
Measuring performance of middleware technologies for
medical systems: Ice vs AMQP

Paloma Rubio-Conde, Diego Villarán-Molina, Marisol García-Valls
Universidad Carlos III de Madrid, Spain

{parubioc, mvalls}@it.uc3m.es, diego.villaran@uc3m.es

ABSTRACT
After decades of design, development and usage of distributed
application technologies, there are numerous communica-
tion middleware architectures and implementations in the
market that have reached a considerable maturity level. A
large number of them are open source initiatives that have
shown efficiency and good performance in a broad range
of domains, from banking to gaming. These are low cost
solutions, easily programmable and of high interest to be
explored in areas such as cyber-physical medical systems
that have special requirements for safety, availability, com-
munication latency, real-time operation, and fault tolerance.
This paper analyzes the suitability of two open source com-
munication middleware technologies, Ice (Internet Commu-
nication Engine) and AMQP (Advanced Message Queuing
Protocol), as software elements suitable for developing au-
dio transmission and reception systems for low cost medical
applications. The paper simulates an audio application with
both technologies, made of a server (nurse central) that re-
ceives and processes audio media from several clients (pa-
tients); communication can be triggered concurrent from
multiple patients and in both directions. Stress tests with
high load conditions are simulated in the experiments to
show the behavior of both technologies mainly with respect
to their stability and overhead.

Keywords
Cyber-physical medical systems; middleware

1. INTRODUCTION
Audio systems may become an important part of remote

care medical systems, e.g., for remote monitoring of elderly
patient health conditions. So, their impact can be at the
level of reducing the costs incurred by the states in taking
these patients to the hospital. These will be part of the
application side in ICE medical architecture [17], possibly
also in a virtualized context [4].

Copyright retained by the authors.

Audio applications for medical systems have time con-
straints for two main reasons: (a) inherited from their CPS
context and their interaction with other physical monitoring
and control elements, and (b) the inherent real-time nature
of audio processing. In audio processing, a deadline miss in
one sample creates noise that disturbs the perception and
greatly annoys the final user.

Live audio-video systems are usually soft real-time sys-
tems where the violation of constraints results in degraded
quality, but the system can continue to operate and also re-
cover in the future using workload prediction and reconfigu-
ration techniques [7, 8]. Digital signal processing (DSP) are
part of the logic related to analyzing the input continuously
along time; output frequency has to be stable independently
of the processing delay [14]. The mean processing time per
sample, including overhead, is no greater than the sampling
period, which is the reciprocal of the sampling rate.

To support the development of distributed audio solu-
tions, there are a number of powerful open-source middle-
ware technologies that provide suitable performance to en-
able low cost solutions for remote patient monitoring. These
can be applied in medical contexts where patients are not
in critical conditions, e.g., elderly living on their own, but
where their monitoring is needed and soft real-time interac-
tion is required. Some proposals for architectures for medical
systems such as ICE define the lowest level of communica-
tion to be DPWS[17]. Although this is suitable for health
information systems to share documents and files through
SOAP and XML, this is not a suitable approach for audio
or video as the processing incurred by the parsing and ad-
ditional message headers leads to high delays.

Therefore, not all middleware technologies are suitable as
communication backbones in health care systems. For in-
stance, in a centralised patient monitoring system that re-
ceives and displays the information about patients in their
rooms/apartments, a bad decision on the selection of a mid-
dleware technology may yield to latencies of over tens of
seconds.

This paper presents the characteristics of open source mid-
dleware technology and compares their efficiency in opera-
tion for acting as communication backbones. ZeroC Ice [25]
and AMQP [12] are compared as they present two different
architectural solutions that have a clear influence in their
performance. A description of the design of the parallel
audio processing from simultaneous clients is described for
both, Ice and AMQP; finally, the results describing the exe-
cution time costs for both applications will be given as well
as the conclusions for this work. Results should guide engi-

neers to selecting a specific option based on its architecture
and the specific off-line tests that should be executed.

