
A Model Based Design Approach To System Building
Using The e-Yantra Educational Robot

Kavi Arya
CSE Dept., IIT Bombay

Powai, Mumbai 400076 India
+91-22-25767909

kavi@cse.iitb.ac.in

Blossom Coelho
IIT Bombay

Powai, Mumbai 400076 India
+91-22-225708681

coelho.blossom@gmail.com

Shraddha Pandya
IIT Bombay

Powai, Mumbai 400076 India
+91-22-22804926

shraddha41@gmail.com

ABSTRACT
The e-Yantra robot is the basis for a highly scalable embedded
systems teaching program setting up 500 embedded systems labs
in Indian engineering colleges. A key strategy to encourage rapid
prototyping of applications has been to encourage reuse of code
using a commodity robot with a standard API along with excellent
documentation and training material. An important challenge has
been to teach the reasoning process from a design through to an
implementation deployed on an actual machine. Model based
design is key to articulating such reasoning. A further challenge is
to do this in an affordable manner where most available model-
based IDEs are expensive proprietary systems using languages
such as Esterel and SCADE. We illustrate with a “Valet Parking”
application how our robotic eco-system facilitates the learning of
important model-based design principles taking a high-level
specification of a problem down to working code and even
deriving test cases in the process. A novel feature of our approach
is that we carry out design-time scheduling of various
(concurrent) activities by analyzing dependencies between
modules and obtain purely sequential C-code implemented on a
microcontroller without the need for an RTOS. This case study is
an exemplar of a model-based design approach for a large class of
such robotic projects.

Categories and Subject Descriptors
C. [Computer System Organisation] C.3 [Special Purpose &
Application Based System] Realtime & Embedded System. D.2
[Software Engineering]: D.2.1 Requirements /specification;
D.2.2 Design Tools & Techniques, D.4.7 Organisation & Design;
K.3 [Computers & Education]: K.3.1 Computer Uses in
Education;

General Terms
Design, Reliability, Experimentation, Standardization, Languages,
Verification.

Keywords
Project Based Learning, Educational Robot, Model Based Design,
UML, State Machines. Design Time Scheduling. Model Based
Testing.

1. INTRODUCTION
Whereas many students wish to study Embedded Systems and
Robotics, in India they are stymied by the lack of a suitable
robotic eco-system. Imported robots are either too expensive or
unsupported. What started as a project to develop a simple

educational robot to teach embedded systems has evolved into a
program developing a robotic eco-system.

In section 2 we describe the e-Yantra project that is building the
eco-system around this robot. E-Yantra is tasked to set up 500
labs in 3 years. In this, it’s first year we will have set up 120 labs.
With this eco-system in place we are in a position to train a large
number of students in building interesting final-year projects that
would have not been possible till now. This is because we
encourage the reuse of code from earlier projects in order to focus
on “higher level” goals. The key goal is to be able to rapidly
prototype complex applications out of simpler components. Model
based design provides an adequate framework to carry this out.
UML is a mature model based design framework. An important
higher-level goal is to use the platform to teach such “Model
Based Design,” which is the theme of current paper. In Section 3,
we briefly describe the robot that constitutes the platform for our
robotic eco-system development in the e-yantra project.

We illustrate here the possibilities created by this project by
presenting the final year project of a pair of students registered for
a Computer Science program [6]. We suggest that this project
would not have been possible had it not been for the infrastructure
and assistance provided by e-Yantra. The project serves as an
exemplar for more such work teaching students “Model Based
Design” and component based design skills using a “Project
Based Learning (PBL)” approach.
We illustrate this through the model-based design of a Valet
Parking System using the e-Yantra robot. We give the
requirements specification of the problem in section 4. In section
5 we present the high-level and detailed design of the system.
Section 6 presents system integration and coding. In section 7 we
illustrate the model based testing of the Valet Parking System. We
conclude with our observations in section 8.

