rules
to allow for inheritance and subtyping, and

4. optionally implement code generation including inher-
itance.

2.8 -cOOre 5
At this point, we discuss alternative approaches to imple-

ment inheritance and possibilities for optimization.
In particular, we discuss options for specialization of code,

reducing or even completely removing the overhead of pointer
dereferencing. A prototype implementation is presented and
put to use, showcasing the benefits of specialization on a set
of illustrative examples.

2.9 -cOOre + -core = TRUE
The RTFM-core language allows C-code to be embedded

in tasks and functions. In this way, -core is a complete lan-
guage (allowing to interact with- and operate on- the envi-
ronment, e.g., memory and registers of the underlying plat-
form or perform calls to the hosting environment).
In this lecture, we discuss the integration of native -core

constructs into -cOOre models by introducing interface dec-
larations. A prototype implementation is presented and the
implementation is described.

2.10 Module systems
The -core language allows the inclusion and linking of ex-

ternal C code. However, external code is not seen as part
of the -core model (as inclusion and linking is done outside
the core compiler). In this lecture, we show an extension
to a simplistic module system and its implication to scoping
rules of the compiler. Furthermore, we discuss how -cOOre
could be extended in a similar fashion.

2.11 Dynamic Object Instantiation
Programs/models in -core/-cOOre are purely static, with

the advantage of analyzability and efficiency. This fits well



in the context of embedded systems, like CPS and IoT appli-
cations, where nodes are typically light-weight, resource con-
strained, and operating under real-time requirements. How-
ever, general purpose applications may be more conveniently
expressed by allowing objects to be dynamically allocated.
We discuss the implications both to compiler design and the
supporting run-time environment. Specifically, we introduce
the concepts of reference counting, copying collectors, and
region based memory managers.

2.12 Memory Protection
The static semantics of -cOOre guarantees the property of

complete state encapsulation, while the dynamic semantics
enforces state integrity. Thus, in the ideal case of error free
run-time systems, error free compilation of all software, and
error free hardware, memory protection can be considered
unnecessary. The question is whether we can trust this? In
practice no, unless all involved software and hardware has
been formally defined and proven correct (which is not yet
the case). And even then, correctness of hardware opera-
tions is only provided to a degree of probability. Moreover,
whenever allowing arbitrary C-code to be included (section
2.9), the risk of violating memory consistency is evident.

2.13 Mixed Criticality Systems
Criticality of functions in a mixed criticality setting may

range from implying collateral damage, mission failure, or
even just imply degraded quality of the perceived service.
For many reasons, cost, power, space, or convenience, it may
prove advantageous to share resources (e.g., CPU platform)
between functions operating under different requirements.
Traditionally, this is approached by separation, sand-boxing
partitions into virtual execution environments. While rela-
tively straightforward, this requires hardware support and a
managing hypervisor. Thus, in the context of light-weight
systems this is in many cases not a feasible solution.

Alternatively with support for memory protection (Sec-
tion 2.12), we discuss the outsets from a language perspec-
tive. We review previous work on defining sections of criti-
cality directly in the RTFM-language [13]. Such models, ex-
ecuted on bare metal by the RTFM-kernel primitives, are ro-
bust against overload and memory allocation failures caused
by non-critical functions. Critical functions on their hand
are implemented statically (hence have no memory alloca-
tions, thus cannot fail). Access to hardware is exclusive
to the the critical parts. Thus, the degree of trust is only
limited by the correctness of the tool chain, the kernel im-
plementation, and the underlying hardware.

2.14 CompCert
RTFM-core relies heavily on correctness of the C code

compilation. This is currently also the case for RTFM-
cOOre, but the generated code is under full control of the
compiler allowing solutions where we generate assembly or
even machine code directly. Another approach is to turn
to general C compilers that provide at least some degree
of trust. To this end, the CompCert C compiler (ccomp,
[14]) has an outstanding position. The complex compila-
tion stages from preprocessing to the generation of abstract
assembly syntax is purely defined in Coq [15] and has been
verified through machine checked proofs. The compiler itself
is built from automatically extracted code (generated from
the Coq definitions) together with wrapping code (written in

OCaml) for file I/O, compiler options, and conversion from
abstract assembly to text.
In this lecture, we review our recent work on extending the

CompCert C compiler to generate RTFM-kernel executables
for the modern ARM Cortex family by porting the already
existing ARMv3 back-end to the ARMv6/7m thumb2 in-
struction set. Additionally, we discuss our added language
built-ins that gives the programmer full control of the mem-
ory consistency and show how they are used to guarantee
integrity of critical sections scheduled by the RTFM-kernel.