The paper is structured as follows. Section II describes the
context and related contributions in the area of distributed
systems’ technology for medical domains. Section III de-
scribes the base middleware technologies that are analysed
and used in the paper. Section IV describes the design of
the audio system and presents a general overview of their
programming structure both in Ice and AMQP. Section V
lays down the considerations to be made for allowing ap-
plications to have direct access to the execution platform
resources, and how different middleware technologies may
influence this aspect. Section VI presents the experimen-
tal results that compare the performance of both Ice and
AMQP and their overhead in the audio system. Section VII
concludes the work and relates conclusions to the obtained
results.

2. BACKGROUND
The ICE [17] approach defines important elements such

as the protocol stack for medical device interoperability. The
lower layer of this stack is DPWS in charge of service dis-
covery, interface description, messaging, event propagation,
and secure information transmission. On top of this pure
web service communication level, a streaming dual channel
transmission based on MDPWS is provided; however the
processing of the WS protocols is delay prone.

Below the DPWS layer, there is no further specification
a part from the usage of HTTP/TCP or UDP. However, no
specification of the basic communication middleware tech-
nologies is indicated. This is, precisely, the level at which the
right technological choice leads to performance results of dif-
ferent orders of magnitude. So, this specific aspect deserves
careful attention by the system engineers and an analysis
of specific technologies must be done prior to actual design,
development, and deployment. For a given standard (e.g.
DDS[21]), different implementations from distinct vendors
also lead to performance variations that may better adjust
to given non-functional reuquirements.

There are a number of communication middleware back-
bones that are suitable for the ICE messaging bus that map
to different interaction models: synchronous, asynchronous,
remote invocations, publish/subscribe, or messaging. Exam-
ples are DDS[21], ZeroC Ice [25], Corba [20], Java RMI [23],
River [1], JMS [3], stream processors [18], or iLAND [7] mid-
dleware for service oriented real-time applications, among
others. To support timely operation in distributed domains,
a number of contributions have appeared at different levels
of the communication. Examples are: [2, 11] that enables
higher dynaminity and real-time replacement of components
on-line ; improvements to the number of clients supported
by servers [9, 10]; and analysis of specific publish-subscribe
communications over specific virtualized nodes [6].

In the case of the medical architecture defined by ICE,
using DPWS bounds applications to SOAP protocols with
messages in XML. This results in heavy communication la-
tencies and parsing/unparsing times that may not be suit-
able to all domains, specially for those with timing con-
straints.

Studing alternatives to a pure DPWS backbone is needed
as it yields to timely interaction between remote nodes/de-
vices that is more suitable for the inherent temporal require-
ments of cyber-physical systems. Timeliness is a critical

Application code

OS (POSIX)!

Sockets/IP/
Transport!

Concurrency
control!

Priorization! Timers/
Clocks!

Memory!

Ice Libs!

Ice
Core!

Communi
cator!

Proxy!Ice API!

Figure 1: Ice architecture

issue for some subsystems of a larger CPS that must be
considered. Delays due to message parsing or heavy XML
message transmission easily propagate to the control loop,
which can destabilize the control over the physical system.
Specific alternative solutions for efficient transmissions must
be considered for the health domain based on the specific
temporal requirements of applications.

3. COMMUNICATION MIDDLEWARE

3.1 Internet Communication Engine: Ice
The Internet Communications Engine (Ice) [25] (shown

in figure 1) should not be confused with the medical sys-
tems architecture ICE [17]. Ice middleware is an object-
oriented middleware platform that can be used to build dis-
tributed client-server or publish-subscribe applications in a
simple way. It supports heterogeneous systems interconnec-
tion from the point of view of their hardware, operating sys-
tem, and programming language. One important aspect is
that it provides secure transmissions, and efficient network
bandwidth utilization, memory usage and low CPU over-
head due to its own operation internals and optimizations
of its communication protocol messaging and transmissions.

Ice objects are the essential remote entities that can be
instantiated in either a server or multiple servers. Each Ice
object has one or more interfaces, which are collections of
named operations that are supported by an object.

Ice design, presented in figure 1, was clearly influenced by
Corba; however, the API has been maintained quite sim-
ple and it is extremely easy to use, inspired in Corba, but
with the goal of avoiding the experienced mistakes of the
latter. Its programming model is quite powerful as remote
objets may implement different interfaces through a single
object identify. It supports some level of dynamic behav-
ior by sending proxies to clients, and activating servers on
demand which favors performance when not needed.

