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ABSTRACT
Embedded software is concurrent, real-time dependent, typ-
ically networked, must meet strict resource and high qual-
ity requirements, and often runs on cheap hardware. Al-
together, this makes the education of embedded software 
designers a difficult challenge. In this paper, we present an 
embedded software design project, where students have to 
develop a multi-robot search using Lego mindstorms. The 
main idea is to confront the students with all the spites 
that are typically present in embedded systems, while at 
the same time giving them an algorithmically non-trivial 
problem to solve. To this end, we let the students use a 
bio-inspired search algorithm (particle-swarm optimization) 
to detect survivors (led by cries for help) in an unknown dis-
aster zone using a number of Lego Mindstorm robots. We 
have executed this project simultaneously at the University 
of Potsdam and TU Berlin and discuss results and evalua-
tions. We think that this project is very well suited for the 
education of embedded software engineers.

Categories and Subject Descriptors
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1. INTRODUCTION
The amount of embedded software is steadily increasing.

In [4], the authors state that the annual growth of the vol-
ume of embedded software varies between 10 and 20 %.
Embedded software engineers have to cope with this grow-
ing complexity. At the same time, the systems are often
networked and heavily interconnected. They typically con-
sist of simple and often imperfect hardware, which imposes
strict resource constraints, and, due to the interaction with
the physical environment, the software must be designed
to cope with real-time and concurrency. To meet all the re-
quirements, embedded software designers need to know their
hardware, and they need to cope with both functional and
non-functional requirements.

The steadily increasing complexity of embedded software
together with the multi-demands in interdisciplinary appli-
cations makes the education of embedded software engineers
a difficult challenge. Embedded software engineers need to
be able to apply software engineering methods, they need
to know how to cope with the perils of cheap and unreli-
able hardware, and they need to be able to work together
with experts from various application fields (and/or become
experts in the application field themselves).

In this paper, we propose an embedded software design
project, which we have designed to target all of the issues
mentioned above. We are confident that this project can
provide a valuable contribution to the education of embed-
ded software engineers. The main idea is to confront the
students with all the spites that are typically present in
embedded systems (like imprecise sensors, limited resources
and concurrency) and to give them an algorithmically non-
trivial problem to solve. We let the students use a bio-
inspired search algorithm (particle-swarm optimization) to
explore an unknown disaster zone and to detect survivors
(modeled as a non-linear sound source) using a number of
Lego Mindstorm robots. Among the requirements is colli-
sion avoidance, the ability to cope with an unstable blue-
tooth connection, and the demand for an emergency mode
where all robots have to return to their bases on the shortest
possible path.

We have executed this project simultaneously at the Uni-
versity of Potsdam and TU Berlin and discuss results and
evaluations. Our project is designed for students in the final
year of their Bachelor or in the first year of their Master.
A prerequisite for the successful execution of this project is
that the students have already completed some background
courses on software engineering and on embedded systems.
They should have some knowledge about typical charac-



teristics of embedded systems, like concurrency, real-time,
limited resources, and non-functional requirements. They
should also have learned and practiced (formal) specifica-
tion and modeling techniques for embedded systems, e.g.
timed automata or Statecharts, and temporal logics. They
should be familiar with programming techniques for concur-
rent systems (tasks and processes, inter-process communica-
tion, scheduling, shared resources), and, finally, they should
have some experience in C programming.

We start the semester with a few introductory lectures and
exercises to bring the students to the same level of knowl-
edge and to equip them with the necessary basic knowledge
on embedded systems, the employed software and project
management. The project work itself starts two weeks after
the beginning of the semester. Then, the weekly lectures are
replaced by oral milestone presentations about the progress
in each project group every three weeks. The semester is
closed with a final presentation at the end of the semester
and oral exams, where the students explain and defend their
contributions to the project. The overall project is worth 9
credit points (ETCS).

The remainder of this paper is structured as follows: first,
we give some background information on Lego Mindstorms,
the real-time operating system nxtOSEK, UPPAAL timed
automata, and particle swarm optimization. Then, we present
our embedded software design project, with a focus on the
project task and project organization and management. In
Section 4, we discuss the technical challenges and results of
the project. We briefly discuss our evaluation of the project
in Section 5, and conclude in Section 6.

2. PRELIMINARIES
In this section, we introduce the preliminaries that are

necessary to understand the remainder of this paper. We
first give a brief overview over the Lego Mindstorms hard-
ware and the real-time operating system nxtOSEK for the
Lego Mindstorms programmable NXT. Then, we briefly in-
troduce UPPAAL timed automata, a formal modeling lan-
guage for real-time systems. Finally, we provide a short de-
scription of the general ideas of particle swarm optimization
(PSO).