2. e-YANTRA PROJECT
e-Yantra is a project entitled “Robot Enabled Teaching in
Engineering Colleges” [1, 2] with the mission of spreading
“Project Based Learning (PBL) as a national mission throughout
engineering education in India. It is the brainchild of Prof. Kavi
Arya (PI, e-Yantra) and Prof. Krithi Ramamritham at IIT-Bombay
arising of an attempt to teach Embedded Systems (PG & UG)
through the Distance Education Program of IIT-Bombay since
2003.
We found that whereas theoretical subjects are easier to teach
through a MOOCS-like framework, Project Based Learning is
more difficult, requiring both adequately equipped labs and
trained teachers– both of which are in acutely short supply in the
country. It was believed that if we were to package a lab “in a
box” and make recorded lectures available along with other Authors retain copyright.

valya_000
Text Box
Reprinted with permission from WESE’14, © ACM, Inc.
http://dx.doi.org/10.1145/2829957.2829963

material that even a practical subject such as Embedded Systems
can be taught. Following its initial successful pilot phase starting
in 2011, E-Yantra has evolved into a program targeted at setting
up 500 labs throughout the country in 3 years. It has refined the
process of setting up a lab and training 4 teachers per college in
Project Based Learning in four months through a highly scalable
model [1].

3. THE FIREBIRD ROBOT
The Firebird V is e-Yantra's educational and research robot
developed by the Embedded and Real-time Systems (ERTS)
laboratory of IIT Bombay. The robot provides the functionality
and hardware for us to conveniently develop our Valet Parking
application. We contend in this paper that the clean API
developed with this robot facilitated its use as a platform to
implement controllers designed using “Model Based Design.” In
3.1 we illustrate the (extensible) feature set of our robot along
with the software eco-system around it.

Figure 1. Fire Bird V Robot

Figure 2. Block Diagram of Fire Bird V Robot [3]

3.1 Technical Specification of Fire Bird V
The microcontroller is an Atmel ATMEGA2560 as a Master with
Atmel ATMEGA8 as a Slave microcontroller. Sensors: Three
white line sensors (extendable to 7); 5 Sharp GP2Y0A02YK IR
range sensor; 8 analog IR proximity sensors; 2 position encoders
(extendable to 4); battery voltage sensing; Indicators: 2 x 16
Characters LCD; Indicator LEDs; Buzzer. Control by:

Autonomous Control; with PC as “Master” and robot as “Slave”
in wired or wireless mode; Distributed (multi robot)
communication. Communication: USB Communication: Wired
RS232 (serial) communication. Dimensions: Diameter: 16cm;
Height: 10cm: Weight: 1300gms. Power: 9.6V, 2100mAh Nickel
Metal Hydride (NiMH) battery pack and external Auxiliary power
using battery charger; Locomotion: Two DC geared motors in
differential drive configuration and caster wheel at front as
support; Top Speed: 24 cm / second; Wheel Diameter: 51mm;
Position encoder: 30 pulses per revolution.
Software Support: AVR Studio; GUI based control; Microsoft
Robotic Developer Studio (MRDS); MATLAB/SCILAB;
Programming language – C. Win AVR; GCC; AVR Bootloader.
Most work is typically done with Open Source tools. An
evaluation version of the UML development environment Visual
Paradigm was used in the current project.

The Firebird-5 manuals [3,4] and tutorials [5] provide a good
introduction to the robot. The features of the robot have also been
provided as an API that forms the basis for our work.

4. REQUIREMENT SPECIFICATION
Our “valet parking” project attempts to develop a system in which
the robotic vehicle follows a white line (road) adjusting its speed
and braking based on the vehicle in front. It detects obstacles,
navigates around them and parks itself when sufficient space is
found within a designated parking area. The target was to produce
a small experimental prototype of an Autonomous Valet Parking
Application using the Firebird V Robot. A key requirement was
that the robot should avoid collisions and park only in the parking
lot area. It should park close to and parallel to the car/wall on the
left. The following picture illustrates the arena used for testing the
valet parking application.

Figure 3. Valet Parking Arena

4.1 Project Development Method
This project followed the UML based design method for
Embedded System Design [7,8,9]. An informal requirement
specification was formulated. The first step was identification of
use cases for the valet parking application. The main valet
parking use case includes a number of other subsidiary use cases
such as Adaptive Cruise Control (ACC), obstacle navigation etc.
Due to lack of space, we do not give the use cases here; they may
be found in the full project report [6].

These use cases were converted into a design model, which

comprises of several UML state machines [11,12]. In the
implementation stage, the design model was systematically
converted into sequential C-code. The principles behind this
transformation constitute an important element of learning
embedded systems programming. The key artifact in this method
was the state machine based design model. Model based testing
of the application ensuring 100% transition coverage of the model
was also carried out.