The Communicator entity is the entrance point to all in-
teractions. It dispatches requests to all facilities of Ice li-
braries. It controls the client-side and server-side thread
pools. The Adaptor is a server-side entity that maps the re-
quests to the server interface. The Proxy is an entity that is
instantiated in the client that represents the remote object;
it supports the remote invocations from clients as if they
were local calls. The Skeleton is equivalent to the proxy but

on the server side for translating incoming requests. The
Servant is in charge of supporting the server-side operations
to solve the requested invocations in a specific programming
language.

Distributed applications can be programmed in different
languages; one end can use C++, so that the resulting ex-
ecution environment will be direct access, and it is possible
to use all the system calls of the operating system; the other
end can be programmed in C#; in such a case, it is needed
to integrate an additional gateway run-time virtual machine.

3.2 Advanced Message Queuing Protocol
AMQP was originated in the financial services industry.

It has general applicability to a broad range of application
domains, including medical systems.

AMQP is an open standard application layer protocol
and it is intended for message-oriented middleware. Main
AMQP characteristics are message orientation, queuing, rout-
ing (publish-subscribe and point-to-point), security [8] and
reliability.

The protocol defines the behaviour of the server that pro-
duces the messages (messaging provider) and the messag-
ing client to the extent that implementations from different
vendors are interoperable; in this way, it is similar to other
protocols such as Http or Ftp, among others.

Previous middleware standardizations attempts were made
at API level (i.e. JMS, Java Message Service), but they
did not get a real interoperability [9] between multiple im-
plementations. As opposed to JMS that only defines an
API, AMQP is a wire-level protocol which is a description
of the data format that are sent across the network as a byte
stream. Consequently, any tool that can create and inter-
pret messages according to this data format can interoperate
with any other tool that complies to the protocol, regardless
of the implementation language.

The main entities that are defined, from an interconnec-
tion point of view, are:

• Message broker is a server to which clients connect.

• User is an entity that, by submitting correct creden-
tials (i.e. a password) is allowed to connect to a broker.

• Connection represents a transport protocol and con-
nection linked to a user.

• Channel is a logical connection, having a state for each
individual connection. Those clients who make con-
current operations through a single connection must
maintain a different channel for each of these. Cus-
tomers who use a thread-based model for concurrency
can, for example, encapsulate the channel statement
in a local variable for each thread.

The AMQP model is based on three entities: exchange
(that receive messages from publishers and route them to
message queues based on arbitrary criteria as message prop-
erties or content); message queue (entities receiving mes-
sages and storing them until they can be safely consumed
by clients); and binding that are rules defining the relation-
ship between a message queue and an exchange and provide
the message routing criteria.

AMQP wire protocol definition allows for all common
messaging behaviors. It does not define a wire-level distinc-
tion between clients and brokers, the protocol is symetric.

However, different implementations may have different ca-
pabilities.

AMQP is rather oriented to providing a simple message
bus for integration of systems. The variety of realizations
yields to both mentioned run-time architectures: direct (over
C++ and POSIX compliant OS) and gateway (e.g. Java).
For example, RabittMQ implementation may use either a
C# Mono environment or a C++/POSIX environment.

3.3 Differences between Ice and AMQP
The specific implementation of a middleware technology

or specification has a determining influence on the overall
performance. The specific used programming language must
be also carefully considered. In this respect, by using Java
interfaces, a virtual machine is added that relatively isolates
the application execution. Applications that require to ac-
cess the platform resources, e.g., to control elapsed time,
etc., will then use run-times that directly compile to the
platform such as C++; moreover, a POSIX interface en-
ables finer control by using the kernel specific functions to
access the platform resources.

4. AUDIO SYSTEM DESIGN

4.1 System overview
The audio system has been design and implemented for

both paradigms: remote objects (Ice) and messaging (AMQP)
in a homogeneous structure. Both patient side and server
side can trigger the interaction protocol for audio transmis-
sion. Both middleware technologies are open source code
implementations, easily programmable. Figure 2 shows the
overall structure.

Comm.
Middleware!

Comm.
Middleware!

Comm.
Middleware!