2.1 Lego Mindstorms
The Lego Mindstorms NXT 2.0 kit was released by Lego

2009 and consists of a set of Lego components to build cus-
tomizable, programmable robots. It includes a set of modu-
lar sensors and actuators, in particular 3 servo motors, and
ultrasonic, sound, touch, and light sensors. The main com-
ponent is the NXT intelligent brick, which features a 32-bit
Atmel main microcontroller with 256 KB flash memory and
64 KB RAM, a 100x64 pixel LCD screen, four sensor and 3
actuator ports, a USB port and Bluetooth V2.0. The NXT
intelligent brick together with its sensors and actuators is
shown in Figure 1.

Lego Mindstorms have been shown to excite a high level
of interest among students [19] and have been used in many
courses ranging from basic computer engineering courses [9,
10, 12] to more advanced control systems [7, 5]. In our
setting, they provide an ideal target architecture, as they
are cheap (approx. 300 $ per education kit), easy to build,
and provide modular hardware including sensors and ac-
tuators. At the same time, they can be equipped with a
small real-time operating system (e.g. nxtOSEK), have lim-

Figure 1: Lego Mindstorm NXT

ited resources (memory, energy, processing power), and the
hardware is neither reliable nor precise. Finally, the Lego
Mindstorms NXT is programmable in many programming
languages, ranging from various C dialects over high-level
languages like Python, Ada, and Java to graphical languages
like MATLAB Simulink. In our project, we chose a concur-
rent version of classical C as this is still the most widely
spread language in embedded systems.

2.2 nxtOSEK
The real-time operating system nxtOSEK [13] consists of

two main components: a device API (leJOS [11]) that en-
ables convenient access for NXT sensors, actuators and other
external devices, and a standard software architecture for
embedded operating systems in automotive systems, TOP-
PERS/ATK OSEK [18], which provides real-time multitask-
ing features according to the OSEK standard. nxtOSEK is
focused on real-time control applications and provides pre-
emptive periodical and event-driven task scheduling.

2.3 UPPAAL Timed Automata
Timed automata (TA) [1] are finite-state machines ex-

tended with clocks, where clock conditions are used to model
time-dependent behavior. A TA contains a set of locations
connected by directed edges. Two types of clock constraints
are used to model time-dependent behavior: Invariants are
assigned to locations and enforce progress by restricting the
time the automaton can stay in this location. Guards are
assigned to edges and enable progress only if they evalu-
ate to true. Networks of TA are used to model concurrent
processes, which are executed with an interleaving seman-
tics and synchronize on channels. UPPAAL [2] is a tool
suite for modeling, simulation, and verification of TA. The
UPPAAL modeling language extends TA by bounded in-
teger variables, binary and broadcast channels, and urgent
and committed locations. Binary channels enable a blocking
synchronization between two processes, whereas broadcast
channels enable non-blocking synchronization between one
sender and arbitrarily many receivers. Urgent and commit-
ted locations are used to model locations where no time may
pass. Furthermore, leaving a committed location has prior-
ity over non-committed locations. The formal semantics of
UPPAAL timed automata (UTA) is given in [2].

UPPAAL timed automata can be verified using the UP-
PAAL model checker, which supports requirements specifi-
cations that are defined in a subset of the computation tree



logic CTL. The UPPAAL model checker explores all pathes
of a given timed automata model to check whether a given
formula is true. As all state-of-the-art model checking tools,
it also provides a counter-example if a property is not satis-
fied on all pathes. This counter-example can also be used to
demonstrate the reachability of a certain path. In particular,
UPPAAL also provides a shortest path option, which can be
used to compute the shortest possible path that witnesses
the reachability of a certain property. In [17], the authors
have shown how UPPAAL and the shortest path option can
be used to compute the shortest pathes for a number of mo-
bile robots on a given map with static obstacles.

2.4 Particle Swarm Optimization
In [14, 15], Pugh and Martinoli presented a concept to

solve the multi-robot search problem by using particle swarm
optimization. Particle swarm optimization (PSO) as an op-
timization technique was developed by Kennedy and Eber-
hart [8]. The main idea is to model a set of potential solu-
tions for a given problem as a swarm of particles searching in
a virtual space for good solutions. The method was inspired
by the movement of flocking birds and their interactions with
their neighbors.

