Embedded Software Education:
An RTOS-based Approach

James Archibald
Electrical and Computer Engineering Dept.
Brigham Young University
jka@ee.byu.edu

ABSTRACT

Embedded computer systems are proliferating, but the com-
plexities of embedded software make it increasingly difficult
to produce systems that are robust and reliable. These chal-
lenges increase as embedded systems are connected to net-
works and relied on to control or monitor physical processes
in critical infrastructure. This paper describes a senior-level
course that exposes students to foundational characteristics
of embedded software, such as concurrency, synchronization
and communication. The core of the class is a sequence of
laboratory assignments in which students design and imple-
ment a real-time operating system. Each student-developed
RTOS has the same API, so all can run the same applica-
tion code, but internal implementations vary widely. The
principal challenges that arise in the design and debugging
of a multi-tasking RTOS tend to be instances of the general
problems that arise in embedded software. In our experi-
ence, the activity of creating a working RTOS is effective in
helping students acquire the knowledge and skills required
to be successful embedded software developers.

Keywords

Embedded systems, embedded systems education, real-time
operating systems, concurrency, real-time computing, soft-
ware bugs

1. INTRODUCTION

Mobile and embedded devices are commonplace in modern
society, and embedded systems are increasingly deployed to
support critical infrastructure. Consumers naturally expect
their embedded devices to operate reliably; embedded sys-
tems that provide essential functionality in an airplane or a
municipal water system will be held to the highest standards
of dependable operation. Unfortunately, reports of vulnera-
bilities or outright failures in critical embedded systems are
increasing in frequency and attracting the attention of the
general public.

This work is based on an earlier work: Preparing Students for
Embedded Software Development: An RTOS-based Approach. In
Workshop on Embedded and Cyber-Physical Systems Education,
WESE, © ACM, 2015.

http://dx.doi.org/10.1145/2832920.2832926.

Copyright of this extended version retained by the authors.

Doran Wilde
Electrical and Computer Engineering Dept.
Brigham Young University
wilde@ee.byu.edu

Under the best of circumstances, the creation of functional
software for non-trivial applications is demanding. Virtu-
ally no substantive software programs have been found to be
error-free when subjected to careful analysis [1]. Embedded
developers face all the challenges of conventional software
and more. For example, embedded software typically must
interact directly with hardware, it must respond to time-
critical events in specified time windows, and it often relies
on concurrency (processes, threads, interrupts) to meet re-
sponse time requirements.

Given the formidable task facing firmware developers, it is
not surprising that the creation of embedded software is
quantifiably more demanding than conventional software [8],
nor is it surprising that the same kinds of mistakes turn
up repeatedly during design and development [24]. Given
the importance of embedded systems, there is considerable
interest among researchers and practitioners in improving
the efficiency with which embedded software is created. Ef-
forts focus on a wide range of alternatives, ranging from
improved tools and languages to optimized testing method-
ologies. These approaches may well improve productivity
and reduce error rates, but it is highly unlikely that they
will eliminate bugs in embedded software.

An undergraduate education that prepares students to be-
come embedded system developers should expose students
to the fundamental challenges of embedded software, includ-
ing the use of typical constructs and related problems that
too-often accompany their use. As practicing professionals,
graduates should understand the underlying issues so they
can avoid problems in their own designs, and so they know
the most likely causes of behavioral anomalies in their sys-
tems during development and testing. It is widely accepted
that students learn best about embedded systems through
their own hands-on experience [10] [13] [18] [14].

Within the dynamically evolving academic disciplines re-
lated to embedded systems, there is constant pressure to
create new classes and to expand coverage of emerging top-
ics, but changes are limited by faculty resources and the
number of course that can be packed into an undergradu-
ate curriculum [25]. In practice, the well founded desire to
expose each student to a broad spectrum of technical topics
limits the extent to which they can focus on specializations
within their major discipline. As a result, many students will
end up working in a sub-discipline in which they have taken
just one advanced undergraduate class. Educators thus fre-

quently face this challenge (as we have): if our graduates
will go into the workplace as embedded software developers
having taken just one class with that focus, what is the best
content we can provide in that course to prepare them?

This paper describes our answer to that question: a senior-
level course in which students work with a partner to design
and implement a real-time operating system (RTOS) or ker-
nel from the ground up. In a sequence of labs over the course
of the semester, students create interrupt service routines,
then core kernel routines that perform context switching,
and then other kernel functions that support synchroniza-
tion and communication between concurrent tasks. A final
lab focuses on writing code for a time-critical application
that uses their RTOS. A central thesis of this paper is that
the completion of this project sequence gives students crit-
ical insight into and experience with the fundamental chal-
lenges inherent in embedded software.

In the remainder of this paper, we discuss a sampling of
related work from the literature, we explore the challenges
of embedded software, we describe the RTOS-based course
that has been in place in our curriculum for over a decade,
and we consider those aspects of the course that are most
responsible for its success.

2. RELATED WORK

A survey of the literature on embedded system education
confirms that a wide variety of approaches have been taken,
depending on the technical nature of the associated degree
program, whether the courses are graduate or undergrad-
uate, and the mix of other (non-embedded) courses in the
curriculum [11]. We focus here on papers that make specific
mention of a course that involves the design or use of an
RTOS, or that includes very similar content.

Chen et al. describe a set of six short courses on embedded
systems intended to address deficiencies in first-year grad-
uate students [7]. One of those courses focuses on kernel
implementation issues, including context switching, schedul-
ing, message passing, and interrupt service routines. Stu-
dents study the mechanisms of an embedded operating sys-
tem so that they understand the services it provides, but
they do not implement an RTOS. The authors note that
it requires “sophisticated programming skills to develop a
kernel.”

Hsu and Liu describe an introductory course taught in the
sixth semester that is founded on a project-based learning
strategy [9]. The primary objective of the students was to
create application-specific code that ran with the pC/OS
kernel, but students were unsuccessful in porting the RTOS
to their target platform so the multi-tasking application code
never ran as intended.