Figure 2: Overview of the application in a medical
scenario

The goal of the system is to support multiple patients con-
currently requesting service to transmit audio that has to be
received at the server side. The server side processing can be
done in parallel taking advantage of the physical hardware
processing cores. Also, the server can prioritize the process-
ing of specific patients due to different conditions: health
characteristics, contracted service, or other considerations.

Priorization is then done in the patient request and in the
server attention to the request of given patients.

4.2 Ice development
The system supports multiple patient communications with

the server. Communication is based on sending packet au-
dio frames of size 1024 bytes, where each byte is an audio
sample. Therefore, each audio frame has 1024 samples that
will be processed one by one at the server once it has re-
ceived the entire frame. Once processed, the server sends an
acknowledgement to the patient side. The design of the Ice
application shown in figure 3.

Figure 3: Software design for audio system based on
object oriented middleware

The remote interface at the server side is independent of
the specific programming language. The server side contains
the interface (AudioSamplesService.ice). This interface
has two functions that map to the two key functions of the
server: processing samples (processSamples) and generat-
ing noise (noise), being the latter to introduce high load at
the server side in order to test the stability of the communi-
cation and processing of the protocol stack. This interface
is shown below.

module UC3M{
sequence<f loat> FloatSeq ;

i n t e r f a c e AudioSamplesService {
s t r i n g processSamples (

FloatSeq img) ;
s t r i n g no i s e (s t r i n g s) ;

} ;
} ;

The patient side (client.cpp shown below) provides pa-
tient interfacing to the distributed application. It shows how
to easily locate the server application side by using the Ice
object ObjectPrx with the specification of the remote server
IP address.

int main (int argc , char∗ argv []) {
i c=Ic e : : i n i t i a l i z e (argc , argv) ;
I c e : : ObjectPrx base = ic−>str ingToProxy (”

AudioSamplesService : d e f a u l t −h
167 . 119 . xxx . yyy −p 10001 ”) ;

AudioSamplesServicePrx remoteServ ice =
AudioSamplesServicePrx : : checkedCast (
base) ;

i f (! r emoteServ ice)
throw ” I n v a l i d proxy ” ;

cout << ”processSamples () output : ” <<
remoteServ ice−>processSamples (img) <<
endl ;

}

The server application (server.cpp) implements the re-
mote functions specified by the remote interface code. Be-
low, it is schetched in the server code. Also, the it makes
itself visible to the patient side by using the Ice function
createObjectAdapterWithEndpoints that returns a remote
handle adapter later added as a remote entity with adapter-

>add.

class AudioSamplesServiceI : public
AudioSamplesService {

public :
virtual std : : s t r i n g processSamples (const

FloatSeq& img , const I c e : : Current&) ;
virtual std : : s t r i n g no i s e (const s t r i n g& s ,

const I c e : : Current&) ;
} ;

int
main (int argc , char∗ argv [])
{

int s t a t u s =0;
I c e : : CommunicatorPtr i c ;
// Plat form system c a l l s − Resource access

i c=I c e : : i n i t i a l i z e (argc , argv) ;
I c e : : ObjectAdapterPtr adapter = ic−>

createObjectAdapterWithEndpoints (”
audio adapter ” , ”d e f a u l t −p
10001 ”) ;

I c e : : ObjectPtr ob j e c t= new
AudioSamplesServiceI ;

adapter −> add (object , i c−>s t r i ng T o Id e n t i t y
(”AudioSamplesService ”)) ;

adapter−>a c t i v a t e () ;
i c−>waitForShutdown () ;

}

4.3 AMQP development
The programming of the audio system in AMQP to enable

parallel audio transmission and processing is shown in figure
4.

Figure 4: Architectural design of the audio system
based on AMQP

Audio samples are sent from the client side to the server.
Upon the arrival of an audio frame, it is processed by the

server. Then, the server may either send an acknowledge-
ment or reply audio media; this is configurable at initializa-
tion time. An rpcClient object is used to provide a Call

method to start the communication by a remote message
sending. The patient side software system is coded as fol-
lows by a simple call to sendAudioSamples.

var rpcC l i en t = new RPCClient () ;
Console . WriteLine (” [x] Request ing

proce s s sample s(−−Audio Sample−−)”) ;
var re sponse = rpcC l i en t . Ca l l (rpcC l i en t .

sendAudioSamples ()) ;
Console . WriteLine (”Elapsed Frame={0}” , sw .

