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ABSTRACT 
Assessing the safety of complex safety- or mission-critical 
systems under ever tightening time constraints with any degree of 
confidence is a growing challenge for industry and regulators 
alike. One method of helping to address this situation is through 
the use of assurance cases. Challenges abound here as well; too 
little or too much abstraction or poorly constructed arguments can 
affect confidence that a system will perform as intended. The 
automatic generation of a (safety) assurance case not only can 
expedite a development process but also leverage the ability to 
perform compliance checking. In this paper, we propose a novel 
framework which weaves a safety case pattern, guidance 
metamodel, and a development process metamodel together to 
generate a safety assurance case, which facilitates checking the 
conformance of the system to the guidance. As a case study, we 
use the GPCA infusion pump project as a subject to illustrate how 
this framework can aid in compliance checking using the infusion 
pump guidance published by FDA as a reference oracle.   

Keywords 
Compliance checking; model transformation; safety-critical 
systems; safety case. 

1. INTRODUCTION 
Assessing the safety of complex safety- and mission-critical 
systems, such as medical devices, under ever tightening time 
constraints with an acceptable level of confidence is a growing 
challenge for industry and regulators alike. One method of helping 
to address this is through the use of safety assurance cases (or 
safety case in short) [1]. For instance, the U.S. Food and Drug 
Administration (FDA) recently released an infusion pump a 
guidance document on the total product lifecycle for infusion 
pumps [2], which recommends infusion pump manufacturers to 
use safety assurance case (“safety case”) as a structured means to 
organize and present to FDA the information supporting the safety 
claims of their infusion pump devices.  In this paper, we take the 
infusion pump guidance as an example to discuss how to 
automatically construct a safety case in safety critical domains. 

The construction and review of a safety case for an infusion pump 
system are a daunting task for various stakeholders such as 

manufacturers and FDA regulators due to the following reasons. 
Firstly, the guidance provides general requirements on what types 
of safety properties that a safety case should argue about and what 
kind of evidence it should collect from development artifacts.  
But, it leaves it up to device manufacturers to decide the ways of 
constructing a safety case in terms of using the collected evidence 
to support the specific safety claims articulated for their devices. 
This however creates a gap between the guidance’s requirements 
and the device development process for the device that needs the 
manufacturers to properly bridge when constructing their safety 
cases. This gap also makes it challenging for regulators to review 
the safety cases, because they need to first understand how 
guidance requirements are mapped to the safety claims in the 
safety cases and then evaluate the trustworthiness and 
qualification of the collected evidence in supporting these claims. 
Exacerbating the problem is the poor quality of evidence and 
arguments assembled in the safety cases: many safety cases suffer 
from the structural problems, such as too little or too much 
abstraction and poorly constructed arguments.  

Secondly, like many other guidance documents or standards 
across the safety critical industries, the guidance intends to be 
generic to ensure its applicability to as many infusion pump 
devices as possible.  Consequently, it creates a space for different 
stakeholders, such as suppliers, clients, and certifiers, to come up 
with different understanding/interpretation of the guidance’s 
requirements. For example, the guidance recommends 
manufacturers to conduct hazard analysis to identify the risks 
associated with their devices and use the results to define the 
safety claims to be included in the safety cases.  However, it 
leaves it up to manufacturers to decide the specific hazard analysis 
techniques to use and the process of using such techniques.  The 
difference among stakeholders in interpreting the guidance creates 
a communication gap between them. Safety cases need to be 
constructed properly to help to remediate the difference, rather 
than making it worse.  

To address the above challenges, we propose a novel model-based 
framework, called SPIRIT, that applies the notions of safety case 
patterns and model weaving to support the mechanical generation 
and validation of safety cases.  Central to SPIRIT is to utilize 
safety case patterns [3] to enable the mechanized and consistent 
generation of safety cases for the same type of systems.  In this 
way, the cost of constructing safety cases can be reduced and the 
confidence of such safety cases can be improved, by reusing the 
safety case patterns that have been proven as successful in past 
practices to promote the communication among stakeholders.  
Beside the safety case pattern, SPIRIT requires two additional 
inputs: a guidance metamodel, in the format of a UML class 
diagram, to denote the guidance and remediate the stakeholders’ 
difference in interpreting the guidance; and a development process 
metamodel that defines how a manufacturer designs their infusion 
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pump.  Thus, SPIRIT can weave a safety case pattern, the 
guidance metamodel, and a development process metamodel 
together to generate a safety case that enhance the argument of an 
infusion pump’s conformance to the guidance.    