The PSO algorithm works as follows [14]: Every particle in
the swarm begins with a random position xi and (possibly)
randomized velocity vi in an n-dimensional search space,
where xi,j represents the location of particle i in the j-th
dimension of the search space. Each particle remembers
at which position it achieved the best result so far x∗

i,j , and
which particle achieved the best overall position in its neigh-
borhood x∗

i′,j . Then, at each step, a PSO algorithm executes
the following equations:

vi,j = w · vi,j + wp · rand() · (x∗
i,j − xi,j)

+wn · rand() · (x∗
i′,j − xi,j)

xi,j = xi,j + vi,j

Where wp is the weight given to the previous best location
of the current particle and wn is the weight given to the pre-
vious best location of the particle neighborhood, and rand()
yields a uniformly-distributed random value in [0, 1]. The
PSO-inspired multi-robot search presented in [14, 15] uses
a one-to-one matching between particles in the PSO swarm
and robots in the multi-robot system.

3. EMBEDDED SOFTWARE
DESIGN PROJECT

The aim of our embedded software design project is to
teach the students to work together in a team on a complex
embedded software design. Besides the embedded software
design task itself, our goal is that they gain experience in
project management and organization. In particular, they
should learn how to divide a comparatively large design task
into smaller tasks, and how to communicate between multi-
ple teams that are working on subsystems, which are later
integrated into one system. The system integration is one of
the main challenges in embedded system design. This has
several reasons:

• Subsystems are designed by experts of various domains.

The behavior of one subsystem is only partially under-
stood by the designers of another subsystem.

• All subsystems are concurrent. Thus, the overall sys-
tem behavior is hard to predict.

• Processing and memory resources are limited. Re-
source access must be managed, and the overall re-
source consumption must be controlled.

• Some processes are real-time dependent. Their correct
timing behavior must still be ensured if their execution
is interleaved with other processes.

• All sensors, actuators, and communication devices must
be assumed to be unreliable and inaccurate. As a con-
sequence, subsystems can not always rely on results or
answers from other subsystems.

In the following subsections, we will first define the project
task and briefly summarize the corresponding requirements
definition, which we have given to the students. Then, we
will briefly present our technical equipment and support. Af-
ter that, we will discuss our project organization and project
management. In the next section (Section 4), we will present
some more details about the project execution itself, includ-
ing exemplified design decisions, to give an impression of
the technical challenges and detailed content of the project
work.

3.1 Project Task
The aim of the project is to implement a multi-robot

search in an unknown environment using a number of Lego
Mindstorms. The goal of the search is a non-linear sound
source. The motivating real-world application is the detec-
tion and localization of survivors in a disaster zone, led by
cries for help. In such scenarios, the use of autonomous
mobile robots renders the use of human search personal un-
necessary and thus may save lives and cost, in particular
if the disaster zone is still considered unsafe, as is the case
in the aftermath of earthquakes or flooding. A swarm of
simple and cheap robots has the further advantage that it
is tolerant against failures of a number of single robots, can
explore a given area quickly and scales well for larger areas.

Project Goal.
The aim of the project is to design a swarm of at least

three mobile robots, which localize a sound source using
sound sensors. All movements must be planned and carried
out by local rules on each robot, e.g. by particle swarm
optimization as presented in [14, 15]. The swarm may com-
municate via bluetooth, but has to cope with unstable and
temporarily unavailable bluetooth connections. Collisions
must be avoided at all times and in all cases. At any time,
a central control element may recall all robots to their base
stations using an emergency mode. In this mode, the short-
est path to return all robots to their base station is centrally
computed and communicated to each robot, for example by
using the UPPAAL based approach presented in [17]. In the
emergency mode, sound and ultrasonic sensors are switched
off, so it is important that the algorithm to compute the
pathes back to the base station for each robot is provably
collision free. This can be ensured by using the UPPAAL
model checker for the computation of the shortest path. If
the sound source is detected, the robots should indicate this



Figure 2: 2D search space

with a sound signal and broadcast the information to all
other swarm elements and to the central control.

Simplifications.
To enable our students to solve the project task within

one semester, we use the following simplifications of this
scenario:

• The robots move in a 2-dimensional search space, as
shown in Figure 2.

• The search space is rectangular and its size is known.

• The search space is marked by a (physically detectable)
grid, which enables orientation and positioning of the
robots.

• The location of the sound source is as also marked on
the grid to simplify the physical identification of the
goal.

• Obstacles are cubes which have the same edge length
as one field in the grid and are aligned to the grid.

• A PC may be used as a hub for the communication
between the robots, and to build and distribute a com-
mon map from the information collected by all robots.

Additional Requirements.
Besides the project goals defined above, we give the stu-

dents the following additional requirements:

• The hardware of the robots is identical for each group
and is developed by all groups together.

