
Support for Safety Case Generation via Model
Transformation

Chung-Ling Lin, Wuwei Shen
Department of Computer Science

Western Michigan University
Kalamazoo, MI, USA

{chung-ling.lin, wuwei.shen}@wmich.edu

Richard Hawkins
Department of Computer Science

The University of York
York, UK

richard.hawkins@york.ac.uk

ABSTRACT
Assessing the safety of complex safety- or mission-critical
systems under ever tightening time constraints with any degree of
confidence is a growing challenge for industry and regulators
alike. One method of helping to address this situation is through
the use of assurance cases. Challenges abound here as well; too
little or too much abstraction or poorly constructed arguments can
affect confidence that a system will perform as intended. The
automatic generation of a (safety) assurance case not only can
expedite a development process but also leverage the ability to
perform compliance checking. In this paper, we propose a novel
framework which weaves a safety case pattern, guidance
metamodel, and a development process metamodel together to
generate a safety assurance case, which facilitates checking the
conformance of the system to the guidance. As a case study, we
use the GPCA infusion pump project as a subject to illustrate how
this framework can aid in compliance checking using the infusion
pump guidance published by FDA as a reference oracle.

Keywords
Compliance checking; model transformation; safety-critical
systems; safety case.

1. INTRODUCTION
Assessing the safety of complex safety- and mission-critical
systems, such as medical devices, under ever tightening time
constraints with an acceptable level of confidence is a growing
challenge for industry and regulators alike. One method of helping
to address this is through the use of safety assurance cases (or
safety case in short) [1]. For instance, the U.S. Food and Drug
Administration (FDA) recently released an infusion pump a
guidance document on the total product lifecycle for infusion
pumps [2], which recommends infusion pump manufacturers to
use safety assurance case (“safety case”) as a structured means to
organize and present to FDA the information supporting the safety
claims of their infusion pump devices. In this paper, we take the
infusion pump guidance as an example to discuss how to
automatically construct a safety case in safety critical domains.

The construction and review of a safety case for an infusion pump
system are a daunting task for various stakeholders such as

manufacturers and FDA regulators due to the following reasons.
Firstly, the guidance provides general requirements on what types
of safety properties that a safety case should argue about and what
kind of evidence it should collect from development artifacts.
But, it leaves it up to device manufacturers to decide the ways of
constructing a safety case in terms of using the collected evidence
to support the specific safety claims articulated for their devices.
This however creates a gap between the guidance’s requirements
and the device development process for the device that needs the
manufacturers to properly bridge when constructing their safety
cases. This gap also makes it challenging for regulators to review
the safety cases, because they need to first understand how
guidance requirements are mapped to the safety claims in the
safety cases and then evaluate the trustworthiness and
qualification of the collected evidence in supporting these claims.
Exacerbating the problem is the poor quality of evidence and
arguments assembled in the safety cases: many safety cases suffer
from the structural problems, such as too little or too much
abstraction and poorly constructed arguments.

Secondly, like many other guidance documents or standards
across the safety critical industries, the guidance intends to be
generic to ensure its applicability to as many infusion pump
devices as possible. Consequently, it creates a space for different
stakeholders, such as suppliers, clients, and certifiers, to come up
with different understanding/interpretation of the guidance’s
requirements. For example, the guidance recommends
manufacturers to conduct hazard analysis to identify the risks
associated with their devices and use the results to define the
safety claims to be included in the safety cases. However, it
leaves it up to manufacturers to decide the specific hazard analysis
techniques to use and the process of using such techniques. The
difference among stakeholders in interpreting the guidance creates
a communication gap between them. Safety cases need to be
constructed properly to help to remediate the difference, rather
than making it worse.