Each state machine embodies a subsystem for which interface
signal and conditions by which it interacts with other
subsystems/environment are also designed [8,9]. The collection of
state machines constitutes a high level model of the application
controller. In addition, the design includes a platform dependent
sensor and actuator module, which interfaces the high level
controller with the physical sensors/actuators. A substantial
portion of this sensor/actuator subsystem can be standardized in to
a platform specific API for the firebird, which can be reused
across projects.

The UML state machines are hierarchical and concurrent, and
they interact by broadcast of triggering events [11,12]. These
powerful mechanisms allow component models to be adapted and
integrated in a compositional manner to give the overall
application. The design can be carried out in an incremental
fashion by adding functionality in a spiral model of development
and testing. It is our belief that UML state machines allow
construction of embedded software from reusable components,

UML state machines provide a high level design model of the
controller. Constructing such a design model has several
important functions.

• The high level model embodies the “logic” of the
multimodal discrete controller. Even a simple
application such as valet parking exhibits complexities
of interaction between multiple features of the
application and model helps in visualizing these.

• The state machine based model is executable and it can
be used to simulate the design and gain confidence.

• Model based test case generation can be undertaken.
Criteria such as state coverage and transition coverage
can be used to evaluate efficacy of the test suite.

• Code can be generated from the model in a systematic
fashion to ensure that the implementation conforms to
the model.

We now describe the main steps in the design of the valet parking
controller program. The first step was the top-level design of the
state machine for valet parking controller (see Figure 5. Valet
Parking State Machine). The system was decomposed into four
modules namely (1) Find Parking, (2) Obstacle Navigation, (3)
Do Parking, and (4) Exit. The transitions that switch control
between these modules were designed. The Find Parking module
was further decomposed into a concurrent composition of four
sub-modules, namely (1) Gate detect, (2) Parking Detect, (3)
Adaptive Cruise Control, and (4) White ine Follower (see Figure
6). Interfaces (signals and conditions) were designed by which
these modules communicate with each other. In the detailed
design phase, the state machines of these individual modules were
elaborated. Finally, each state machine was converted into C code.
In system integration phase, the C code for each module was
combined into a single program having required functionality.

The spiral model of software development was used in the project.
In the first iteration, the white line follower module was designed

and implemented. In the next iteration adaptive cruise control
functionality was added. In the third iteration, do-parking function
was developed. Moreover, parking-detection module was also
developed and both these modules were integrated to give an
application, which finds and carries out parking. In the next
iteration, obstacle navigation module was developed. This was a
major effort. Finally, in the last iteration, gate detection and exit
modules were developed and integrated with the application. In
each iteration, testing was undertaken to ensure 100% transition
coverage of the state machine model relevant to that iteration.

4.2 Software Tools Used
UML Modelling- Visual Paradigm: C-programming IDE - AVR
Studio, WinAVR with GCC C compiler, AVR Boot Loader.
Firebird robot is based upon ATMEL Atmega 128 microcontroller
which belongs to AVR series. There are lots of IDEs available for
the AVR microcontrollers. In our project we focused on the studio
from the ATMEL. It uses WIN AVR open source C compiler at
the back end. After writing and compiling the program it gives a
“.hex” file which we load on the robot using an In-System
Programmer (ISP). The controller model was built

5. HIGH LEVEL DESIGN
We illustrate in 5.1 elements of our API that abstracts the sensors
and actuators of our robot and introduce the partitioned controller.
In 5.2 we detail the Valet Parking Controller based on the feature-
set available. IN 5.3 we detail the “Find Parking” module used by
the overall controller.

5.1 Sensors, Actuators and Controller
The valet parking system works in a time triggered manner
executing repeated sense, compute, react loop at fixed time
intervals. In each iteration of the loop, the sensor values are read
and these are interpreted as logical sensor conditions. For
example, the three white line sensors are read, and based on their
value; the sensor subsystem indicates which of the following
logical conditions are true or false.

• WL_MIDDLE – All 3 sensors are white and hence
robot is in middle of the road

• WL_LEFT – Left sensor is black (off road) and
remaining two sensors are white, indicating robot is
slightly left of road.

• WL_OUT – all three sensors are black and robot is off
the road.

It is the job of sensor subsystem to acquire the current sensor
readings and to convert these into such logical input conditions. In
response to these conditions, the robot may make a decision to
perform some logical output function on the actuators. The
decision making is carried out in the digital controller.