In [4], the authors described a model-based approach for 
developing safety cases based upon the concept of model 
weaving. In general, a safety case pattern allows some variables, 
called roles, to be defined in its nodes. These roles can be mapped 
to different classes or concepts depending on the application, a 
process known as instantiation. In this paper, we extend the above 
idea via a two-step mapping given in a weaving model to support 
compliance checking.  Firstly, recall the guidance recommends 
what kind of information can be used to construct a safety case. 
To this end, a weaving model first maps roles in a safety case 
pattern to concepts of the guidance defined in the guidance 
metamodel. However, to comply with the guidance, a 
manufacturer should demonstrate how the safety case is linked to 
the various artifacts produced by their development process. 
Secondly, the weaving model gives the mapping relations 
between concepts of the guidance and classes of development 
process metamodel, illustrating how the development process 
complies with the guidance.  

Once a safety case pattern, the guidance metamodel, and a 
development process metamodel are fed to SPIRIT, it generates 
an Atlas Transformation Language (ATL) program [5], which can 
be executed to generate a safety case for any infusion pump 
device developed according to the development process 
metamodel. In this paper, we use an example infusion pump 
system, the Generic Patient-Control Analgesia (GPCA) infusion 
pump, to complement the entire application process of SPIRIT.  
The results demonstrate that SPIRIT can support both the 
validation of a safety case pattern (against the input infusion pump 
development process), and the generation of safety cases for 
infusion pump systems.  

In summary, we make the following contributions in the paper.  

1) The automatic support of safety case pattern validation 
and safety case generation, to increase the reusability of 
successful safety case patterns and to improve the 
capability of building and reviewing safety cases; 

2) A weaving model mechanism that connects various 
elements from a safety case pattern, the infusion pump 
guidance, and a development process for an infusion 
pump together; 

3) Integration of safety case generation into a development 
process. 

2. PROBLEM STATEMENTS AND 
SPIRIT’S SOLUTIONS 
Although the guidance documents released by FDA are not 
legally binding, the guidance contains agency’s recommendation 
of good practices to assure and improve some aspects of safety 
and effectiveness of medical devices.  A question thus facing the 
medical device industry and FDA regulators is that, given a 
manufacturer's own practice, how can they find a solution to 
develop and certify a medical device which follows the related 
FDA guidance document(s) in an effective and efficient fashion? 

As our first step of answering the above question, we present a 
model-based framework, SPIRIT, to mechanize the generation of 
safety cases that argue safety-critical systems satisfy the safety 
requirements posed by the guidance document(s).  In its current 

implementation as illustrated in Figure 1, SPIRIT considers the 
infusion pump guidance issued by FDA and helps to develop and 
validate a safety case that argues the software in an infusion pump 
developed under a manufacturer’s own practice satisfies the 
infusion pump guidance.  It should be noted that, although 
currently focusing on the infusion pump area, the idea underlying 
SPIRIT can be customized and applied to other safety-critical 
industries where the problem of certifying a software system 
against regulatory/legal/standards requirements is of importance. 

Underlying SPIRIT is a model-driven approach where a number 
of metamodels are employed. Firstly, it takes as input a 
conceptual metamodel that intends to capture the infusion pump 
guidance.  Next, it prompts infusion pump developers to provide a 
metamodel that defines their software development processes, 
which should specify the main artifacts produced as a sequence of 
development activities throughout the process.  Lastly, it accepts 
as input a safety case pattern (Figure 1(4)) and uses it as the basis 
to produce a safety case for any infusion pump (software) project 
that is developed following the development process metamodel.  
Apparently, to ensure the quality and confidence of the final 
safety case, the input safety case pattern should have proven its 
accuracy and effectiveness in capturing the requirements of 
certifying a system against the guidance document. 