2.15 RTFM-4-FUN
In the last lecture, we showcase how the RTFM-kernel and

the -core language can be used as intermediate representa-
tions in the context of model based design using Function
Blocks. We review our recent work on mapping device level
models in the IEC 61499 standard [16] to the task and re-
source model of RTFM [17]. Our mapping allows proper-
ties of resource usage and real-time behavior to be verified at
compile time. The mapping is implemented by the RTFM-
4-FUN compiler, which translates IEC 61499 (XML format)
models to C code and RTFM-kernel primitives. Currently,
Service Interface Function Block (SIFB) semantics is unde-
fined in IEC 61499, hence verification of IEC 61499 models
builds on mere assumptions or external models of their be-
havior. We show how the RTFM-4-FUN compiler can be
altered in a straightforward way to produce -core/-cOOre
code. This allows arbitrary mixing of RTFM models with
function blocks and provides both semantics and a language
for implementation of SIFBs. In this way, we provide a sin-
gle semantic underpinning to the reasoning on IEC 61499
models at device level.

2.16 Course wrap-up
An additional lecture is given, wrapping up the course

and address questions. Together with the students, we share
and discuss our experiences and opinions interactively. Ad-
ditional course evaluation is performed according to the uni-
versity’s rules and regulations.

3. METHODS AND TOOLS
Students get access to a git archive from all sources (in-

cluding updates and bug-fixes). The process of setting up
and use an Eclipse environment (with git and OCaml sup-
port) is explained and help is available. We anticipate this
to greatly facilitate both our work (supervising the students)
and their own developments. Furthermore, it also gives the
students exposure and experience to modern teamwork en-
vironments and engineering processes.

3.1 The -core compiler
The RTFM-core language (grammar is depicted in Figure

2) is designed from the outset of simplicity, with a clear focus
on constructs for concurrency and real-time operations.
The CCode terminal denotes the presence of embedded C-

code in the language, occurring either at the top level or in-
side a ISR/Task/Func/Reset statement. Each ISR/Task
is associated with a static integer priority, while Func’s
merely facilitate modularization. The claim is recursively
defined (allowing nesting of resource claims).
The students are exposed to the -core compiler implemen-

tation in OCaml. They are given the complete source for the



syntax Top ::= #> CCode <#
| ISR Id Int{Stmt}
| Task Id Int{Stmt}
| Func Id( CCode){Stmt}
| Reset {Stmt}
| Top Top

syntax Stmt ::= #> CCode <#
| claim Id{Stmt}
| pend Id ;
| sync Id( CCode) ;
| Stmt Stmt

Figure 2: Grammar for RTFM-core.

working compiler and we scrutinize its design and implemen-
tation.

Listing 1 depicts the Menhir (yacc like) grammar, which
is succinct and easily understandable (while being close to
the EBNF given) and listing 2 its corresponding AST. This
gives us an outset to discuss the principles for parsing and
trade-offs (strength vs. complexity) and demonstrate it in
context of the Menhir LR(1) tool.

prog:
| top* EOF {Some (Prog ($1))}

top:
| CCODE {TopC ($1)}
| ISR ID INTVAL LC stmt* RC {Isr (HARD, $2, $3, $5)}
| TASK ID INTVAL LC stmt* RC {Isr (SOFT, $2, $3, $5)}
| FUNC ID ID PARAMS LC stmt* RC {Func ($2, $3, $4, $6)}
| RESET LC stmt* RC {Reset ($3)}

stmt:
| CCODE {ClaimC ($1)}
| CLAIM ID LC stmt* RC {Claim ($2, $4)}
| PEND ID SC {Pend ($2)}
| SYNC ID PARAMS SC {Sync ($2, $3)}

Listing 1: OCaml Menhir parser Parser.mly.

type stmt =
| Claim of string * stmt list
| Pend of string
| Sync of string * string
| ClaimC of string

type isr_type = HARD | SOFT

type top =
| TopC of string
| Isr of isr_type * string * int * stmt list
| Func of string * string * string * stmt list
| Reset of stmt list

type prog =
| Prog of top list

Listing 2: OCaml AST.ml.

The lexing part is more challenging. Listing 3 depicts an
excerpt of the Lexer.mll. Besides introducing regular ex-
pressions and ordinary lexing rules, we cover nested parsing
(for the multi-line comments and C inlining), as well as error
reporting.

{
(* tokens and dependencies *)
type token =

| PEND
... etc

| ID of string
... etc

| CCODE of string
| PARAMS of string
| SC

... etc

open Parser
open Lexing
... etc
exception SyntaxError of string
}

(* regular expressions (regexps) *)
let white = [’ ’ ’\t’]+
... etc
let enter_c = "#>"
let exit_c = "<#"
let params = ( [^ ’*’ ’)’] [^ ’)’]* )?