• All robots of one group run the same software.

• All robots start at a defined base station.

• The robots must never collide with each other or with
obstacles.

• The resulting map should be shown on a PC.

• The performance of each solution is measured by the
time needed to find the sound source and by the quality
and robustness of the solution.

• Each solution must cope with unstable bluetooth con-
nections.

Note that we give the complete project goal and all re-
quirements to the students at the beginning of the semester.
No requirements are changed during the semester, as this
would go beyond the scope of one semester.

3.2 Technical Equipment and Support
For the execution of this project, it is most advantageous

to have a project room that is solely dedicated for the use
of the project during the whole semester. In our case, the
project rooms are equipped with a number of PCs running
Ubuntu where we pre-installed the following software:

• The GNU ARM cross compiler from the Gnu Compiler
Collection (GCC) [6], which supports the ARM7 CPU
inside the NXT.

• John Hansen’s NeXTTool from the Programmable Brick
Utilities repository [3], which can be used to commu-
nicate with the NXTs via USB & Bluetooth (and thus
also enables program upload).

• The nxtOSEK real-time operating system, which can
be compiled together with user-defined C or C++ code
into nxtOSEK applications for NXTs.

As building equipment for the mobile robots, we provide
our students with five boxes of the 9797 LEGO© Mind-
storms© Education Base Set together with five boxes of
the 9695 LEGO© Mindstorms© Education Resource Set,
plus five additional lightsensors.

As a project management platform, we have set up a Red-
mine server together with a subversion (SVN) repository.
The former is used by the students as a project planning
tool, ticketing system, and online platform for information
exchange (discussion forums, document upload). The latter
is used as a versioning and revision control system for shared
development of the code base developed in the project.

3.3 Project Organization
The challenges of system integration in embedded soft-

ware design projects can only be met if the overall project
is properly managed. In students’ projects, the students
have to self-manage their project work, typically in a non-
hierarchical fashion.1 In our embedded software design project,
we build groups of 8-9 students. Each group has to name
persons that are responsible for:

1. requirements, change, and risk management (defini-
tion and evolution of requirements, identification and
communication of changes and risks )

2. project planning (work breakdown structure, schedul-
ing, milestones)

3. technical project management (interface definition, inter-
process communication, communication between teams
working on different subsystems, system integration)

4. quality assurance (coding standards, review strategies,
verification and test plans)

1A hierarchical project management would not have the
same learning outcome for all the participants, and is diffi-
cult to deploy within groups of students, for many reasons.
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It is important that each student assumes one of these re-
sponsibilities. This ensures that all of the participants take
part in the project management. Furthermore, it results in
the fact that 2(-3) students are responsible for each role, in-
troducing yet another type of teamwork in the project. The
students that are assigned with the above responsibilities
are in charge of their role during the whole project, in ad-
dition to the later assigned design tasks. The definition of
the roles is important to make sure that the project groups
self-organize their work and that there are cleary defined
contact persons for each problem scope.

3.4 Project Management
Besides the experience in embedded software design, the

students should also gain experience in project management
and organization. In large and interdisciplinary projects
it is important to divide a large design task into smaller
tasks, and to communicate between multiple teams that are
working on subsystems, which are later integrated into one
system. Therefore, the students have to develop their own
project plan consisting of a work breakdown structure, de-
liverables for four predefined milestones and a gantt chart
which shows the project schedule, the schedule of human re-
sources and the current progress. Depending on their project
plan they divide their group into teams and define work
packages and interfaces for each team. Besides a weekly
meeting with their supervisor the groups have to organize
meetings and communication themselves. To ease commu-
nication and version control we provide each team with a
group forum (moodle), an issue tracking system (redmine,
gitlab) and a version control system (svn, git).

In their kick-off meeting, all project groups had to define a
work breakdown structure. The work breakdown structure
was then used to define work packages and assign teams of
2-3 students to each of them. An exemplary work break-
down structure is shown in Figure 3. The work breakdown
structure is the basis for the project plan and scheduling in
each group, including milestone definitions. An exemplary
milestone definition is shown in Table 1.

4. PROJECT EXECUTION
In this section, we give details on the main components

of our embedded software design project. We present some
important design decisions and discuss the main challenges
and technical difficulties the students had to cope with.