Figure 2 shows an example of a (partial) safety case pattern in the 
Goal Structuring Notation (GSN) [6] that can be fed to SPIRIT.  
The pattern consists of three main types of nodes: claims, also 
known as goals, which assert certain properties of a system and 
are denoted as rectangles; strategies (denoted as parallelograms) 
that are the reasoning steps to argue why a goal is supported by 
sub-goals or evidence; and evidence (denoted as circle) that are 
artifacts to support the truth of a goal. In Figure 2, the hierarchy of 
goals in a safety argument is represented as a tree structure, the 
root of which is an overall safety claim for the system.  The 
pattern can contain additional context, assumption and 
justification nodes to help to establish sound arguments.  

Notably, the safety case pattern in Figure 2 includes a set of 
expressions written in the Object Constraint Language (OCL) [7]. 
Each of such expressions contains variables, known as roles, that 
are enclosed within { and }.  For example, node G1 contains role 
system, which represents the target infusion pump device.  All 
roles involved in a safety case pattern must be instantiated before 
a safety case can be produced for the target infusion pump system. 

The core of SPIRIT is a weaving model (Figure 1(2)), following 
the notion proposed in [8], which instructs the instantiation of 
roles in the safety case pattern to the corresponding elements in 

 
Figure 1 The overall structure of the SPIRIT framework 



other input metamodels. If the safety case pattern can be 
successfully instantiated (Figure 1(I)), it indicates that the 
development process conforms to the guidance. In this case, 
SPIRIT outputs an ATL program which transforms a specific 
project developed based on the development process metamodel 
(Figure 1(5)) to a final safety case.  In contrast, if the safety case 
pattern cannot be instantiated, it suggests that the development 
process for the infusion pump project is not conformant with the 
guidance1, since the safety case pattern reflects the certification 
requirements for infusion pumps.  

More specifically, a weaving model acceptable to SPIRIT 
should define three types of mapping relationship: from a safety 

                                                                    
1 In the sense that requirements posed in the guidance are not 

entirely addressed by the development process 

case pattern to the guidance metamodel, from the guidance 
metamodel to the development process metamodel, and lastly 
from roles in a safety case pattern to elements in the development 
process metamodel.  Note that the last type of mapping 
relationship is for situations in which roles (e.g. source in Figure 
2) cannot be mapped to any element in the guidance metamodel.  
In this case, the weaving model should appropriately map these 
roles to elements in the development process metamodel; 
otherwise, the safety case pattern cannot be instantiated.  Finally, 
all roles are mapped to elements in the development process 
metamodel; and SPIRIT is thus able to further check whether the 
safety case pattern can be appropriately instantiated via the 

 
Figure 2 An example safety case pattern 

 
Figure 3 A partial conceptual model of the infusion pump guidance 



elements in the development process metamodel. 

Assume that the safety case pattern in Figure 2 is applied to an 
infusion pump project developed based on a development process 
metamodel given in Figure 4, and the input guidance metamodel 
is defined in Figure 3.  Table 1 presents a possible weaving model 
that correlates elements in these metamodels together to 
instantiate the safety case pattern.  For instance, according to 
Table 1, role spec in the safety case pattern is mapped to 
metaclass AccuracySpec in the guidance metamodel and further 
mapped to metaclass SafetyRequirement in the development 
process metamodel. 

3. MODELS IN SPIRIT 
Models play an important role in SPIRIT.  Central to SPIRIT is a 
conceptual metamodel which captures the main concepts and their 
relations specified in the infusion pump guidance.  Having an 
explicit guidance metamodel helps to remediate the different 
interpretations that different stokeholds hold for the guidance, and 
hence improve the communication among them. In SPIRIT, we 
use a UML class diagram to denote the guidance metamodel, 
since UML has become the de-facto standard for building object-
oriented software in the industry. Likewise, we employ a UML 

class diagram to represent a development process metamodel for 
an infusion pump project. 

To establish a metamodel for the guidance, we adopted the 
approach presented in [9] that involved carefully going through 
the guidance and extracting the nouns, some of which are finally 
allocated to a concept/class name. Synonyms in the guidance were 
combined by a common concept/class name after consultation 
with domain experts. We also identified the relationships among 
various concepts, and formalized these relationships as 
associations connecting these concepts. Figure 3 shows the 
conceptual metamodel constructed from the guidance.  