(* lexing rules *)
rule lex = parse

| "pend" {PEND}
... etc

| enter_c {set_info lexbuf;
c (Buffer.create 100) lexbuf}

| white {lex lexbuf}
| newline {next_line lexbuf; lex lexbuf}
| "//" {set_info lexbuf;

comment lexbuf}
| "(*" {set_info lexbuf;

comments 0 lexbuf}
| ’(’(params as p) ’)’ {PARAMS (p)}
| eof {EOF}
| _ {raise Parser.Error}

and comment = parse
| newline {next_line lexbuf; lex lexbuf}
| eof {EOF} (* // at last line is OK*)
| _ {comment lexbuf;}

and comments level = parse
| "*)" {if level = 0 then lex lexbuf

else comments (level-1) lexbuf}
| "(*" {comments (level+1) lexbuf}
| newline {next_line lexbuf;

comments level lexbuf}
| _ {comments level lexbuf}
| eof {bol lexbuf;

raise (SyntaxError("(*..."))}

and c buf = parse
| exit_c {CCODE (Buffer.contents buf)}
| newline {next_line lexbuf;

Buffer.add_string buf
(Lexing.lexeme lexbuf);

c buf lexbuf}
| enter_c {raise (SyntaxError("#> nested"))}
| _ {Buffer.add_string buf

(Lexing.lexeme lexbuf);
c buf lexbuf}

| eof {bol lexbuf;
raise (SyntaxError("#>..."))}

Listing 3: OCaml lexer Lexer.mll.

Common problems to lexing and parsing are brought up
and the design choices for the -core compiler are discussed.
E.g., by choice of simplicity, params and C code are stored
and processed literally, hence is not understood by the com-
piler. This is fine, since potential errors are spotted and
reported by the back-end C compiler. In this context, -core
can be seen as an advanced pre-processor for the C language.
Similarly, we cover the processing of the AST into target

C code and the well-formedness checks done at this stage
(validating -core specific constructs). Compiler command
line processing and other commodity parts of the compiler
are left to the students to investigate and understand on
their own hand.

3.1.1 -core programs and run-time
The students have access to the source code of a set of



example -core programs, as well as run-time systems ex-
ecuting -core models on bare metal, POSIX environments
(OSX/Linux), and Win32 platforms. Exposure is ensured
both through demonstrations (at lectures throughout the
course) and through their own lab developments.

3.2 The -cOOre compiler
The basic -cOOre language (Figure 3) and corresponding

compiler source is given to the students. The grammar is
defined such that a 1-1 mapping to Menhir grammar and
AST is possible. Likely a more elegant grammar could be
presented, but it may somewhat complicate the mapping to
concrete rules for parsing, so we opted for simplicity in this
case.

Each program defines a Root class with a Reset con-
struct. Root and its inner objects are instantiated at com-
pile time, while Reset is invoked by the run-time on startup.
The static structure allows a simple mapping to -core (Task,
ISR, and Reset constructs).

An object instance o amounts to a -core resource ro and
a method m amounts to a Func construct that executes
statements s within a -core claim r_o { s }. In this
way, state integrity is ensured by enforcing mutual exclusion
between methods executing on a common object. Method
invocations and pending of tasks amount to corresponding
-core sync/pend statements.

The simple design allows for compile time instantiation of
the complete model with zero overhead for class arguments,
as well as complete specialization of methods.

syntax Prog ::= ClassDefs

syntax ClassDef ::= class Id < ClassArgs > {ClassDecls}

syntax ClassArg ::= PType Id
| PType Id(MSigs)

syntax PType ::= int
| bool
| char
| byte
| void

syntax MArg ::= PType Id

syntax ClassDecl ::= PType Id := Expr ;
| Id < Params > Id ;
| PType Id(MArgs){Stmts}
| Task Id Int{Stmts}
| ISR Id Int{Stmts}
| Reset {Stmts}

syntax Expr ::= Pend Id
| Pend Id . Id
| Id
| Id(Params)
| Id . Id
| Id . Id(Params)
| Int
| Bool
| Char
| RT_rand (Expr)

syntax Stmt ::= Expr ;
| PType Id := Expr ;
| Id := Expr ;
| return Expr ;
| RT_sleep (Expr) ;
| RT_printf (String,Params) ;
| RT_printf (String) ;

syntax ClassDecls ::= List{ClassDecl,“”}

. . .ClassArgs, ClassArgs, Params, MArgs, MSigs, Stmts

Figure 3: Grammar for RTFM-cOOre.

3.3 Assignments
Assignments were carried out in groups (typically 2 stu-

dents in each group). Given the -core and -cOOre language
definitions and corresponding implementations, the students
first make themselves comfortable with the -core and -cOOre
languages.