Jamieson describes a project-based class in which students
prototype and design three embedded systems using their
choice of implementation platforms [12]. RTOS coverage is
one of two key components that is explicitly mentioned as
missing in their approach.

Sangiovanni-Vincentelli and Pinto describe the embedded
system curriculum in the EECS department at UC Berke-

ley, which they note was shaped by their research projects
[21] [22]. They describe an advanced graduate class that
focuses on RTOS concepts, including scheduling and com-
munication. Among other assignments in the class, students
implement a simple RTOS.

Marwedel describes an introductory course in embedded sys-
tems for students from multiple disciplines that has been
fine-tuned over a period of almost ten years [19]. Relevant
topics covered in the class include scheduling, operating sys-
tems for embedded systems, and typical properties of an
RTOS.

Koopman et al. describe embedded system education for un-
dergraduates at Carnegie Mellon University. Students in
their first course develop application software for microcon-
trollers running an RTOS. In a later class, students more
fully explore the capabilities of an RT'OS in supporting real-
time software. In class labs, students implement an embed-
ded RTOS and then write application code that runs on
their OS. Topics addressed in the class include concurrency,
preemption, real-time synchronization and communication.

Sztipanovits et al. describe the embedded curriculum at Van-
derbilt University. They note the difficulty in a mid-sized
engineering school of creating new classes for new areas of
specialization. They describe an undergraduate course on
real-time systems that emphasizes design, implementation,
and theoretical foundations, and that covers many of the
same topics as the course we describe in this paper.

Caspi et al. discuss guidelines for a graduate curriculum on
embedded software. Ome area of foundational knowledge
they identify is real-time computing, including design, val-
idation and operating systems. They observe that classes
with a real-time focus are among the most commonly taught
in existing embedded systems curricula.

Ping describes five main areas of emphasis that embedded
systems curricula should address [20], one of which is op-
erating systems for embedded systems. The author states
that students should master the basic concepts of an RTOS
and know enough to port an existing RTOS to a new target.

Wolf and Madsen discuss key factors in education about
embedded computing [26]. They observe that, outside em-
bedded system classes, students have virtually no experience
with raw CPUs, where they are “free from operating system
restrictions and with full access to the halt button.” One of
their major topics to address in embedded systems education
is concurrency; students need to understand why embedded
systems use concurrent software, how it is created by the
hardware and software, and how it complicates debugging
and performance analysis.

Zhang et al. present a framework for organizing an embed-
ded system that emphasizes mastery of skills through prac-
tice [27]. One of their stated goals is the mastery of at least
one embedded operating system. They observe that stu-
dents are not highly motivated when studying an existing
embedded system. In contrast, we find students are quite
motivated when they are creating an embedded system.

3. FIRMWARE CHALLENGES

As noted above, firmware developers face all the challenges
inherent in generating conventional software, in addition to
specific difficulties that arise because of the nature of em-
bedded systems. In addition to those factors noted in the
previous section, embedded system developers must deal
with limited visibility into their systems during execution
(making it difficult to see what the system is doing), lim-
ited memory and processing resources that often prohibit
detailed logging of actions and events (making it difficult
to reconstruct what happened in a post-mortem analysis),
and the infeasibility of exhaustively testing all system in-
puts and event timings (making it difficult to ensure truly
reliable operation).

Students are likely to gain crucial insight into many of these
challenges while completing any project that involves the
development and testing of a non-trivial embedded system.
Not all projects, however, will give students experience with
the issues underlying the more elusive and frustrating bugs
in embedded software. In some cases, important operational
details may be hidden by the programming environment or
tools; in others, the system requirements may be met with
relatively simple software constructs. (Of course, systems
may also be too complicated, frustrating students and mak-
ing it nearly impossible for them to make a good design and
see it through to a working system.)

We feel that an important metric for evaluating class projects
is the set of issues and challenges that students are exposed
to as they complete the assignments. For example, we have
found it helpful to structure our lab assignments so that
students experience rather than merely read about the most
common, insidious bugs in embedded software. Obviously,
there is a fine line here: we don’t want to set the students
up to fail, but if the project is rich enough that the bugs
in question can occur (and do occur for some in the class),
then the entire class comes to realize that they are not im-
mune and that the issues we talk about are important and
relevant. From that point, class discussions on those topics
tend to fully engage everyone present in the classroom.

3.1 Common Software Bugs

To highlight the strengths of our RTOS-based embedded
software course, consider how it matches up with Michael
Barr’s top ten list of causes of “nasty embedded software
bugs,” published in two articles in 2010 [4] [3]. Barr’s articles
are based on years of professional experience and worthwhile
reading for any embedded system developer. We summarize
his list and briefly discuss each item.

1. Race conditions. These arise—typically in code that
writes shared variables—when the resulting state de-
pends on the specific interleaving of instructions from
two or more tasks, or threads of execution within an
embedded system.

2. Non-reentrant function.. A function is reentrant
if execution can safely switch from one task running
that function to another task that also calls the same
function. Non-reentrant functions are a special case of
a race condition.

3. Missing volatile keyword. This keyword instructs
the compiler that it cannot optimize memory reads
or writes to the specified variable because it may be
changed at any point by code executing concurrently
(another task or an interrupt routine).

4. Stack overflow. This occurs in situations when the
programmer must specify the size of the stack associ-
ated with a task and it is made too small; whatever
happens to be in memory just beyond the stack gets
overwritten.

5. Heap fragmentation. In systems with dynamically
allocated memory, a point can be reached where the
heap (the available memory pool) has enough memory
to satisfy the next request, but the memory is unfor-
tunately divided into a set of smaller fragments.

6. Memory leaks. These happen in systems without
garbage collection (the automatic reclamation of un-
used memory) when blocks of memory are dynami-
cally allocated and used, but not consistently returned
to the heap.