A safety case pattern, as seen earlier in Figure 2, provides the 
necessary structure of a safety argument without the details 
specific to the target system.  Roles in the pattern are then 
instantiated to the concrete details of the target systems. We adopt 
GSN as the notation language for the safety case pattern, while a 
metamodel defining the GSN notation can be found in [8].  The 
GSN notation has shortcomings to denote safety case patterns.  
For example, it does not have syntax support to enforce the 
relationship that may exist between two different roles in the 
safety case pattern, such as the mitigation relation between roles 
safety requirements and causes (to hazards) in Figure 2. 

 
Figure 4 A development process metamodel 

 

Table 1 A weaving model 
Role Infusion pump guidance 

conceptual model 
elements 

GPCA development 
process metamodel 

elements 

{system} System System 

{spec} AccuracySpec SafetyRequirement 

{scenario} IndicationForUse Cause 

{operational 
hazard} 

OperationalHazard Hazard 

{property} Property Property 

{source}  Reference 

 

 
Figure 5 GSN metamodel used by the Java transformation 
 



To overcome these shortcomings, we extend the GSN syntax to 
express the associations between roles. For instance, to denote all 
specs related to a scenario in the safety case pattern in Figure 2, 
we allow the use of OCL expressions such as scenario.spec and 
operations such as allInstances(). In this way, the OCL expression 
scenario.spec.allInstances() denotes all instances of spec related 
to a scenario.  Such extension to the GSN syntax makes it less 
challenging to instantiate a safety case pattern to a (specific) target 
system. 

4. IMPLEMENTATION OF SPIRIT 
The SPIRIT framework provides two important features, 
validation and generation/transformation. The validation feature 
checks whether or not the safety case pattern can be instantiated 
for the target system. In other words, it checks if all roles/role 
expressions in the pattern can be mapped to elements in the 
development process metamodel.  

Given a set of variables each of which should be finally 
instantiated to some class in the development process metamodel, 
then a role in the safety case pattern can be formally defined as 
follows: 

• Any variable can be a role r, called a variable role; and 
• If r is a role and x is a variable, then r.x is a role, called 

a derived role. 

A safety case pattern can include a set of role expressions, which 
are defined as follows: 

• Any role r is a role expression; and 
• If r is a role, then r.allInstances() is a role expression. 

During the validation phase, SPIRIT uses the weaving model to 
ensure that each role and role expression in a safety case pattern is 
valid.  A role is valid if the following constraints can be satisfied: 

• C1: For a variable role r, it should be mapped to a class 
in the development process metamodel according to the 
weaving model. 

• C2: For a derived role r.x, if r and x are mapped to 
classes C_1 and C_2, in the development process 

metamodel, then C_1 and C_2 should have (at least) one 
association between them. 

A role expression is valid if the following constraints are satisfied: 

• C3: If a role expression has the form e.allInstances() 
where e is a derived role r.x and the association between 
the classes mapped from r and x is a, then the 
multiplicity at the end of the class mapped from x for 
the association a must be more than 1. 

• C4: If a role expression is a derived role r.x that does 
not end with allInstances() and the association between 
the classes mapped from r and x is a, then the 
multiplicity at the end of the class mapped from x for 
the association a must be 1. 

Intuitively speaking, constraint C1 requires that each variable role 
be mapped to a class in the development process metamodel.  For 
a role expression, SPIRIT makes sure that all classes mapped 
from the role expression have: 1) the appropriate associations 
(constraint C2); and 2) the correct multiplicity value at the 
appropriate end of each association (constraints C3 and C4).  For 
example, for role expression spec.scenario, Constraint C2 ensures 
that classes SafetyRequirement and Cause, mapped from spec and 
scenario according to Table 1, do have an association between 

 
Figure 6 Pseudo code for ATL matched rule generation 

 
Table 2 Binding statements for different types of node 

contents 
Role/Literal Mapped 

Class 
ATL Statement 

a a → A var.Content ← var.Content + A.ID 

a.allInstances() a → A for (e in Source!A.allInstances()) 

  IDs ← IDs + e.ID + ‘ ‘; 

var.Content ← var.Content + IDs; 

a.b a → A 

b → B 

var.Content ← var.Content + A.b.ID 

a.b.allInstances() a → A 

b → B 

for (e in A.b) 