To address the above challenges, we propose a novel model-based
framework, called SPIRIT, that applies the notions of safety case
patterns and model weaving to support the mechanical generation
and validation of safety cases. Central to SPIRIT is to utilize
safety case patterns [3] to enable the mechanized and consistent
generation of safety cases for the same type of systems. In this
way, the cost of constructing safety cases can be reduced and the
confidence of such safety cases can be improved, by reusing the
safety case patterns that have been proven as successful in past
practices to promote the communication among stakeholders.
Beside the safety case pattern, SPIRIT requires two additional
inputs: a guidance metamodel, in the format of a UML class
diagram, to denote the guidance and remediate the stakeholders’
difference in interpreting the guidance; and a development process
metamodel that defines how a manufacturer designs their infusion

Copyright retained by the authors.

pump. Thus, SPIRIT can weave a safety case pattern, the
guidance metamodel, and a development process metamodel
together to generate a safety case that enhance the argument of an
infusion pump’s conformance to the guidance.

In [4], the authors described a model-based approach for
developing safety cases based upon the concept of model
weaving. In general, a safety case pattern allows some variables,
called roles, to be defined in its nodes. These roles can be mapped
to different classes or concepts depending on the application, a
process known as instantiation. In this paper, we extend the above
idea via a two-step mapping given in a weaving model to support
compliance checking. Firstly, recall the guidance recommends
what kind of information can be used to construct a safety case.
To this end, a weaving model first maps roles in a safety case
pattern to concepts of the guidance defined in the guidance
metamodel. However, to comply with the guidance, a
manufacturer should demonstrate how the safety case is linked to
the various artifacts produced by their development process.
Secondly, the weaving model gives the mapping relations
between concepts of the guidance and classes of development
process metamodel, illustrating how the development process
complies with the guidance.

Once a safety case pattern, the guidance metamodel, and a
development process metamodel are fed to SPIRIT, it generates
an Atlas Transformation Language (ATL) program [5], which can
be executed to generate a safety case for any infusion pump
device developed according to the development process
metamodel. In this paper, we use an example infusion pump
system, the Generic Patient-Control Analgesia (GPCA) infusion
pump, to complement the entire application process of SPIRIT.
The results demonstrate that SPIRIT can support both the
validation of a safety case pattern (against the input infusion pump
development process), and the generation of safety cases for
infusion pump systems.

In summary, we make the following contributions in the paper.

1) The automatic support of safety case pattern validation
and safety case generation, to increase the reusability of
successful safety case patterns and to improve the
capability of building and reviewing safety cases;

2) A weaving model mechanism that connects various
elements from a safety case pattern, the infusion pump
guidance, and a development process for an infusion
pump together;

3) Integration of safety case generation into a development
process.

2. PROBLEM STATEMENTS AND
SPIRIT’S SOLUTIONS
Although the guidance documents released by FDA are not
legally binding, the guidance contains agency’s recommendation
of good practices to assure and improve some aspects of safety
and effectiveness of medical devices. A question thus facing the
medical device industry and FDA regulators is that, given a
manufacturer's own practice, how can they find a solution to
develop and certify a medical device which follows the related
FDA guidance document(s) in an effective and efficient fashion?

As our first step of answering the above question, we present a
model-based framework, SPIRIT, to mechanize the generation of
safety cases that argue safety-critical systems satisfy the safety
requirements posed by the guidance document(s). In its current

implementation as illustrated in Figure 1, SPIRIT considers the
infusion pump guidance issued by FDA and helps to develop and
validate a safety case that argues the software in an infusion pump
developed under a manufacturer’s own practice satisfies the
infusion pump guidance. It should be noted that, although
currently focusing on the infusion pump area, the idea underlying
SPIRIT can be customized and applied to other safety-critical
industries where the problem of certifying a software system
against regulatory/legal/standards requirements is of importance.

Underlying SPIRIT is a model-driven approach where a number
of metamodels are employed. Firstly, it takes as input a
conceptual metamodel that intends to capture the infusion pump
guidance. Next, it prompts infusion pump developers to provide a
metamodel that defines their software development processes,
which should specify the main artifacts produced as a sequence of
development activities throughout the process. Lastly, it accepts
as input a safety case pattern (Figure 1(4)) and uses it as the basis
to produce a safety case for any infusion pump (software) project
that is developed following the development process metamodel.
Apparently, to ensure the quality and confidence of the final
safety case, the input safety case pattern should have proven its
accuracy and effectiveness in capturing the requirements of
certifying a system against the guidance document.