7. Deadlock. This condition arises when a set of two
or more tasks in a system are all blocked, with each
waiting for another task in the set to execute first, and
with a circular chain of dependences between the tasks.

8. Priority inversion. This occurs if a high-priority
task blocks on a resource held by a lower-priority task,
and then execution switches to a lengthy task with
medium priority, causing the high-priority task to miss
a deadline.

9. Incorrect priority assignment. This can happen
when task priorities are assigned on an ad hoc basis,
rather than using the results of careful analysis ensur-
ing that all task deadlines will be met regardless of
event ordering.

10. Jitter. This term refers to timing variations in the
execution of tasks expected to run at fixed intervals.
These variations occur because the processor is exe-
cuting code associated with interrupts or other tasks.

3.2 Implications for Student Projects

From the wide range of possible student projects, consider
those where the issues of the previous section could arise. In
the simplest of embedded systems, with a single execution
thread (based on round-robin scheduling or a polled loop
with no interrupts), students could encounter only those
bugs related to dynamic memory allocation. The major-
ity of the bugs on the list arise only in code with multiple
execution threads and concurrency.

Developers turn to concurrent software for systems that re-
quire both timely responses to events and lengthy computa-
tion. For example, code that responds to a critical event can
be placed in a thread with higher priority than the thread
containing the code performing the lengthy computation. If
the system has a low-overhead mechanism to switch from
the current thread to any thread of higher priority as soon
the latter is ready to run, then the designer can maintain
reasonable levels of processor utilization while still hitting
response time targets.

The hardware interrupts supported in most microprocessors
provide one such mechanism: in effect the entire class of in-
terrupt code preempts non-interrupt code. More flexibility
and control results when preemption is extended to non-
interrupt code; the programmer can define multiple tasks,
assign each a distinct priority, and then rely on the runtime
system to preempt lower-priority tasks when higher-priority
tasks become ready to run. This is the execution model
provided by a real-time operating system (RTOS). The pro-
grammer defines a set of tasks, assigns each a priority, and
then relies on the runtime system to run the highest prior-
ity ready task until that task completes or is preempted. A
typical RTOS provides a set of functions to manage tasks
and to allow them to communicate and synchronize their
actions.

Many embedded systems are constructed using an RTOS,
particularly those intended for platforms with relatively lit-
tle memory (tens of kilobytes). Dozens of RTOS versions
are available from commercial vendors, varying in cost and
and available libraries. Developers who use an RTOS are
very aware of all issues on Barr’s top ten list: at least eight
of the ten must be addressed in the normal course of any
design with multiple tasks and preemption.

Student projects involving the writing and debugging of ap-
plication code to run with an existing RTOS could there-
fore be effective in educating students about the issues from
Barr’s list. So why build an RTOS? We are certain that
both application-level and system-level approaches can be
effective, but we feel that the latter offers important advan-
tages that educators often overlook. (As noted in a previous
section, undergraduate courses that focus on RTOS imple-
mentation are rare.)

There are notable benefits for the students in building a
system from the ground up; it removes the mysteries, shows
how the pieces fit together, and makes visible all the op-
erations within the system. There is a natural tendency in
complex systems to hide more of the implementation and op-
erational details under the surface by having them addressed
automatically by development and runtime tools, allowing
designers to focus on critical higher-level issues. This can
increase productivity, but it can be counterproductive in an
educational setting. In particular, it makes it more difficult
to understand the details of the overall system operation.
(Imperfections in complex tools—think optimizing compilers
or complex digital design suites—can also make it difficult
for users to achieve desired levels of optimization without
reasonable familiarity with the internal operation of those
tools.)

In our approach, we have elected to simplify the tools and
make virtually everything in the system visible to the stu-
dents. They see the operational details, down to the precise
sequence of machine instructions executed. At this level,
there are no mysteries about what library functions do, how
the interrupt mechanism works, how contexts are saved and
restored, or how tasks block and then are made ready again
when their requested resources become available. We claim
that important insights come to the students when they in-
teract with the system at this level.

Of course, educators must ensure that any assigned project
sequence is of an appropriate size and scope for the class in
which it is assigned. In this regard, we know from experience
that the design and implementation of an RTOS is a good
match with the workload of a 4 credit hour semester-long
class.

4. THE RTOS-BASED COURSE

When it was first taught, the course focused on understand-
ing and using an existing RTOS. We used the uC/OS kernel
created by Labrosse [16] because the source code was read-
ily available and the kernel could be used without fee for
academic purposes. Laboratory assignments focused on an-
alyzing ©C/OS source code, understanding and augmenting
kernel functions, and creating compatible application code.
Unfortunately, after teaching the class with this focus a few
times, we concluded that these assignments did not lead to
a thorough understanding of the RTOS or to the ability to
create reliable, time-critical application code for embedded
systems.

At that point, we decided to restructure the class around the
design and implementation of a real-time operating system,
rather than studying and using an existing kernel. We rea-
soned that students would more fully internalize the princi-
ples of embedded software if they designed and implemented
the system software in its entirety. We developed custom
tools for our target architecture, initially a modified version
of the MIPS instruction set the students had seen in an ear-
lier course. The tools included a compiler, assembler, and
a detailed simulator that included breakpoints, single-step
execution, and extensive debugging support.

The course has undergone considerable evolution over the
15 year period in which it has been taught. At the core
of the class today is a sequence of eight laboratory assign-
ments that result in a fully functional RTOS and applica-
tion software [2]. Students work in teams of two to create
kernels that conform to an application program interface
(API) defined for the class RT'OS to ensure that kernels can
run the same application code. As will be described in the
next section, each lab includes application code that each
RTOS must run correctly without modification. The com-
mon API facilitates class discussions about alternative ap-
proaches and tradeoffs without overlying constraining stu-
dent designs. Within the constraints of the API, there is
significant latitude in internal organization and implemen-
tation.

The emphasis on creating an RTOS is reflected in the lec-
tures, homework assignments, and exams. Class discussions
cover material from the class text and supplemental material
that is essential for the labs. Class exams cover general real-
time system issues and details specific to the class RTOS.