  IDs ← IDs + e.ID + ‘ ‘; 

var.Content ← var.Content + IDs; 

Literal L  var.Content ← var.Content + L; 

 



 
Figure 8 The output ATL program 

 

them in the development process metamodel.  If there is more 
than one association, SPIRIT prompts the user to identify the 
association to be applied to the role expression. Once 
spec.scenario is decided to satisfy C2, SPIRIT checks C4 to see if 
the multiplicity at the end of class Cause for the association is 
one. If yes, spec.scenario can be instantiated.  Similarly, for role 
expression spec.scenario.allInstances(), besides C2, SPIRIT also 
ensures the multiplicity at the end of class Cause for the 
association must be many. 

Once a safety case pattern is confirmed to be instantiable, the 
transformation feature of SPIRIT takes over, which consists of 
two steps: 1) Java transformation, which utilizes a built-in Java 
program to produce an ATL program; and 2) ATL transformation, 
which executes the ATL program generated in the last step to 
produce a safety case for the target infusion pump project. 

The built-in Java program executes Java Transformation as 
follows: it first identifies all nodes in the safety case pattern; then 
for a root goal node in the safety case pattern, it creates a matched 
rule, and for every other node in the safety case pattern it creates a 
called rule; it then replaces each role with project-specific 
elements based on the weaving model; and lastly it builds the 
structure of safety case via binding statements within ATL rules. 
In order to allow the built-in Java program to handle the input 
safety case pattern automatically, the input pattern is edited by the 
graphical GSN editor tool and formalized based on the GSN 
metamodel proposed in [8].  Figure 5 illustrates part of the GSN 
metamodel.  

More specifically, a matched rule explicitly specifies, in its from 
section, what type of elements in the source metamodel to be 
matched. Thus, executing this rule generates the corresponding 
elements in the target metamodel, if a matched element is found in 
the source metamodel. A called rule, on the other hand, is 
essentially a sequence of imperative statements to explicitly 
generate the elements in the target metamodel. 

Figure 6 lists the (pseudo) code to create a matched rule2.  To 
explain how it works, we execute it based on the safety case 
pattern in Figure 2, the guidance metamodel in Figure 3, the 
development process metamodel in Figure 4, and the weaving 

                                                                    
2 We skip the pseudo code for generating called rules, as it is 

similar to that for matched rules 

model in Table 1.   This execution results in the output ATL 
program shown in Figure 8. 

Line 2 in Figure 6 first creates an ATL module, where the GSN 
metamodel in Figure 7 is declared as the output metamodel to 
define the structure of the final safety case; and the development 
process metamodel in Figure 4 is declared as the input 
metamodel.  The reason of using the output GSN metamodel in 
Figure 7 is that it simplifies the generated ATL program. For 
example, two GSN goals are simply connected by an association 
according to Figure 7, as compared to Figure 5 depending on 
metaclass AssertedRelationship to establish the connection 
between two GSN goals. 

Line 3 in Figure 6 then outputs a matched rule (statement 4 in 
Figure 8) for the root goal node G1 in Figure 2;  Line 4 then 
outputs the from section of the matched rule (statements 5-6 in 
Figure 8), where it uses the weaving model in Table 1 to get class 
System in the development process metamodel; Line 5 similarly 
outputs the to section of the rule to the output ATL program, i.e., 
statements 7-8 in Figure 8 which defines an instance g1 of class 
GSN_Goal in Figure 7.  

The next step is to generate the do section of the matched rule, 
which consists of a sequence of binding statements to assign all 
attributes of g1 with appropriate expressions.  In particular, Line 7 
in Figure 6 assigns the ID attribute of g1 as G1 (statement 11 in 
Figure 8), where the string G1 comes from applying node.getID() 
to node G1 of the safety case pattern; Line 8 produces the binding 
statements 12-14 in Figure 8 to assign the Content attribute of g1.  
Note that the content of a goal node in the final safety case can 
include a literal string and a role expression. To handle this 
situation, we follow Table 2 to assign the content of goal nodes.  