Figure 2 shows an example of a (partial) safety case pattern in the
Goal Structuring Notation (GSN) [6] that can be fed to SPIRIT.
The pattern consists of three main types of nodes: claims, also
known as goals, which assert certain properties of a system and
are denoted as rectangles; strategies (denoted as parallelograms)
that are the reasoning steps to argue why a goal is supported by
sub-goals or evidence; and evidence (denoted as circle) that are
artifacts to support the truth of a goal. In Figure 2, the hierarchy of
goals in a safety argument is represented as a tree structure, the
root of which is an overall safety claim for the system. The
pattern can contain additional context, assumption and
justification nodes to help to establish sound arguments.

Notably, the safety case pattern in Figure 2 includes a set of
expressions written in the Object Constraint Language (OCL) [7].
Each of such expressions contains variables, known as roles, that
are enclosed within { and }. For example, node G1 contains role
system, which represents the target infusion pump device. All
roles involved in a safety case pattern must be instantiated before
a safety case can be produced for the target infusion pump system.

The core of SPIRIT is a weaving model (Figure 1(2)), following
the notion proposed in [8], which instructs the instantiation of
roles in the safety case pattern to the corresponding elements in

Figure 1 The overall structure of the SPIRIT framework

other input metamodels. If the safety case pattern can be
successfully instantiated (Figure 1(I)), it indicates that the
development process conforms to the guidance. In this case,
SPIRIT outputs an ATL program which transforms a specific
project developed based on the development process metamodel
(Figure 1(5)) to a final safety case. In contrast, if the safety case
pattern cannot be instantiated, it suggests that the development
process for the infusion pump project is not conformant with the
guidance1, since the safety case pattern reflects the certification
requirements for infusion pumps.

More specifically, a weaving model acceptable to SPIRIT
should define three types of mapping relationship: from a safety

1 In the sense that requirements posed in the guidance are not

entirely addressed by the development process

case pattern to the guidance metamodel, from the guidance
metamodel to the development process metamodel, and lastly
from roles in a safety case pattern to elements in the development
process metamodel. Note that the last type of mapping
relationship is for situations in which roles (e.g. source in Figure
2) cannot be mapped to any element in the guidance metamodel.
In this case, the weaving model should appropriately map these
roles to elements in the development process metamodel;
otherwise, the safety case pattern cannot be instantiated. Finally,
all roles are mapped to elements in the development process
metamodel; and SPIRIT is thus able to further check whether the
safety case pattern can be appropriately instantiated via the

Figure 2 An example safety case pattern

Figure 3 A partial conceptual model of the infusion pump guidance

elements in the development process metamodel.

Assume that the safety case pattern in Figure 2 is applied to an
infusion pump project developed based on a development process
metamodel given in Figure 4, and the input guidance metamodel
is defined in Figure 3. Table 1 presents a possible weaving model
that correlates elements in these metamodels together to
instantiate the safety case pattern. For instance, according to
Table 1, role spec in the safety case pattern is mapped to
metaclass AccuracySpec in the guidance metamodel and further
mapped to metaclass SafetyRequirement in the development
process metamodel.

3. MODELS IN SPIRIT
Models play an important role in SPIRIT. Central to SPIRIT is a
conceptual metamodel which captures the main concepts and their
relations specified in the infusion pump guidance. Having an
explicit guidance metamodel helps to remediate the different
interpretations that different stokeholds hold for the guidance, and
hence improve the communication among them. In SPIRIT, we
use a UML class diagram to denote the guidance metamodel,
since UML has become the de-facto standard for building object-
oriented software in the industry. Likewise, we employ a UML

class diagram to represent a development process metamodel for
an infusion pump project.

To establish a metamodel for the guidance, we adopted the
approach presented in [9] that involved carefully going through
the guidance and extracting the nouns, some of which are finally
allocated to a concept/class name. Synonyms in the guidance were
combined by a common concept/class name after consultation
with domain experts. We also identified the relationships among
various concepts, and formalized these relationships as
associations connecting these concepts. Figure 3 shows the
conceptual metamodel constructed from the guidance.