Students come to this project with different backgounds and
abilities, a recognized problem in embedded system courses
[17]. We address this by our choice of text, class discussions
that review essential background material, carefully selected
initial homework and lab assignments, and an assortment of
useful supplemental material on the course webpage. The
reading and discussions are structured to provide students
with essential background information shortly before they

need it in their designs, similar in principle to the stepwise
spiral approach advocated by Jing et al. [13]. It is critical
at every step along the way that students see the big picture
(the overall objective and context) reasonably clearly.

At present, the target architecture is the Intel 8086, a plat-
form for which a wide range of development tools are readily
available. The 8086 was chosen to reduce the learning curve
for students already familiar with the Intel IA32 architecture
from a prerequisite course using the book and innovative labs
of Bryant and O’Hallaron [5]. In the class, we rely primar-
ily on a simulator to provide the environment for develop-
ment and testing. For several years we used both a detailed
simulator and an 8086 hardware development board, but in
recent years have used the simulator exclusively. (This had
more to do with limits on space and aging hardware than
pedagogy; we plan to use both simulator and hardware in
the future after a switch to a new target architecture.)

A deterministic simulator offers several advantages that have
proven to be critical in the success of the class. First, the
simulator permits time to be frozen and the system state
to be observed without affecting the execution sequence. In
contrast, software execution on embedded hardware is diffi-
cult to observe, as added debug code can change the timing
and system behavior making it very difficult to track down
certain software bugs. With the simulator, students can
pause time and observe the detailed actions of their code,
and repeated runs produce the same outcome, making it
easier to identify and correct behavioral anomalies.

Secondly, the simulation approach avoids problems that in-
evitably arise in labs using real hardware. In our experience,
despite reasonable efforts by staff to maintain lab infrastruc-
ture, students often encounter problems such as damaged
boards, bad connectors, or boards left with improper set-
tings by previous users. For a few unlucky students, these
problems can significantly increase the time to debug their
systems. Finally, because our simulator is readily available
on a variety of platforms, it is convenient to use and does
not require dedicated infrastructure.

We note that others have advocated the use of simulators in
embedded system courses for a variety of additional reasons.
These include allowing software development to begin before
custom hardware is available, reducing costs and space re-
quirements, and abstracting away hardware details that get
in the way of the intended learning experience [18]. Others
have observed that simulators are well suited for develop-
ment environments in which RTOS concepts are taught [6].
In our experience, the ideal development environment for
teaching purposes includes both a highly functional and de-
tailed simulator and a real hardware target.

It can be challenging to find a text that supports a project-
oriented course, but we have had good success in using Si-
mon’s book, an RTOS-oriented introduction to the field of
embedded software [23]. Without limiting discussion to a
single RTOS, Simon addresses most critical issues that arise
in the creation and use of a kernel. The text is very acces-
sible, and the topics it treats match the needs of our class
labs surprisingly well. The book even includes a CD with
the source code to pC/OS which students can consult for

additional insight if they choose.

Our course includes feedback mechanisms that help us make
regular improvements. For example, each lab submission
must include a short report of problems encountered and the
time spent completing the lab. Problem summaries some-
times alert us to issues with tools or documentation, but
typically they report errors in the students’ design or code.
Edited error summaries are posted with each lab to give fu-
ture teams with matching symptoms ideas about possible
causes. High, low, and average times required for each lab
are computed each semester and posted on the lab webpage.
This helps students plan and alerts them when their time
investment becomes excessive. Instructors use this informa-
tion to identify possible improvements and to evaluate the
impact of changes to the lab assignments.

Near the end of the semester, students measure and report
certain characteristics of their kernels, including total size of
source code and executable, longest critical section, and the
worst case overhead to release a semaphore. Encouragingly,
their measurements show that the student kernels are gen-
erally getting smaller, faster, and more efficient. We believe
that this is a result of ongoing improvements to the course.

4.1 Software Tools

The choice of software tools is important in any embed-
ded system project. For example, an ideal simulator would
run the same binaries as the hardware, and it would ac-
curately reflect an environment requiring time-critical code.
We elected to create much of our own software, in part be-
cause of prior experience with architectural simulators and
compilers, and in part because it appeared to be the best
way to get the functionality we wanted.

Our compiler, assembler, and simulator are written in C
and run on Windows, Linux, and OS X machines. 8086
assembly code is generated by a modified version of C86,
a publicly available ANSI C compiler. The compiler offers
simple inline-assembly functionality with no syntactic or se-
mantic checking. Because flawed inline assembly can lead
to particularly perplexing errors, students are required to
write and maintain separate C and assembly files. Assembly
functions follow compiler conventions so they can call and
be called by functions written in C. To convert assembly files
to an executable, we use the Netwide Assembler (NASM),
a free, portable assembler. Since a portion of each kernel
must be written in assembly—most notably interrupt ser-
vice routines (ISRs), the code to save and restore contexts,
and the code to dispatch tasks—it is important that the as-
sembler be user-friendly. NASM supports straightforward
syntax and directives.