The output logical functions are converted into appropriate
commands to the microcontroller that actually drive the actuators.
The actuator subsystem carries out this function. The partitioning
of the system into sensor subsystem, logical controller, and
actuator subsystem is shown in Figure 4.

Figure 4. Valet Parking System partitions

The sensor subsystem can be quite sophisticated. Some of the
issues to be handled in sensor sub-system are

• Device driver code for handling interfaces between
physical sensors and the microcontroller

• Analog-to-digital conversion
• Sensor calibration
• Noise handling:
• Sensor value conditioning:

o techniques such as sensor value averaging to
handle noise

o Techniques such as inertial delay and
hysteresis to ensure that logical condition do
not flicker.

In this project, sensor averaging for white line sensors as well as
proximity and far IR sensors was used. Inertial delay was used to
detect in a robust manner whether a corner with left turn is
approached during obstacle navigation [6].
One challenging aspect encountered in the project was the sensor
calibration. Experience showed that sensor values are very
significantly impacted by the ambient environmental conditions.
Hence, our design included a self-calibration feature where the
application initially calibrates itself to current environment
conditions before operation.

5.2 High Level Design of Valet Parking
Controller: UML State Machines

Figure 5. Valet Parking State Machine

This State Machine

 diagram [11,12] for Valet Parking gives the high-level control
flow of the overall Valet Parking function. The valet parking
controller can be in one of four modes. Each mode has its own
distinct behavior. Each mode is designated by a module (state)
representing a sub-state machine having required functionality.

• Find Parking module carries out all activities required
for movement of robot along a path, obstacle detection
as well as parking detection.

• Obstacle Navigation module carries out all activities
needed to maneuver around an obstacle. Transition from
Find Parking to Obstacle Navigation mode is caused by
the Find Parking module by emitting
BLOCKED_FOR_LONG signal. Similarly, transition
from Obstacle Navigation to Find Parking mode is
caused by the Obstacle Navigation module by emitting
BACK_ON_ROAD signal.

• The Do Parking module provides the actual parking
functionality. Control switches to this mode once the
Find Parking module has sent the PARKING_FOUND
signal.

• In case parking area is full and Find Parking is unable to
find any parking, on reaching exit, it emits
EXIT_REACHED signal causing robot to enter Exit
mode where failure of parking is notified to the user.

5.3 Find Parking State Machine

Figure 6. Find Parking State Machine

The State Machine diagram for Find Parking forks into four sub-
state machines. Each of these machines performs concurrently
inside the Find Parking state machine.

• Gate Detect module continuously checks to see if an
entry or exit gate is reached. This indicates whether
robot is on approach road, whether it has reached
parking bay or exit. Reaching exit causes signal
EXIT_REACHED to be emitted.

• Detect Parking module starts looking for sufficient
parking space once robot has reached the parking bay.
If sufficiently large space is found for parking, it emits
a PARKING_FOUND signal.

• Adaptive Cruise Control module senses obstacles on the
path and avoids accidents. If the robot is blocked by
obstacle for a "long" time, this module emits signal
BLOCKED_FOR_LONG.

• White Line Follower module carries out activities
needed to keep the robot moving along the specified
path.

On occurrence of any of the signals EXIT_REACHED,
PARKING_FOUND or BLOCKED_FOR_LONG, the Find
Parking Module terminates its execution.

6. SYSTEM INTEGRATION & TESTING
Here we describe how the design model consisting of UML state
machine diagrams [12] is implemented and integrated into
executable C code. The resulting C code is compiled into machine
code using Win AVR and loaded onto the robot for execution.

The design consists of several state machines executing
concurrently. They interact with each other so output produced by
one module is available to another module as input. There are two
approaches to implementing such concurrent behavior.

• Real-Time Operating System (RTOS): Each module is a
concurrent thread executing under the control of the
operating system. Synchronization primitives such as
semaphores and monitors may be used to enforce
dependencies between concurrent modules. In order to
meet response time requirements, priority based
scheduling strategies are used.

• Design Time Scheduling: Activities are scheduled by
programmer at design time to occur in a specific
sequential order (one after another), keeping
dependency between modules in mind. This gives rise
to a purely sequential program which does not require
any operating system. Hence, such programs can be
used on even simple microcontrollers. Disadvantage is
that the programmer has to carry out a detailed analysis
of dependencies between concurrent tasks and to arrive
at good schedules. Current day synchronous
programming languages for embedded systems such as
Esterel and Lustre/SCADE use this approach [13].