To decide what sub-goal or strategy nodes should be generated to 
support a root goal node, Line 9 in Figure 6 checks every 
relationship that has the root goal node as the source node, and 
Line 10 finds the target node of such a relationship.  In order to do 
so, Lines 9 and 10 utilizes the properties hasSource and hasTarget 
in the metamodel in Figure 5 to find the source and target nodes 
of each relationship.   

Once the target node is found, Lines 11-13 in Figure 6 check its 

 
Figure 7 The output GSN metamodel 

 



type, and create a binding statement to link the source and target 
nodes. For example, if the type of the target node is GSN_Goal, 
then these two nodes are connected, since the output GSN 
metamodel in Figure 7 indicates that two GSN_Goal classes are 
connected by the self-association and one of them must has its 
role name as subgoal.  A binding statement is also generated for 
the target node to assign the invocation of the called rule produced 
for the target node to the subgoal feature of the root GSN_Goal 
node. Situations where the type of the target node is 
GSN_Justification, GSN_Assumption, or GSN_Strategy are 
handled similarly. 

How to invoke a called rule depends on the format of role 
expressions. For example, there are three relationships in Figure 2, 
connecting the root goal node G1 to two strategy nodes S1 and S2 
and one goal node G2, respectively.  Moreover, Lines 9-12 in 
Figure 6 output three binding statements to invoke the called rules 
produced for nodes G2, S1, and S2 (see statements 15-17 in 
Figure 8).  

The called rules generated for each of the rest nodes in the safety 
case pattern may or may not have parameters. Java 
Transformation generated a parameter for a called rule only if the 
corresponding node in the safety case pattern has a role 
expression. For instance, the called rule called1() in Figure 8 is 
generated for node G2 in Figure 2. Since G2 does not have any 
role expression, no parameter is assigned to rule called1(). In 
contrast, the called rule called39 generated for node S1 in Figure 2 
has a parameter, since S1 has a role expression system.   

Once produced, the ATL program can be executed to generate a 
safety case for the target project.  Executing the ATL program 

starts with executing the matched rule(s) to produce a root node in 
the output safety case; if any called rules are invoked during 
executing the matched rules and the subsequent execution, these 
called rules are executed to produce the rest nodes in the safety 
case. 

5. CASE STUDY ON THE GPCA PROJECT 
The generic patient-controlled analgesia infusion pump project 
(GPCA) [10] was an open-source project intending to demonstrate 
the applicability of model-driven development techniques to 
medical device (software) systems.  Its development process is 
consisted of two steps. The first step includes the activities related 

Table 3 GPCA artifacts 
GPCA development 
process metamodel 
elements 

GPCA objects 

System GPCA system 

SafetyRequirement SR1.1, SR1.2, SR1.4, SR1.5, SR1.10, SR3.4.6, 
SR6.1.3, SR6.1.4 

Cause Flow rate does not match programmed rate 
Programmed rate too low 
Dose limit exceed due to too many bolus requests  
Bolus volume/concentration too high 

Hazard Underinfusion, Overinfusion 

Property Flow rate sensor is equipped 
Period is 15 minutes 
Flow rate is less than 90% of the programmed 
rate 

Reference FDA standard 
Expertise opinion 
Previous knowledge 

 

 
Figure 9 Safety case model of GPCA system 



to safety requirements elicitation. Initially, a hazard analysis 
report was produced to enumerate typical hazards and their causes 
associated with this type of devices. Next, a set of generic safety 
requirements were developed to establish the desired safety 
properties for mitigating the enumerated hazards.   

In parallel, a GPCA design model was developed using the 
Simulink/Stateflow tool [11] to capture the typical use scenarios 
and operation of patient-controlled analgesia pumps. The safety of 
the GPCA design model was formally verified against the generic 
safety requirements, and then the safety-assured design model was 
translated into the final implementation executable on the target 
hardware platform. Test cases derived from the safety-assured 
GPCA design model were applied to the final implementation to 
ensure that it did not deviate from the design model. 