The Emu86 simulator is the most crucial of the software
tools that support our class. The simulator is an 8086 em-
ulator with a textual interface to which a variety of useful
debugging functions have been added. A wide range of ca-
pabilities are offered:

e Program binaries can be loaded into the simulated
memory.

e Program input and output are tied to a separate con-

<tock xterm — 106%35

Emu86>dump 0:3031 48

Seg:0ff | @ 1 2 3 4 56 7 8 9 AB CDE FI Text dump
| |
0000:3030 | 00 44 65 74 65 72 6D 69 6E 69 6E 67 20 43 50 55 | .Determining CPU
0000:3040 | 27 73 20 63 61 70 61 63 69 74 79 20 2E 2E 2E OA | 's capacity
0000:3050 | @0 53 65 65 64 3A 20 @0 E9 CE @0 B8 03 @0 50 E8 | .Seed: P
0000:3060 | 92 DB 83 (4 @2 B8 51 30 50 E8 FC DO 83 (4 @2 B8 | QoP.......
Emu86>d main 8
Seg:0ff | Hex Dump | Assembly

__________ | = | m e

0000:3132 | E9DFOQ | jmp 3214h

0000:3135 | C746FEQ000 | mov word [bp-2h],0h

0000:313A | EB17 | jmp short 3153h

0000:313C | 8B46FE | mov ax,[bp-2h]

0000:313F | B90300 I mov cx,3h

0000:3142 | D3E@ | shl ax,cl

0000:3144 | 052432 | add ax,3224h

0000:3147 | 89C6 | mov si,ax

Emu86>hist 6
CS:IP for previous 6 instructions executed and previous 6 interrupted.
Most recent entries are at the bottom:

Executed | Interrupted

0000:08DD | ©000:08DC (IRQ 1h) YKEnterMutex

0000:099D | 0000:08DF (IRQ 6h)

0000:09A1 | 0000:08DF (IRQ 7h)

0000:08DE YKExitMutex | 0000:099A (IRQ 4h) L_yakc_14

0000 :08DF | ©000:08DC (IRQ 5h) YKEnterMutex

0000:09A4 L_yakc_15 | 0000:099A (IRQ 1h) L_yakc_14
Emugé>r

Instruction Count: 3000000 PIC Regs: (IMR:@0 ISR:02 IRR:00)
AX:0000 BX:0000 CX:0000 DX:0000 SI:0000 DI:0000 BP:1C6@ SP:1C5A IP:1C8B
{0:0D:01:0T:05:02Z:0A:0P:1C:0} DS:0000 ES:0000 SS:0000 CS:0000
Next instr -> 0000:1C88 E852EC call 8E@h

Emu86>|

Program Output

CPU: 11
CPUS 15>

Figure 1: A screen shot of the simulator.

sole window.

e Breakpoints can be set on arbitrary instructions in the
executable.

e Programs can be executed to completion, to a break-
point, or for any fixed number of instructions.

e The contents of registers can be viewed and set to ar-
bitrary values.

e Memory contents can be viewed as numerical values or
disassembled instructions, and set to arbitrary values.

e Lists of the most recently executed instructions and
most recently interrupted instructions can be viewed.

e Interrupts can be manually asserted at any point in
the program.

e Addresses of variables and functions can be read from
the symbol table.

e Breakpoint monitors can be set to stop execution when
a register or memory location is accessed, modified, or
reaches a particular value.

As can be seen, the simulator offers features beyond those of
conventional debuggers. Most importantly, the simulator of-
fers the possibility of not just stopping execution, but time
itself. For students confused by execution involving inter-
rupts, instruction and interrupt histories prove invaluable.
Thorough testing of interrupt nesting and critical sections
is made possible by the ability to assert an interrupt manu-
ally at any point. Breakpoint monitors can watch arbitrary
regions of memory rather than single variables. Powerful
breakpoint conditions make it easy to find the instruction
that writes a particular value to a given memory location—a

useful capability for stack overruns and problems with point-
ers.

Figure 1 shows the interface for the simulator. The console
window on the left shows the results of user commands to
display (dump) the contents of a range of memory locations,
to disassemble some instructions following the label main, to
show the history of the instructions most recently executed
and interrupted, and to display current register contents.
The other two windows show the output generated by the
simulated system.

With any simulator, the challenge must be addressed of how
to represent the physical world with which the system inter-
acts. Given our software focus, we use a simplified physical
model in which essential interrupts are tied to the user’s
keyboard. The highest priority interrupt, a system reset, is
asserted when Ctrl4+R is pressed. The interrupt associated
with the system heartbeat timer is generated automatically
at fixed intervals (10,000 instructions by default) and man-
ually by pressing Ctrl4+T. Any other key press causes the
key value to be stored in a dedicated memory location and
a keyboard interrupt to be asserted.

The simulator also includes built-in support for Simptris, a
simplified version of a Tetris-like game. Application software
written in the final lab plays the game by calling functions
to move and rotate pieces and by responding to interrupts
that signal changes in the game state. Each call to move
or rotate a piece incurs fixed communication overhead—a
function cannot be called until a signal is received indicat-
ing that the previous placement command finished. Since
pieces appear and fall at an increasing rate, even carefully
crafted code will eventually fail to place a piece as desired
and the game will end. The number of lines cleared is there-
fore an indication of the overhead and inefficiencies in both

Function

Description

void YKInitialize(void)

Perform all kernel initialization

void YKEnterMutex(void)

Disable interrupts

void YKExitMutex(void)

Enable interrupts

void YKIdleTask(void)

Lowest priority background task

void YKNewTask(void (* task)(void), void *taskStack, unsigned char priority)

Create new task

void YKRun(void)

Start the RTOS

void YKDelayTask(unsigned count)

Block task for count ticks

void YKEnterISR(void)

Record ISR entry

void YKExitISR(void)

Record ISR completion

void YKScheduler(void)

Pick the next task to run

void YKDispatcher(void)

Cause the next task to run

void YKTickHandler(void)

Decrement count for delayed tasks

YKSEM* YKSemCreate(int initialValue)

Create a semaphore

void YKSemPend(YKSEM *semaphore)

Obtain a semaphore

void YKSemPost(YKSEM *semaphore)

Release a semaphore

YKQ *YKQCreate(void **start, unsigned size)

Create a message queue

void *YKQPend(YKQ *queue)

Get message from queue

int YKQPost(YKQ *queue, void *msg)

Put message in queue

YKEVENT *YKEventCreate(unsigned initialValue)

Create an event group

unsigned YKEventPend(YKEVENT *event, unsigned eventMask, int waitMode)

Wait for event flag

void YKEventSet(YKEVENT *event, unsigned eventMask)

Set an event flag

void YKEventReset(YKEVENT *event, unsigned eventMask)

Clear an event flag

Table 1: Required Kernel Functions

the application code and the RTOS. To ensure that the pri-
mary focus is on software efficiency rather than playing in-
telligence, the game is reduced to a 6x16 playing area with
just two distinct pieces. The screen capture in Figure 1 in-
cludes the two windows displayed in Simptris mode. The
small window in the center shows the current game state as
pieces fall and touch bottom, and the larger window on the
right shows the output of the system as the application code
executes.