In this project, the design time scheduling approach was used to
implement the design. The top-level state machine in our design is
the Valet Parking state machine (See Figure 5. Valet Parking
State Machine). This can be implemented as the following code
outline:

Initialization;
Find Parking and Obstacle Navigation;
if(PARKING_FOUND)
 Do Parking;
else if(EXIT_DETECTED)
 Exit;
else Error;

The Find Parking and navigation step can iterate between Find
Parking and the Obstacle Navigation modules several times. This
is implemented as the following code fragment. In this code,
valetmode=0 indicates we are executing Find Parking module
while valetmode=1 indicates we’re executing Obstacle Navigation
module. Transitions between modules are coded as shown below.

while(!EXIT_REACHED && !PARKING_FOUND)
{ Update sensor conditions;
 if (valetmode==0) {
 do Find Parking;
 if(BLOCKED_FOR_LONG)
 valetmode=1;
 }
 else (valetmode==1)

{ do Obstacle_Navigation;
 if(BACK_ON_ROAD)
 valetmode=0;
 else

Error;
}

}

6.1 Implementing the Find Parking module
The UML diagram for Find Parking indicates (See Figure 6) that
it consists of four concurrent state machines. The dependencies
between these state machines are depicted in Figure 7.

Figure 7. Dependencies between modules

We give an example of how such dependencies are calculated. A
variable “location” is shared between the Gate Detect and the
Parking Detect modules. This indicates where in the arena the
robot currently is. Gate Detect sets this variable and Parking
Detect uses this to determine its action. Hence we must schedule
Gate Detect code to occur before Parking Detect code.

After analyzing these dependencies we schedule the activities to
occur in the following order for each iteration.

Adaptive Cruise Control;
White Line Follower;
Gate Detect;
Parking Detect;

The C code for each of these modules is a straightforward
implementation of their state machines. We omit these details
which can be found in full project report [6].

7. MODEL BASED TESTING OF VALET
PARKING SYSTEM
A test case is the sequence of inputs to the system. A set of test
cases is called a test suite. Each test case gives rise to an execution
of the system. This execution can be abstractly viewed as a path in
the finite state automaton model of the system. Thus, the system
model passes through a sequence of states (by taking a sequence
of transitions) in a given test case. These states and transitions of
the model are said to be “covered” by the test case.

State coverage [10] measures the percentage of states of the
model which are covered by the test cases in a given test suite.
Transition coverage measures the percentage of transitions which
are covered by the test suite. The aim of testing is to achieve
100% state or transition coverage [10].

In this project, testing was carried out to achieve 100% transition
coverage in each iteration of the spiral model of development. We
illustrate this by an example below.

Table 1. Test Cases for Valet Parking State Machine

The state machine diagram for valet parking (see Figure 5. Valet
Parking State Machine) has four transitions. The table below
gives test suite for covering transitions of this automaton. The first
test case covers three of the transitions, whereas the second test
case covers the fourth. In order to execute the first test case, we
have to ensure that events BLOCKED_FOR_LONG,
BACK_ON_ROAD and PARKING_FOUND occur. Fig X shows
the physical arrangement of objects on the arena in which this test
case arises.

It was also noted that mere transition coverage of the model is not
sufficient to ensure reliable functioning of the application. Some
form of boundary-value testing for different sensor conditions is
needed. These boundary values depend upon physical
characteristics of the environment, robot and sensors.

8. DISCUSSION
In this project we have built a prototype of an autonomous valet
parking application. We have constructed a prototype using the
Firebird V robot. We have demonstrated that the robotic vehicle
can indeed find parking spots in a parking area by hunting for
these while navigating on a road and avoiding obstacles. The
application avoids accidents by detecting the possibility of
collision and stopping.
While our project is an artificial prototype, it incorporates many
of the principles and features of a real application. The software
techniques employed in our project are likely to be beneficial for
real application. We have emphasized a model based design
approach and constructed the UML state machine model of the
application before turning it into executable code. We built a
model using constructs such as concurrency, hierarchy and
communication in a synchronous paradigm and taught the
mapping of synchronous language constructs to sequential C
code. In the process we illustrated the principles of a synchronous
programming paradigm [6]. A novel feature of our approach is
that we carried out design time scheduling of various
(concurrent) activities by analyzing dependencies between them.
Thus, we obtained purely sequential C-code which can be easily
implemented on a micro-controller without need for any real-time
operating system (RTOS).