3.3.1 Assignment 1: core/-cOOre first experiences
As a first entry point, the tools are available online and ex-

ecuting through a web interface. This allows students (and
people around the globe) to access and play with the lan-
guages without installing any code/tools locally. Actually,
executing -core/-cOOre models is a bit trickier to offer as an
online service, since (at least in the -core language) user’s
may enter arbitrary C code in the models and thus execut-
ing these remotely imply security issues. To this end, pre-
compiled tools (compilers and run-time systems) are offered
for local installation under OSX/Linux and Win32 environ-
ments.
As part of the warmup, students install the compilers from

source and see that they get expected output (in comparison
to the pre-compiled and online compilers).

3.3.2 Assignment 2: Extending -core
The second assignment is to extend the -core language

with an additional halt statement (following the lecture).
This involves the lexer, parser, AST, and code generation.
Students then suggest and implement their own -core state-
ment.

3.3.3 Assignment 3: Extending -cOOre
The third assignment is related to more complex parsing

problems. An extended grammar (not depicted in this pa-
per) is given to the students and they need to deal with
Menhir to solve occurring ambiguities. The grammar intro-
duces operations to the primitive data types and introduce
(single dimensional) arrays.

3.3.4 Assignment 4: Well-formedness of -cOOre
The students implement an additional pass for well-formedness

check for -cOOre models, encoding scopes/environments (e.g.,
through associative lists in OCaml). More advanced fea-
tures, such as tracking errors back to source, can be imple-
mented by the students towards earning a higher grade.

3.3.5 Assignment 5: Code generation
The students implement code generation for the extended

-cOOre language. More advanced features, such as ensuring
safe array indexing, can be implemented towards earning a
higher grade.

3.3.6 Assignment 6: OO addition to -cOOre
The first 5 assignments follow closely the lecture struc-

ture and students should now be able to work more inde-
pendently on extending the language with single inheritance
OO features. The requisite for pass is a working front-end
and well-formedness check. Code generation with complete
specialization can be done towards earning a higher grade.

3.3.7 Bonus Assignment
Once the requirements for passing the course are fulfilled,

students may revisit prior labs and earn extra points for final
evaluation. Alternative concepts that are discussed from
lecture 8 and on can be worked on, in particular, module
system and dynamic object instantiation seems within reach
to ambitious students.



4. CONCLUSIONS AND FUTURE WORK
In this paper, we present the new syllabus for the com-

piler construction course of the Computer Science masters
program at the Lule̊a University of Technology. The course
aims to focus domain specific language design and compila-
tion techniques for resource constrained devices common to
CPS and IoT applications in the embedded systems domain.
Concepts of lexing, parsing, well-formedness, and code gen-
eration are covered, but put in a broader concept, taking the
programming model and even the underlying run-time sys-
tem into consideration. In this way, we expect that students
gain good fundamental skills as well as valuable insights in
the potential of compilation techniques to solve domain spe-
cific problems.

Until now, the new course was given just one time dur-
ing the fall of 2014. Among the 16 enrolled students there
was a large diversity of backgrounds. Some of them had no
background in real-time systems at all. We also encountered
students without prior knowledge about functional program-
ming.

The course showed a very good throughput. All but one
group completed the mandatory assignments. The students
took the chance to individualize their course assignments in
various directions. Two groups used Haskell and one group
used SCALA for their implementation of the -cOOre com-
piler, thus they had to implement the whole compiler from
scratch. Another group opted for developing editor support
instead of working on the language design.

The main reason for avoiding OCaml for the compiler im-
plementation was prior knowledge in Haskell and SCALA of
the students due to previous courses at the university. Im-
plementing the whole compiler from scratch was considered
easier than learning the differences in both languages, even
though both follow the functional paradigm.

Prior exposure to functional programming as a prerequi-
site would be beneficial for the compiler construction course.
A more thorough introduction to functional programming
with OCaml based on the excellent introductory slides by
Stephen A. Edwards [18] could then be another option for
improvement.

In contrast to our suggestion to use the Eclipse plugin,
almost all students worked with the extendable highlighting
text editor Sublime. Due to the simplicity of the source
languages -core/-cOOre and their compilers, a full-fledged
development environment was considered too distractive by
the students. A simple text editor with text highlighting
and command line tools have been enough to focus on the
topics.

Next time given, we plan to discuss a proposal for -cOOre
allowing objects to be dynamically instantiated. A proto-
type implementation of a simplistic (non-optimizing) refer-
ence counting collector will be given, as well as the cor-
responding syntactic additions and new inference rules for
well-formedness will be highlighted.

Recent work at LTU investigated how resources in the
-core language can be protected by exploiting underlying
hardware. As a result, memory protection support has been
integrated in -core and its compiler, which will be presented
in upcoming course cycles to improve the topics of Sec-
tion 2.12.
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