4.2 The Kernel

The complete specification for the kernel includes prototypes
for twenty-two functions and a detailed discussion of their
required behavior. The required kernel functions are sum-
marized in Table 1. (The prefix for the function names stems
from the name of the kernel: YAK, originally an acronym
for Yet Another Kernel. The naming strategy of kernel func-
tions makes it easy to identify calls to kernel functions in the
application source code.)

The RTOS supports application code consisting of distinct
tasks with separate stacks and unique, static priorities. Each
task is either ready to run or blocked, in which case it will
be made ready by the kernel when sufficient time passes (if
the task delayed itself) or when the resource requested by
the task (e.g., semaphore, message) becomes available. Once
running, a task continues to execute until it blocks or until
it is preempted by a higher priority task.

Application code includes ISRs that execute when an in-
terrupt is both enabled and asserted. Each ISR must call
specific RTOS functions on entry and exit that allow the
kernel to track the interrupt nesting level and to distinguish
between function calls from task and interrupt code.

The RTOS requires specific rules to be followed when ini-
tializing the kernel and starting the application code. It is
assumed, for example, that user code is the first to execute
on reset. This code must call functions to initialize the ker-
nel, create and initialize tasks, and begin task execution.
The code also typically creates RTOS resources used by the
application, such as semaphores and queues.

The most fundamental components of the RTOS are the
scheduler, which selects the highest priority ready task, and
the dispatcher, which loads the saved context of a task and
transfers control to it. Other functions allow tasks to delay
themselves for a specific number of system clock ticks, to
use semaphores for synchronization and mutual exclusion,
and to communicate using message queues. An attempt to
obtain a semaphore that is not available will cause the caller
to block, and releasing a semaphore will cause the highest-
priority task blocked on the semaphore to be made ready.
User code must allocate space for each message queue, but
the RTOS manages the queue itself so that a task requesting
a message can block if the queue is empty and be unblocked
when a message is written to the queue.

4.3 Lab Assignments

The lab sequence begins with an assignment to write, com-
pile, and run code using the tools. Students write a sim-
ple function in assembly language that is called from a C
program. The function computes an expression involving
parameter values and a global variable and returns the re-
sult. In the second lab assignment, students use the simu-
lator and its debugging capabilities to answer a variety of
questions about a program and its execution. For example,
they must determine the memory address associated with a
global variable and with the first instruction of a function.
More challenging questions ask for the maximum amount

of memory used by the stack and the exact memory loca-
tion of a local variable within the second call to a recursive
function. After completing these first labs, students have
been exposed to the tool chain, the simulator’s unusual de-
bugging features, the target machine’s instruction set, and
stack frame and function call conventions.

In the third lab assignment, students write ISRs in assem-
bly for the three basic interrupts in the simulator. Each ISR
saves the register context, calls a C function (an interrupt
handler) to respond to the interrupt, restores the context,
and returns. Interrupt code must reliably support nested
interrupts—tested by delaying the keyboard handler for a
certain key long enough to ensure that a timer tick occurs
while still in the keyboard ISR. In completing this lab, stu-
dents come to understand the interrupt mechanism, how to
save and restore state consistently, and how to initialize the
interrupt vector table.

In labs four through seven, students design and implement
portions of the RTOS. These labs begin with an assignment
to complete a detailed design, complete with pseudocode
and a specification of the data structures that will be used.
Students must also submit responses to a series of questions
about how a variety of issues will be addressed in their im-
plementation. TAs and the instructor read their submissions
and provide feedback that includes alerts to aspects of their
designs that might prove problematic. Naturally, it is diffi-
cult to tell from their descriptions how everything in their
designs will work, but the assignment gets them thinking
about the important issues, even if they do not yet appreci-
ate the consequences of the various design choices that they
make. The design step is critical; in general, students who
complete a thorough design spend less time implementing
and debugging their kernels.

With the design complete, students begin to implement their
RTOS. Each lab builds on the previous and includes appli-
cation code that tests the new functions and that must ex-
ecute correctly on the student RTOS, even with arbitrary
key presses and increased timer tick frequency (modifiable
from the command line in the simulator). The simplest ap-
plication code creates a single task that, in turn, creates a
low priority task and a high priority task. Once the high-
est priority task is created, it begins execution and never
relinquishes control. Application code for later labs is more
complex, exercising kernel functions that include support for
semaphores, message queues, and event groups.

In the final lab, the focus shifts to writing application code.
In the context of the simulator’s Simptris game, students
write interrupt code for each of the five additional interrupts
used by the game and they create task code that can play the
game. Students often employ a dedicated task that decides
where to place each piece and a second task that makes the
function calls to move pieces while dealing with the commu-
nication delays. Typical designs include a semaphore (block-
ing the second task until a previous call completes) and a
message queue (communicating move information between
tasks).

Application code for the lab varies widely, but it generally
uses a significant subset of the RTOS. For full credit, student

| Category | Score | Avg. | Scale |

Overall course rating 7.0 6.5 0-8
Amount learned 6.8 6.5 0-8
Materials and activities effective | 6.9 6.3 0-8
Well organized 7.0 6.4 0-8
Intellectual skills developed 7.0 6.5 0-8
Good use of time outside class 83.3 74.6 | 0-100

Table 2: Student Evaluations

code must clear a specified minimum number of lines in the
game. Kernel inefficiencies can be a limiting factor, but the
required threshold can be reached without highly optimized
RTOS functions or sophisticated placement algorithms.