4.1 Emergency Mode
In the emergency mode the robots have to return to their

base station on the shortest possible path. To calculate this

Mile-
stone

Deliverables

MS 1 Project plan (incl. responsibilities & schedule)
05/05 PSO paper read and understood

UPPAAL paper read and understood
Prototypical robot design
Experimental setup
Evaluation of sensor precision and reliability

MS 2 PSO simulation
05/26 UPPAAL model

Motor control: move forward, rotate
Bluetooth: basic setup

MS 3 PSO implementation
06/16 UPPAAL interface & hub

Emergency mode
Collision avoidance via ultrasonic sensor

MS 4 System integration
07/07 System testing

Table 1: Milestones

path the students used the UPPAAL based approach pre-
sented in [17]. There, the authors propose to model the
environment, the robots and a control for each robot as UP-
PAAL Timed Automata. The robots can move horizontal
and vertical in a Cartesian grid and have to reach their goal
positions while not colliding with each other or obstacles.
The UPPAAL verifier is used to coordinate the robots and
to calculate a collision free path for all robots. This is done
by calculating the shortest path that witnesses the reacha-
bility property

E <> robot1.atBase && robot2.atBase &&robot3.atBase

which states that all robots are at their base position, as de-
scribed in Subsection 2.3. The resulting path is then filtered
for the necessary movements of each robot and distributed
to the NXTs.

The authors evaluated their approach with a grid of 5x5.
In our setting we experimented with grid sizes of 6x6 and
6x9. The experimental setup is shown in Figure 4. As these
grid sizes increased the state space for the verifier drastically
and as we required the calculation of the path back to the
base station to be quite fast, the students had to optimize
the UPPAAL model.

Some example modifications are listed below:

• Remove all clocks and use discrete steps instead. This
reduces the state space drastically but requires a syn-
chronized movement of the robots.

• Combine movements and turns or two consecutive turns
to one step to decreases the depth of the search space.
This is possible, as the robots can turn much faster
than they can move.

• Remove unnecessary moves like turning towards an ob-
stacle or turning three times on the same field.

• Introduce a sequential control of the three robots to
reduce interleavings.

• Move simple calculations to native functions.

With those optimizations our students where able to han-
dle bigger grids and to reduce the calculation time drasti-
cally.



Figure 4: Experimental setup

4.2 Particle Swarm Optimization
As basis for the local planning of movements the students

used the PSO algorithm from [14, 15] as explained in Sub-
section 2.4. This algorithm can be adjusted and customized
for the project setting to optimize the performance of the
swarm. In our setting robots are only allowed to move up,
down, left or right, but not diagonal on the grid. Thus, the
actual movement has to be in the direction of the maximum
of the x and y component of the velocity vector. An impor-
tant adjustment concerns the target function. In our setting
the main task is to find the sound source. Therefore, the
measured sound value on a field is used to calculate the per-
sonal and global best position for the robots. As the sound
is varying and as the sound sensor is not precise this mea-
surement can only be used as an estimate for the location
of the target. The possibility to physically detect the target
field allows for a further adjustment of the target function.
As long as the position of the sound source is unknown, it
has to be located on an unexplored field. Thus our students
adjusted the velocity vector to prefer unexplored fields. To
achieve this, the calculated vector can be shifted towards an
unexplored field nearby or clusters of unexplored fields can
be considered during the calculation by adding a personal
and global best position concerning unexplored fields. The
following formula shows such an adjusted calculation. The
personal best position b∗p consists of the personal best posi-
tion related to the sound (s∗i,j) and the best position related
to map information (m∗

i,j). Each part can be adjusted by a
weight (wp,s, wn,s). The best position in the neighborhood
b∗n is calculated in the same manner.

vi,j = w · vi,j + wp · rand() · (b∗p − xi,j)

+wn · rand() · (b∗n − xi,j)

xi,j = xi,j + vi,j

b∗p = wp,s · s∗i,j + wp,m ·m∗
i,j

b∗n = wn,s · s∗i′,j + wn,m ·m∗
i′,j

To enable early evaluation and testing of the PSO algo-
rithm without depending on the progress in the other com-
ponents, a PSO simulation environment is needed. This can
be combined with the task to display the resulting map on
a PC. Figure 5 shows a particular nice solution which was
written in python by using the library pygame [16] which
is a set of python modules for video games. This simulator
allows for the initialization of the grid, a real time visual-
ization of map informations (base, robot position, detected
obstacles, unknown fields, volume values, calculated PSO-
vector, detected dead ends) as well as switching between
the modes (search and emergency). It also includes a visu-
alization of the calculated UPPAAL paths (incl. calculation
time & number of steps of longest path).