Elapsed) ;
Console . WriteLine (” [.] Got ’{0} ’ ” ,

r e sponse) ;
rpcC l i en t . Close () ;

The server side code is shown below. Audio is processed
with process_samples. The response to the client is sent as
an ACK with BasicAck and a BasicPublish through an ex-
change. This structure shows a round trip full-duplex com-
munication scheme between the patients and the server side.
Channel properties have to be checked to retreive the an-
swers through the exchange.

try {
string message = Encoding .UTF8. GetStr ing (

body) ;
int [] n = ToIntArray (message , ’ ; ’) ;
r e sponse = proce s s sample s (n) . ToString () ;
}
catch (Exception e) {

Console . WriteLine (” [.] ” + e . Message) ;
r e sponse = ”” ;
}
f ina l ly {

var responseBytes = Encoding .UTF8. GetBytes
(re sponse) ;

channel . Bas icPubl i sh (exchange : ”” ,
channel . BasicAck (de l iveryTag : ea .

DeliveryTag ,
routingKey : props . ReplyTo ,
b a s i c P r o p e r t i e s : replyProps ,
body : responseBytes) ;
mu l t ip l e : fa l se) ;
}

Creating a callback queue for every RPC request is inef-
ficient, but this is solved in a good way by creating a single
callback queue per client. Still this may raise a design issue
when receiving a response in that queue. In such a case, it
is not clear to which request the response belongs to. That
is when the correlationId property is used. It is set it to
a unique value for every request. Later, when a message is
received in the callback queue, this property is checked to
match a response with a request. An unknown correlationId
value, allows to safely discard the message as it does not
belong to the requests.

Unknown messages are ignored in the callback queue, rather
than failing with an error due to a possibility of a race con-
dition on the server side.

In summary the RPC will works as follows. Upon client
start up, an anonymous exclusive callback queue is created.
The client side then sendsaudio samples as messages with
two properties: replyTo set to the callback queue and corre-

lationId that is set to a unique value for every request. Then,
the request is sent to an rpc queue. The server is waiting for
audio samples in the queue. The patient side waits for data
and acknowledgements on the callback queue. Upon arrival
of messages the patient side checks the correlationId prop-
erty; if it matches the value of the send audio message, it
retreives the content.

5. CONTROL OVER THE PLATFORM RE-
SOURCES

This section describes the mechanisms offered by both
middleware technologies for applications to access the plat-
form. Controling elapsed time and using timers as fault de-
tection and recovery mechanisms are fundamental to some
medical application types. Therefore, analyzing the mech-
anisms provided by specific middleware is needed for engi-
neers to select the appropriate tools.

For developing the audio application, several operating
system mechanisms and low level programming tunning have
been used to have control over the execution. They are
described in what follows.

5.1 Ice platform access
Several techniques have been used in the Ice application

for managing execution.
Communications are monitored measuring the elapsed time

with clock_gettime that uses high resolution clocks defined
in POSIX such as CLOCK_REALTIME clock. Invocation time
on is measured with the same clock to determine the perfor-
mance of the link.

Mechanisms to prioritize the execution are also used. This
enables the specification of patients of different priority de-
pending on several factors such as patient health conditions
or pay service. The operating system’s real-time schedulers
are used for this purpose (SCHED RR, SCHED FIFO) and
function call sched_setscheduler and sched_priority. A
real-time kernel (or patch to Linux) is needed to actually
achieve priorization. Simultaneous requests from the pa-
tients are processed in parallel. Audio streams are assigned
different processors using affinities.

5.2 AMQP
Most implementations of the protocol typically use pro-

gramming languages that introduce a virtual machine, e.g.,
Java and its JVM or C# and Mono. Therefore, appli-
cations do not have direct access to the platform to have
fine grain control over elapsed time calculations, etc. Lan-
guage specific constructs used for AMQP implementation
with C# have effect only inside the virtual machine process.
These constructs are related to basic synchronization activ-
ities such as Mutex, Monitor, Interlocked, or Stopwatch.
These constructions are managed by the virtual machine;
although most of the time they are simply mapped to the
OS system calls, their invocation experiments additional de-
lays as the kernel has to schedule the virtual machine for
execution, and the virtual machine itself has to schedule its
own threads.