In our case study, we applied SPIRIT to generate a safety case for 
the GPCA project (partial artifacts of which are shown in Table 3, 
based on the safety case pattern shown in Figure 2.  The GPCA 
project contains one system type object with the ID of "GPCA 
system". The two GPCA operational hazards considered in the 
case study are "Overinfusion" and "Underinfusion".  Table 3 
includes these two hazards, four potential causes to these hazards 
considered, as well as 8 safety requirements for mitigating these 
hazards. Safety requirement properties considered in this example 
include "Flow rate sensor is equipped", "Period (to trigger the 
under infusion alarm) is 15mins", and "Flow rate is less than 90% 
of the programmed rate setting". The references of the safety 
requirement properties in this example are "FDA standard", 
"Expertise opinion", and "Previous knowledge". 

The complete safe case that SPIRIT generated for the GPCA 
project can be found in [12], while part of it is shown in Figure 9.  
In the generated safety case, all role expressions in the nodes in 
Figure 2 were instantiated by the elements in the GPCA project. 
For instance, the root goal node G1, which claims "the 
Operational safety is verified in {system}", was instantiated by 
"Operational safety is verified in GPCA system".  Similarly, node 
S1 was instantiated by "Argument over the satisfaction of specs 
over GPCA system" and node S2 was instantiated by "Argument 
over reliability in all suitable levels of GPCA system".  Since 
node G2 has no role expression, its content was copied to the 
corresponding node in Figure 9. Due to space limit, we skip the 
explanation of generating the rest nodes in the safety case.  

A benefit of generating a safety case based on the input safety 
case pattern is that SPIRIT is able to detect structural errors in the 
generated safety case. This highlights the potential of SPIRIT in 
facilitating the certification of an infusion pump project against 
the guidance. In the case study, SPIRIT detected 39 errors in the 
generated safety case. These errors were mostly missing links 
from GSN_Strategy nodes to GSN_Goal nodes when a cause (to 
certain hazard) is not related to any safety requirement. For 
example, the GSN_Strategy node "S5 Argument over all specs 
related to Pump programmed but 'start' not pressed” is not linked 
to any instance of class GSN_Goal because the cause, "Pump 
programmed but 'start' not pressed", is not related to any generic 
GPCA safety requirement [13].  SPIRIT was able to detect such 
errors because the GSN metamodel in Figure 7 specifies that a 
GSN_Strategy node must have at least one GSN_Goal type 
property. 

6. RELATED WORK 
Panesar-Walawege et al. proposed the application of a UML 
profile to model a standard/guidance [9]. This UML profile is then 
used as a template to guide how a safety critical system can be 

developed and reviewed under the standard/guidance. However, 
the UML profile enforces only one way to model the 
standard/guidance based on the pre-defined stereotypes. Most 
systems do not use these pre-defined stereotypes and cannot 
therefore take advantage of the approach to facilitate the checking 
of conformance to the standard/guidance. Our work builds upon 
the notion of safety case patterns to support the development of 
safety cases for infusion pumps that follow the same development 
process. 

Ayoub et al. [14] proposed a safety case pattern for a system 
developed using formal methods. The pattern considers the 
consistency between a design model and its implementation. Our 
safety case generation approach can complement their pattern as 
these two approaches target at different phases of a software 
development process.  

Schaetz et al [15] proposed a pattern library that, similar to 
SPIRIT, facilitates the definition and generation of a safety case 
for a specific project. But, unlike SPIRIT, they failed to integrate 
the generation of a safety case into a design model.  
Hauge et al. [16] proposed a pattern-based method to facilitate 
software design for safety critical systems. Under the pattern-
based method is a language that offers six different basic patterns 
as well as operators for composing these patterns. One of the 
important ramifications of this method is the generation of a 
safety case, which is connected to the artifacts produced during a 
development process.  

Denney et al. [17] proposed a lightweight approach to 
automatically create a safety case from a given set of artifacts.  It 
however can only handle development artifacts created in tabular 
format, as compared to SPIRIT supporting artifacts in any kind of 
format (as long as these artifacts are defined in the development 
process metamodel). 

7. CONCLUSION 
We have presented a framework, SPIRIT, for automatically 
constructing safety cases for infusion pump systems, with a focus 
on arguing their conformance to the infusion pump guidance.  
SPIRIT utilizes a weaving model to allow infusion pump 
manufacturers to reuse successful safety case patterns in 
constructing convincing safety cases for their own devices in an 
efficient manner.  This can not only reduce the cost of safety case 
constructions, but also improve the communication between 
various stakeholders. 
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