4.3 Embedded Software Design
The real embedded software design part of our project

consists of the components that finally run on the NXTs
themselves. These comprise the motor and sensor control,
and a bluetooth communication layer. An important issue
was the system integration, namely to smoothly run all tasks
together on one NXT. Some groups had to reduce the num-
ber of tasks in order to meet the strict memory constraints
imposed by the Lego Mindstorm architectures. All groups
had to carefully design the timing of their tasks by using
preemptive periodic and event-driven tasks.

An exemplary task structure is shown in Figure 6. All
sensor tasks are periodic (indicated by a circular node), the
motor control task and the main task are event-triggered
(indicated by rectangular nodes). The tasks exchange events
(E) and data (D). The motor stops (E0) in case of a detected
light change (E1) or obstacle (E2). It is controlled by events
from the MainTask ( E3: one of adjust, moveF, rotateL
or rotateR) and corresponding motor control values (D0)
and reports whether the move was successful (E4: one of
moveDone, moveFailed). The MainTask also sets default
values for the light sensor (D1) and exchanges audio and
ultrasonic sound signals (D2) with the SensorTask.



Figure 5: Simulator and Live-GUI

Figure 6: Task structure

Note that the SensorTask, which reads audio and ultra-
sonic sound signals, is periodically executed every 25 ms, the
LightTask every 10 ms, and the MotorTask every 20 ms. In
the following, we discuss the robot design, the motor and
sensor control, and the hub and communication layer.

4.3.1 Robot Design
As mentioned in the introduction, the Lego Mindstorm

NXTs only have 3 motor and 4 sensor ports. This con-
straint is the main limitation for the robot design. As our
robots are moving along a grid, they need light sensors to
safely detect the edges of the grid fields. All groups decided
to use two light sensors, which are parallely deployed at the
front. The main advantage of this construction is that the
two light sensors can be used to calibrate the course of the
robot by aligning both light sensors to a grid edge. As one
sensor port is needed for a sound sensor to detect the sound

Figure 7: Robot design Potsdam

source, this leaves only one sensor port for ultrasonic sound,
which is necessary to detect obstacles and avoid collisions.
As ultrasonic sound signals are generally unreliable and may
be reflected by other sensors or by sloping surfaces, our stu-
dents decided to make the ultrasonic sound sensor rotatable.
By scanning an arch of up to 120 degrees, the probability to
detect obstacles and other robots is significantly increased.
As gears, the students of TU Berlin decided to use a two-
wheel drive and one passive centered wheel for stabilization.
The Potsdam students decided to use a chain-drive. An ex-
emplary robot design from Potsdam is shown in Figure 7,
an robot design from Berlin in Figure 8,.

4.3.2 Motor and Sensor Control
The aim of the motor control component is to enable

movements and rotations of the robots. The sensor control
is responsible for collecting and processing sensor data. For
the motor control component, the challenge is that two mo-
tors that are driven with the same force still produce slightly
varying wheel/chain speeds. To cope with that (and ensure



Figure 8: Robot design Berlin

that the robots move straight forward) the students have
implemented varying versions of simple proportional con-
trol systems up to complete proportional-integral-derivative
(PID) controllers. In addition to motor control functions like
nxt motor set speed(), the nxtOSEK API enables acquisi-
tion of the current motor count using nxt motor get count().
This can be used in a feedback loop to measure the error and
adjust the speed values. In doing so, the robots adjust their
speed gradually and reach converging wheel/chain speeds on
both sides with very little overshoot, so the result is much
smoother than on-off control.

While the motor control component is triggered by the
corresponding events to move forward or rotate, all sensors
are periodically polled. Sound sensor data is collected and
used by the PSO algorithm and communicated to the central
hub. The light sensors are used to detect the grid on the
experimentation field. Any significant deviation from the
standard value is reported and used by the motor control
to check whether a movement is finished, or whether the
search goal is found. Note that some groups always perform
a plausibility check when a grid marker is detected. If it is
detected too early, they assume that a side line was hit and
start a course correction routine. This significantly increases
the robustness of the overall system.

The ultrasonic sound sensor is used to detect obstacles
and other robots, and eventually, to avoid collisions. Unfor-
tunately, there exist some situations, where ultrasonic sound
signals alone might not be sufficient for collision avoidance.
In particular, if two robots are nearing each other in a 90
degree angle and an obstacle is obstructing their view from
each other, it cannot be ensured that the ultrasonic sound
sensors will detect the other robot before they crash. As a
consequence, collisions can only be safely avoided with com-
munication. To this end, each robot acquires a lock on its
target field before making any move. If no communication
is available (due to temporary bluetooth failure), the robots
move sequentially in dedicated time slices, such that no two
robots might move at the same time.