6. EXPERIMENTAL RESULTS
The execution scenario for the audio system for both plat-

forms is similar; two patient sides transferring simultane-
ously audio media to a server side; the server sends back an

acknowledgement to patient sides. Interfering load is syn-
thetically produced to measure the stability of these tech-
nologies for the scenario. Load in both sides surpasses 90%.
Figure 5 shows the comparison for both middleware tech-
nologies, whereas figure 6 presents differences with respect
to the performance provided by different transport proto-
cols.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Execution iterations

O
v
e
rh

e
a
d
(%

)

Ice

AMQP

Figure 5: Experimental results: Ice ZeroC imple-
mentation vs AMQP RabbitMQ implementation

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Execution no.

C
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

Tcp

Udp

Figure 6: Different transports performance in Ice
middleware

Ice middleware is the ZeroC implementation version 3.5,
programmed in C++. Therefore, it provides the application
with direct control over the resources, including the proces-
sor affinities, that impressively speeds up the execution at
the server side. Ice run-time contains a set of threads that
efficiently manage the communication functions between pa-
tient and server sides. The results show that the commu-
nication overhead is impressively smaller than the AMQP
Rabbit technology [22]. Rabbit implementation uses a C#
environment with a virtual machine, Mono, that provides
a separate process for executing the application functions.
Therefore, the application access to the platform resources
is bounded by the execution of the virtual machine process
that is scheduled by the kernel. As both platforms are not
homogeneous, the overhead caused by the middleware com-
munication protocols is shown in percentage, which allows to
compare them: the overhead is the percentage of the round
trip invocation time, measured at the patient side, for the
same duration of the processing of the audio frames. Net-
work effects are not analysed in the experiment as they are
quite stable for an Ethernet link in the same subnet. Only
the processing time of the middleware protocol stack in the

individual machines is measured. The complete round trip
time considers the processing of the packaged audio frames
at the server side; this operation takes an average time of
1.55s in both platforms. With this value, these experiments
can be reproduced for any platform and compared against
these two middleware technologies.

7. CONCLUSIONS
An audio application in a medical scenario requires that

the audio samples are processed at a continuous rate. These
applications must be supported by a technologies that pro-
vide stable run-times, efficient communication, and support
to achieve the required response times. Ice C++ enables con-
trol and management of the execution. However, RabbitMQ
tests required a Mono client or compiling and executing the
application. As RabbitMQ works as a virtual machine at the
same level as the other applications of the operating system,
the audio system cannot issue system calls in a direct way,
which reduces its efficiency. After concluding the tests for
both technologies, it has been observed that the resulting
overheads are very different. This occurs mainly due to the
inherent nature of each technology. It is concluded that
there are open source middleware technologies that provide
simple programming models, offering stable execution envi-
ronments to applications. This is the case of both Ice and
AMQP Rabbit implementations; they are good options to
be considered by engineers as low cost solutions to imple-
menting soft real-time medical systems.

8. REFERENCES
[1] Apache Software Foundation. JiniTM network

technologies specification. Apache River v2.2.0.
https://river.apache.org/doc/spec-index.html

(on-line). November 2013.

[2] J. Cano, M. Garćıa-Valls. Scheduling component
replacement for timely execution in dynamic systems.
Software: Practice and Experience, vol. 44(8), pp.
889-910. August 2014.

[3] N. Deakin. JSR 343: JavaTM Message Service 2.0.
Oracle. March 2013.

[4] M. Garćıa Valls, T. Cucinotta, C. Lu. Challenges in
real-time virtualization and predictable cloud
computing. Journal of Systems Architecture, vol.
60(9). Oct 2014.

[5] M. Garćıa-Valls, D. Perez-Palacin, R. Mirandola.
Time-sensitive adaptation in CPS through run-time
configuration generation and verification. IEEE
COMPSAC. Sweden. July 2014.

[6] M. Garćıa Valls, P. Basanta-Val. Analyzing
point–to–point DDS communication over desktop
virtualization software. Computer Standards &
Interfaces 49, pp.11-21. January 2017.