5. EVALUATION AND OBSERVATIONS

Student evaluations for the last completed offering of the
class are summarized in Table 2. The average listed in the
table is of all other classes in our department. These rat-
ings place the class among the highest-rated courses in the
department. In addition, the course is frequently cited as
a favorite in exit interviews (at graduation). We note that
the success rates in the class are impressive: of the roughly
750 students who have taken the class, just 11 failed to pro-
duce a working RTOS. We feel this is due to the effective
infrastructure that exists within the course.

What do students actually learn in the course of designing
and implementing an RTOS? Based on our observations,
they have unusual insight into the causes of bugs on Barr’s
top ten list. For example, virtually every team must chase
down at least one bug caused by a race condition or non-
reentrant function—generally because they failed to see that
a particular portion of their kernel code was a critical sec-
tion and they failed to disable interrupts during its execu-
tion. Similarly, many teams experience stack overflow at
least once when they create tasks and task stacks for their
own application code. The overwriting of adjacent code or
a nearby data structure can be a baffling bug, but the de-
bugging capabilities of the simulator (the memory monitors
in particular) make this relatively easy to track down.

The only entry on Barr’s list that never comes up in the con-
text of our class labs is heap fragmentation. When blocks
of memory are needed dynamically (for a task control block
or a message queue, for example) they are allocated by sim-
ple routines that allocate entries from a fixed size array of
C structs. For virtually all other entries in Barr’s list, the
students come to understand what the real issues are: how
the condition might arise, what is at stake, and how it can
be avoided.

Of course, students learn a great deal about embedded sys-
tems beyond the causes of bugs on Barr’s list. They are
well positioned to develop application code for any RTOS,
not just the one they created. Since they have written the
context-switching code (to save and restore task contexts),
they are keenly aware of the consequences of switching to
another context at an inopportune time. This, in turn,
helps them understand critical sections and the importance
of disabling interrupts, using semaphores, or calling func-
tions that lock the scheduler. Since they have implemented

semaphores and message-passing primitives, they are aware
of what happens behind the scenes when similar functions
are called and they are aware of important questions to ask
when learning about a new RTOS. (Examples: Does this
semaphore provide priority inheritance? Is the next task to
run the waiting task with highest priority or the task that
has been waiting the longest?) Students are also sensitive
to the overhead of RTOS operations and potential pitfalls
in using and misusing kernel functions.

Students completing the class show increased confidence in
working with embedded software. Over the years, we have
observed an increase in follow-on student projects in which
embedded software plays an important role, and in many of
these projects the students have chosen to use an RTOS. For
example, a recent senior project used a kernel on a custom
FPGA board to support real-time, on-board vision process-
ing for small autonomous vehicles. Reliable data are not
available, but informal discussions with graduates indicate
that the course has increased the number that seek and find
employment in the area of embedded systems.

Although the course focuses on embedded systems, we be-
lieve that its most significant outcomes are not restricted to
the embedded domain. Most students taking the class do
not go on to become embedded system developers, but all
of them become better programmers. They are more likely
to pursue a thorough design before coding and less likely to
use inefficient constructs. They are more likely to correctly
manipulate low level data and less likely to be stumped by
obscure software bugs. Students have increased confidence
in their ability to create reliable systems because they suc-
cessfully completed a challenging project. Students have a
better understanding of system fundamentals, including task
or process-level actions of the operating system and the in-
teraction between hardware and software. These conclusions
are supported by anecdotal evidence from students, alumni,
and recruiters.

As with any class, there are costs in setting up the infras-
tructure, but once established, the overhead associated with
teaching this course compares favorably to other classes that
focus on computer systems. Given the critical role of the lab
assignments, it is helpful if the instructor and TAs have pre-
viously created their own RTOS so they can consult their
own code when questions come up. For example, student
concerns early in the semester about the work required to
write an operating system from scratch are reduced when
the instructor announces that his kernel is a total of 955
lines of C code and 175 lines of assembly.

The overhead of evaluating lab submissions is far from ex-
cessive; students sit down with a TA and allow their code to
be tested, and it is usually immediately obvious if it works
correctly or not. Knowledgeable TAs are critical in the suc-
cess of the class, however. Teams occasionally get stuck and
need help. Because kernel implementations can vary widely,
TAs and the instructor must be able to consider many differ-
ent approaches and provide suggestions within each team’s
unique framework. A reasonable level of programming ma-
turity in the students is essential, but the requirement to
work in teams helps those students with less experience or
lower confidence.

We have had few instances of plagiarism, or inappropriate
reuse of code from others. The nature of the assignments
makes it easy to maintain an archive from previous semesters
that new submissions can be compared against. In practice,
the nature of the assignments makes it unlikely that an in-
ternet search will produce code that can be used without
substantial modifications. Moreover, the text for our class
comes with a CD that includes the full source code of 4C/OS
that students can study if desired. Although the overall op-
eration of pC/OS is similar to our RTOS, there is very little
code that can be taken from that kernel and used without
significant modification.

In any technical class, the course content must be updated
periodically. We have made many refinements over the years
and will continue to do so in the future. We are currently
working to revise the class projects to use an inexpensive
microcontroller as the target platform. We are intentionally
choosing a platform with significant memory constraints to
emphasize the advantages of an RTOS and to allow stu-
dents to purchase their own hardware if desired. We are
currently identifying the target platform and development
tools we will use. We plan to use both a hardware target
and a binary-compatible simulator. We hope to add an ad-
ditional lab (creating a monitor or remote debugger) that
gives students additional exposure to system-level behavior.

Overall, we are in complete agreement with Koopman et al.
that “students learn more effectively when motivated by ex-
citing course projects,” and that students learn better “when
working through actual implementations in realistic environ-
ments that force them to confront the very real limitations
and quirks of embedded systems” [15].

6. CONCLUSIONS

In this paper, we have described a senior-level course focused
on embedded software development in which students design
and implement a real-time operating system (RTOS). This
course gives students significant experience with the con-
structs in embedded software that are typically associated
with the most troublesome bugs that developers encounter.
Students develop practical skills in developing time-critical
code, but the impact of the class in our program goes far
beyond preparing students for employment in the area of
embedded systems.