4.3.3 Hub & Communication via Bluetooth
A central hub is responsible for the communication be-

Sender

1 byte

Opcode

1 byte

Data

6 bytes

Figure 9: Bluetooth message

tween the NXTs, collects and merges their sensoric results
to establish a common map, and distributes the measured
sound information among the robots. It also detects blue-
tooth failures and tries to reconnect at all times. Further-
more, it takes care of the interactions with UPPAAL and
the graphical user interface, including the simulator as de-
scribed above. In the emergency mode, it calls UPPAAL
for the path calculation, filters the resulting trace and passes
the commands that establish the path for each robot to the
NXTs. Finally, it is also used for debugging purposes.

The bluetooth connection between the hub and the NXTs
is established via a socket mechanism. All groups have used
a simple protocol, where an opcode defines which kind of
data is sent (e.g., debug map, or sound data). An exempli-
fied structure of a bluetooth message is shown in Fig. 9.

One of the challenges in the design of the bluetooth com-
munication layer was that the bluetooth connections are un-
stable. As discussed above, it is not possible to avoid colli-
sions without communication if all robots move simultane-
ously. As a consequence, if the hub looses the connection
to one NXT, the whole system has to switch into a safety
mode where only one robot moves at a time. To make sure
that bluetooth failures are detected and properly handled,
the students have used heartbeat signals and an upper time
limit on reconnects. If the central hub looses connection to
at least one NXT, it switches to a safety mode. The safety
mode is only left if a connection to all robots can be reestab-
lished.

4.4 Quality Assurance
As mentioned above, each team had to name two persons

responsible for quality assurance. Although the extent of
the project task and the strict time limit of one semester
left little time for a full quality assurance approach, the stu-
dents at least defined some basic coding standards, review
strategies and rudimentary verification and test plans.

Coding Standards and Documentation.
As basic coding standard, all teams agreed on some nam-

ing conventions for variables, methods, tasks, and events.
Some teams also defined consistent interface description,
commenting, and documentation styles.

Review Strategies.
The review strategies used by the students ranged from

ad-hoc partial code reviews to well-organized cross-reviews
for each module and each component. The latter worked well
in early project phases, but the scheduled reviews were more
and more reduced and finally neglected when the pressure
of keeping the implementation milestones increased towards
later project phases.

Verification and Test.
The students used the UPPAAL model checker to verify



their central planning algorithm, which was already imple-
mented in UPPAAL. Beyond that, no formal verification
was applied. However, the students also used the UPPAAL
model checker to evaluate the efficiency/ performance of
their planning algorithm on several test maps. For test-
ing their PSO algorithms in early project phases (before
the mobile robots were functional), all teams implemented
simulation environments and simulated the exploration of
a number of virtual test maps on a host PC. Some teams
already defined a number of test scenarios at this point of
the development process and reused them in later project
phases and with the final robot implementation. For the
main testing phase, the students developed test plans. The
test plans defined for each test case their identification num-
ber, their type, a short description, necessary preconditions,
necessary steps to execute the test case, expected results
and the actual results. For an example test definition, see
Table 2.

The test cases defined by the students were categorized
into unit tests, integration tests, and system tests. The main
goal of the unit tests was to validate the basic functionality
of each component. Example unit tests for each component
are:

• Planning algorithm: find path for given test map

• PSO algorithm: compute next move, compute vector

• Sensors and Actuators: detect line, measure sound,
move one field forward, rotate by 90 degrees

• Hub & Communication: establish connection, send
and receive data

The main goal of the integration tests was to validate
the interplay between connected components. For example,
the integration tests for the central hub and the UPPAAL
planning algorithm validate that maps that are stored in the
central hub are correctly transfered to UPPAAL and that
the pathes computed by UPPAAL are correctly passed back
to the central hub.

For system testing, the students developed a number of
scenarios that might be challenging for the overall system
behavior. In particular, they defined a number of test maps
and, for each of them, various environment parameters like
the day light conditions, battery levels, and background
noise levels. During system testing, they also put a particu-
lar focus on validating the reliability and robustness of the
overall system. For example, they tested the overall system
behavior in the following scenarios:

• missing robots (manually removed)

• movement disturbances with varying degrees (manual
pushing up to manual field changes)

• bad light conditions

• missing grid lines

• ’caged’ robots (surrounded by obstacles)

• global and local bluetooth failures

Overall, the degree to which the students validated the
correctness, reliability and robustness of their implementa-
tions varied between the five project groups. For example,

some groups went immediately from unit to system testing
and skipped integration tests, and while some groups per-
formed extensive reliability and robustness tests, others only
tested the basic fulfillment of the required functionality.