[7] M. Garćıa-Valls, L. Fernández Villar, I. Rodŕıguez
López. iLAND: An enhanced middleware for real-time
reconfiguration of service oriented distributed real-time
systems. IEEE Transactions on Industrial Informatics,
vol. 9(1). 2013.

[8] M. Garćıa-Valls, P. Uriol-Resuela, F. Ibánez-Vázquez,
P. Basanta-Val. Low complexity reconfiguration for

data-intensive service-oriented applications. Future
Generation Computer Systems, vol.37. July 2014.

[9] M. Garćıa-Valls. A Proposal for Cost-Effective Server
Usage in CPS in the Presence of Dynamic Client
Requests. 19th IEEE International Symposium on
Real-Time Distributed Computing (ISORC), pp.
19-26. York , UK. May 2016.

[10] M. Garćıa-Valls, C.Calva-Urrego, A. Alonso, J. A. de
la Puente. Adjusting middleware knobs to suit CPS
domains 31st Annual ACM Symposium on Applied
Computing (SAC). Pisa, Italy. April 2016.

[11] M. Garćıa-Valls, P. Basanta-Val. A real-time
perspective of service composition: key concepts and
some contributions. Journal of Systems Architecture,
vol. 59(10), pp. 1414âĂŞ1423. November 2013.

[12] ISO/IEC ITTF. OASIS AMQP1.0 – Advanced
Message Queuing Protocol (AMQP), v1.0. 2014.

[13] K. Krishna. Computer-Based Industrial Control.
https://books.google.com, (PHI Learning), 2010.

[14] S.M. Kuo, B.H. Lee, and W. Tian. Real-Time Digital
Signal Processing: Implementations and Applications,
Wiley, 2006.

[15] S. Kudrle, M. Proulx, P. Carrieres, M. Lopez.
Fingerprinting for Solving A/V Synchronization Issues
within Broadcast Environments. Motion Imaging
Journal (SMPTE). 2011.

[16] A. Menychtas , D. Kyriazis , K. Tserpes, Real-time
reconfiguration for guaranteeing QoS provisioning
levels in Grid environments. Future Generation
Computer Systems, vol. 25(7), pp. 779âĂŞ784. July
2009.

[17] S. Slichting, S. Polhsen. An architecture for distributed
systems of medical devices in high acuity
environments. A Proposal for Standards Adoption.
Drager. 2014.

[18] X. Su, G. Swart, B. Goetz, B. Oliver, and P. Sandoz.
Changing engines in midstream: A Java stream
computational model for big data processing. In Proc.
of VLDB Endowment, vol. 7(13), pp. 1343-1354.
August 2014.

[19] J. O’Hara. Toward a commodity enterprise

middleware, ACM Queue, vol. 5, pp. 48-âĂŞ55. 2007.

[20] OMG.: Common Object Request Broker Architecture
(CORBA) Specification, Version 3.1. Interfaces. 2008.

[21] OMG.: A Data Distribution Service for Real-time
Systems Version 1.2. Real-Time Systems. (2007)

[22] Pivotal software. RabbitMQ. AMQP 0-9-1 Model
Explained. http:
//www.rabbitmq.com/tutorials/amqp-concepts.html
2016.

[23] Sun Microsystems. JavaTM Remote Method Invocation
Specification. Revision 1.7, JavaTM 2 SDK, standard
edition, v1.3.0. December 1999.

[24] S. Vinoski. Advanced Message Queuing Protocol. IEEE

Internet Computing, vol. 10, pp. 87âĂŞ89. 2006

[25] ZeroC Inc. The Internet Communications Engine.
https://zeroc.com/downloads/ice/3.5/ (on-line).
2016.

https://books.google.com
http://www.rabbitmq.com/tutorials/amqp-concepts.html
http://www.rabbitmq.com/tutorials/amqp-concepts.html

	Introduction
	Background
	Communication middleware
	Internet Communication Engine: Ice
	Advanced Message Queuing Protocol
	Differences between Ice and AMQP

	Audio system design
	System overview
	Ice development
	AMQP development

	Control over the platform resources
	Ice platform access
	AMQP

	Experimental results
	Conclusions
	References