The core focus of the class—developing embedded software
from the ground up—has proven to be very effective for our
students and to be well suited for a single semester under-
graduate course. The class is an enjoyable and fulfilling class
to teach, to take, or to serve as a TA for. Because it provides
insight into such issues as system operation, multithreading,
synchronization, and execution efficiency, recruiters like stu-
dents to take this class to be considered for a variety of posi-
tions related to computer systems. We feel that students at
other universities would be well served by a similar course.

7. REFERENCES
[1] Coverity: Open source code has fewer defects.
linuz-magazine.com, April 2014.
[2] J. K. Archibald and W. S. Fife. A course in real-time

embedded software. Computer Science Education,
17(2):97-106, June 2007.

3]

[14]

[15]

M. Barr. Five more top causes of nasty embedded
software bugs. www.eetimes.com, November 2010.

M. Barr. Five top causes of nasty embedded software
bugs. www.eetimes.com, April 2010.

R. E. Bryant and D. R. O’Hallaron. Computer
Systems: A Programmer’s Perspective. Prentice Hall,
2nd edition, 2011.

P. Caspi, A. Sangiovanni-Vincentelli, L. Almeida,

A. Benveniste, B. Bouyssounouse, G. Buttazzo,

I. Crnkovic, W. Damm, J. Engblom, G. Folher, et al.
Guidelines for a graduate curriculum on embedded
software and systems. ACM Transactions on
Embedded Computing Systems (TECS), 4(3):587-611,
2005.

J. Chen, H.-M. Su, and J.-H. Liu. A curriculum design
on embedded system education for first-year graduate
students. In Parallel and Distributed Systems, 2007
International Conference on, volume 2, pages 1-6.
IEEE, 2007.

C. Ebert and C. Jones. Embedded software: Facts,
figures, and future. Computer, pages 42-52, April
2009.

R. C. Hsu and W.-C. Liu. Project based learning as a
pedagogical tool for embedded system education. In
Information Technology: Research and Education,
2005. ITRE 2005. 3rd International Conference on,
pages 362-366. IEEE, 2005.

S. Hussmann and D. Jensen. Crazy car race contest:
Multicourse design curricula in embedded system
design. Education, IEEE Transactions on,
50(1):61-67, 2007.

D. J. Jackson and P. Caspi. Embedded systems
education: future directions, initiatives, and
cooperation. ACM SIGBED Review, 2(4):1-4, 2005.
P. Jamieson. Arduino for teaching embedded systems.
are computer scientists and engineering educators
missing the boat? Proc. FECS, pages 289-294, 2010.
L. Jing, Z. Cheng, J. Wang, and Y. Zhou. A spiral
step-by-step educational method for cultivating
competent embedded system engineers to meet
industry demands. Education, IEEE Transactions on,
54(3):356-365, 2011.

I. Kastelan, M. Barak, V. Sruk, M. Anastassova, and
M. Temerinac. An approach to the evaluation of
embedded engineering study programs. In Information
& Communication Technology Electronics &
Microelectronics (MIPRO), 2013 36th International
Convention on, pages 742-747. IEEE, 2013.

P. Koopman, H. Choset, R. Gandhi, B. Krogh,

D. Marculescu, P. Narasimhan, J. M. Paul,

R. Rajkumar, D. Siewiorek, A. Smailagic, et al.
Undergraduate embedded system education at
carnegie mellon. ACM Transactions on Embedded
Computing Systems (TECS), 4(3):500-528, 2005.

J. J. Labrosse. MicroC/OS-1I: The real-time kernel.
CMP Books, 2nd edition, 2002.

C.-S. Lee, J.-H. Su, K.-E. Lin, J.-H. Chang, and G.-H.
Lin. A project-based laboratory for learning embedded
system design with industry support. Education,
IEEE Transactions on, 53(2):173-181, 2010.

H. Lim, H. Yu, and T. Suh. Using virtual platform in
embedded system education. Computer Applications

(19]

20]

21]

(22]

23]

(24]

(25]

[26]

27]

in Engineering Education, 20(2):346-355, 2012.

P. Marwedel. Towards laying common grounds for
embedded system design education. ACM SIGBED
Review, 2(4):25-28, 2005.

W. Ping. Research on the embedded system teaching.
In Education Technology and Training, 2008. and
2008 International Workshop on Geoscience and
Remote Sensing. ETT and GRS 2008. International
Workshop on, volume 1, pages 19-21. IEEE, 2008.

A. L. Sangiovanni-Vincentelli and A. Pinto. Embedded
system education: a new paradigm for engineering
schools? ACM SIGBED Review, 2(4):5-14, 2005.

A. L. Sangiovanni-Vincentelli and A. Pinto. An
overview of embedded system design education at
berkeley. ACM Transactions on Embedded Computing
Systems (TECS), 4(3):472-499, 2005.

D. E. Simon. An Embedded Software Primer.
Addison-Wesley, 1999.

D. B. Stewart. Twenty-five most common mistakes
with real-time software development. Tutorial at 2006
Embedded Systems Conference, September 2006.

J. Sztipanovits, G. Biswas, K. Frampton, A. Gokhale,
L. Howard, G. Karsai, T. J. Koo, X. Koutsoukos, and
D. C. Schmidt. Introducing embedded software and
systems education and advanced learning technology
in an engineering curriculum. ACM Transactions on
Embedded Computing Systems (TECS), 4(3):549-568,
2005.

W. Wolf and J. Madsen. Embedded systems education
for the future. Proceedings of the IEEE, 88(1):23-30,
2000.

Y. Zhang, Z. Wang, and L. Xu. A global curriculum
design framework for embedded system education. In
Mechatronics and Embedded Systems and Applications
(MESA), 2010 IEEE/ASME International Conference
on, pages 65—69. IEEE, 2010.