A difficulty we faced during the project was that that the
calibration of some of the Firebird sensors (esp. the white line
sensors) was sensitive to ambient lighting conditions. This
impacted the robust functioning of the application. We used
techniques such as sensor averaging and inertial delay to handle

some of these. We also incorporated a self-calibration feasure in
our solution. These aspects need much more attention in real
vehicles.

The experience of learning and using model based design
paradigm and the UML modelling language in this project was
highly encouraging. Whereas a conventional approach by students
would be to directly code a controller in C without modeling, here
the students used a model based approach where they consistently
found themselves returning to the model when they had to make
changes. “We were confused when doing it with ‘C’ but
statecharts made it easier to articulate the problem & build the
application in an incremental fashion using the Spiral model.”
Also “Step by step translation helped build and debug code”
where the “model was referred to before touching code –
always!!” And “test cases dropped out of the state-transition
diagrams.”

In summary, we have demonstrated how the robotic education
initiative of IIT-Bombay’s e-Yantra project has permitted the
evolution of a robotic eco-system that permits students to work at
a higher level of robotic application development than they would
be able to otherwise. Current work on the e-Yantra project is to
increase the corpus of reusable code and course material and to
further deepen the impact of Project Based Learning to create
larger numbers of engineering students with practical system
building skills. Methodologies such as UML and COMET permit
model based design of complex embedded controllers. They also
enable reuse of components. Mapping of design into code can be
carried out in a systematic fashion to enhance reliability. Projects
like ours provide an opportunity to learn these principles in a
Project-based-learning mode.

9. REFERENCES
[1] Saraswathi Krithivasan, Saurav Shandilya, Krishna Lala,

Kavi Arya , “e-Yantra Lab Setup Initiative: Sustainable
Knowledge Creation and Scalable Infrastructure Creation at
Engineering Colleges”, IEEE Frontiers in Education
Conference (FiE 2014), Madrid, Spain.

[2] Saraswathi Krithivasan, Saurav Shandilya, Krishna Lala,
Kavi Arya, “Learning by Competing and Competing by
Learning: Experience from the e-Yantra Robotics
Competition”, in IEEE Frontiers in Education Conference
(FiE 2014), Madrid, Spain.

[3] “Fire Bird V ATMEGA2560 Hardware Manual V1.08 2012-
10-12”, IIT Bombay.

[4] “Fire Bird V ATMEGA2560 Software Manual V1.00 15-08-
20122012-03-10”, IIT Bombay.

[5] “Firebird Video tutorials”, ERTS Laboratory, IIT Bombay,
2013.

[6] Blossom Coelho and Shraddha Pandya, Project Report on
“Autonomous Robotic Parking Vehicle”, submitted for
B.Sc./IT program, St. Xavier’s College, Mumbai, Apr.
2014.

[7] H. Gomaa, “Designing Concurrent, Distributed, and Real-
Time Applications with UML”, Addison Wesley Object
Technology Series, Reading MA, 2000.

[8] H. Gomaa, “Designing concurrent, distributed, and real-time
applications with UML”, in Proceeding ICSE '01,
Proceedings of the 23rd International Conference on

TC Input Actual
Output

Expected
Output

Status

1 Find Parking -
(BLOCKED_FOR_LO
NG)Obstacle
Navigation -
(BACK_ON_ROAD)
Find Parking -
(PARKING_FOUND)
Do Parking

Parked Parked Pass

2 Find Parking -
(EXIT_REACHED)
Exit

Parking
Not
Found

Parking
Not
Found

Pass

Software Engineering, IEEE Computer Society Washington,
DC, USA, 2001, Pages 737-738.

[9] “OMG Unifiied Modelling Language”, Version 2.2, OMG
Document No. 2009-02-02, OMG, (2009)

[10]] “State-Transition Testing”,
http://istqbexamcertification.com/what-is-state-transition-
testing-in-software-testing/

[11] D. Harel, “Statecharts: A visual formalism for complex
systems”, Science of Computer Programming, 8, (1987), pp
231-274.

[12]] “UML State Machine Diagrams”,
http://www.sparxsystems.com/resources/uml2_tutorial/uml2
_statediagram.html

[13] P. Caspi et al, “Lustre a declarative language for
programming synchronous systems”, in 14th ACM
Symposium on Principles of Programming Languages
(POPL), 1987.