5. EVALUATION
We have executed this project simultaneously at the Uni-

versity of Potsdam and TU Berlin with 17 and 26 students,
respectively (43 students in total). All of the students are
either in the final year of their Bachelor or in the first year of
their Master. The students where from the following majors:
computer science (29), computational science (8), computer
engineering (4), industrial engineering (1), mathematics (1).

Out of the 43 participants, we have built 5 groups with
8-9 participants per group. Having such comparatively large
groups made the internal management in each group (includ-
ing the division into work packages and the communication
between subgroups) quite a challenge. However, the project
is designed in a way that the overall task can adequately be
split into smaller subtasks. We believe that the teamwork
in a comparatively large group is one of the most important
skills that is teached in this project, and our supervision
keeps a careful eye on a fair work distribution. Still, dur-
ing the oral feedback session, most students said they would
have preferred smaller group sizes.

Our evaluation of the course has shown that the project
was very well accepted. On a scale from 1 to 5 where 1 is
very good and 5 is very weak, the project task itself achieved
an average rating of 1.25. The supervision of the project
achieved an average rating of 1.39. Note that the evaluation
results from Potsdam and Berlin were very similar. At TU
Berlin, where we have executed the project for the fourth
time, we always have more applicants than available places.
In Potsdam, we planned to start the project with only one
group and a maximum number of 9 participants, but opened
a second group due to the many applicants.

In our evaluation, we also asked the students to assess
their own learning outcome. On a scale from 1 (I learned
very much) to 5 (I learned very little), the average rating
of various learning outcomes is shown in Table 3. As can
be seen, the most valued learning outcome of the project
was teamwork. Furthermore, the students had the feeling
that they have learned a considerable amount of embedded
software design, algorithm engineering, project management
and project organization. Note that the evaluation results
from Potsdam and Berlin varied slightly. In particular, it
is interesting to note that the students from TU Berlin,
which we believe to have a stronger background in founda-
tions of computer engineering, had the feeling they learned
more in the soft skill categories project organization, project
management and teamwork. On the other hand, the stu-
dents from Potsdam University, which we believe to have
a stronger background in software engineering and project
management skills, had the feeling they learned more in the
technical categories embedded system design and algorithm
engineering. Note also that the standard deviation in each
category is pretty high. This is due to the fact that the
students divided responsibilities, i.e., some students were
mainly responsible for embedded software design, others for
the high-level algorithms. This was also one of the main
disadvantages mentioned in the textual evaluation (at both
universities): many students would have liked to have more
time to work on all the topics and not only on their as-



Id Type Compo-
nent(s)

Short
Description

Preconditions Test
execution

Expected
results

Success Error Report

1 Unit
Test

Commun-
ication

Establish a
connection
to a robot.

Robot is not con-
nected, bluetooth
switched on.

1. Establish
connection

Display:
BT STREAM

yes

2 ... ... ... ... ... ... ... ...

Table 2: Example test definition

Category Rating Rating Overall Std.
Berlin Potsdam Rating dev.

Embedded 2.59 2.19 2.39 0.81
system design
Algorithm 2.78 2.69 2.73 0.82
engineering
Project 2.13 2.34 2.23 0.84
organization
Project 2.13 2.47 2.3 0.86
management
Teamwork 1.66 1.78 1.72 0.78

Table 3: Learning outcome assessment

signed work packages. This could be solved by extensive
cross-reviews/testing or rotating students through the vari-
ous teams. Both would require more time.

6. CONCLUSION
Overall, our embedded software design project was very

successful. The students gained deep insights into the chal-
lenges and perils of embedded software design and they were
highly motivated throughout the whole project. The Lego
Mindstorm hardware is affordable for student’s projects and,
at the same time, provides a perfect training platform for
embedded software design, as motors, sensors, and commu-
nication are unreliable, and processing power and memory
are both severely limited. By assigning the non-trivial task
of a distributed multi-robot search, the students are also
challenged with respect to the algorithm design, and there
is a lot of room for optimizing performance and for increas-
ing fault-tolerance, robustness, and the overall safety and
reliability of possible solutions.

For future work, we plan to extend our one-term project
to a second semester. This would enable us to put some
additional focus on requirements engineering and quality as-
surance. In particular, it would be interesting to formulate
the project task much more open (e.g., not to specify the use
of the PSO algorithm or UPPAAL as optimal path calcu-
lation tool), and to let the students define detailed require-
ments on their own. In the past, we have also experimented
with independent development and quality assurance teams,
which introduces a broader scope and additional complexity
to the project organization, but is also difficult to realize in
a one-term project.
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