A safety case pattern, as seen earlier in Figure 2, provides the
necessary structure of a safety argument without the details
specific to the target system. Roles in the pattern are then
instantiated to the concrete details of the target systems. We adopt
GSN as the notation language for the safety case pattern, while a
metamodel defining the GSN notation can be found in [8]. The
GSN notation has shortcomings to denote safety case patterns.
For example, it does not have syntax support to enforce the
relationship that may exist between two different roles in the
safety case pattern, such as the mitigation relation between roles
safety requirements and causes (to hazards) in Figure 2.

Figure 4 A development process metamodel

Table 1 A weaving model
Role Infusion pump guidance

conceptual model
elements

GPCA development
process metamodel

elements

{system} System System

{spec} AccuracySpec SafetyRequirement

{scenario} IndicationForUse Cause

{operational
hazard}

OperationalHazard Hazard

{property} Property Property

{source} Reference

Figure 5 GSN metamodel used by the Java transformation

To overcome these shortcomings, we extend the GSN syntax to
express the associations between roles. For instance, to denote all
specs related to a scenario in the safety case pattern in Figure 2,
we allow the use of OCL expressions such as scenario.spec and
operations such as allInstances(). In this way, the OCL expression
scenario.spec.allInstances() denotes all instances of spec related
to a scenario. Such extension to the GSN syntax makes it less
challenging to instantiate a safety case pattern to a (specific) target
system.

4. IMPLEMENTATION OF SPIRIT
The SPIRIT framework provides two important features,
validation and generation/transformation. The validation feature
checks whether or not the safety case pattern can be instantiated
for the target system. In other words, it checks if all roles/role
expressions in the pattern can be mapped to elements in the
development process metamodel.

Given a set of variables each of which should be finally
instantiated to some class in the development process metamodel,
then a role in the safety case pattern can be formally defined as
follows:

• Any variable can be a role r, called a variable role; and
• If r is a role and x is a variable, then r.x is a role, called

a derived role.

A safety case pattern can include a set of role expressions, which
are defined as follows:

• Any role r is a role expression; and
• If r is a role, then r.allInstances() is a role expression.

During the validation phase, SPIRIT uses the weaving model to
ensure that each role and role expression in a safety case pattern is
valid. A role is valid if the following constraints can be satisfied:

• C1: For a variable role r, it should be mapped to a class
in the development process metamodel according to the
weaving model.

• C2: For a derived role r.x, if r and x are mapped to
classes C_1 and C_2, in the development process

metamodel, then C_1 and C_2 should have (at least) one
association between them.

A role expression is valid if the following constraints are satisfied:

• C3: If a role expression has the form e.allInstances()
where e is a derived role r.x and the association between
the classes mapped from r and x is a, then the
multiplicity at the end of the class mapped from x for
the association a must be more than 1.

• C4: If a role expression is a derived role r.x that does
not end with allInstances() and the association between
the classes mapped from r and x is a, then the
multiplicity at the end of the class mapped from x for
the association a must be 1.

Intuitively speaking, constraint C1 requires that each variable role
be mapped to a class in the development process metamodel. For
a role expression, SPIRIT makes sure that all classes mapped
from the role expression have: 1) the appropriate associations
(constraint C2); and 2) the correct multiplicity value at the
appropriate end of each association (constraints C3 and C4). For
example, for role expression spec.scenario, Constraint C2 ensures
that classes SafetyRequirement and Cause, mapped from spec and
scenario according to Table 1, do have an association between

Figure 6 Pseudo code for ATL matched rule generation

Table 2 Binding statements for different types of node

contents
Role/Literal Mapped

Class
ATL Statement

a a → A var.Content ← var.Content + A.ID

a.allInstances() a → A for (e in Source!A.allInstances())

 IDs ← IDs + e.ID + ‘ ‘;

var.Content ← var.Content + IDs;

a.b a → A

b → B

var.Content ← var.Content + A.b.ID

a.b.allInstances() a → A

b → B

for (e in A.b)

 IDs ← IDs + e.ID + ‘ ‘;

var.Content ← var.Content + IDs;

Literal L var.Content ← var.Content + L;

Figure 8 The output ATL program

them in the development process metamodel. If there is more
than one association, SPIRIT prompts the user to identify the
association to be applied to the role expression. Once
spec.scenario is decided to satisfy C2, SPIRIT checks C4 to see if
the multiplicity at the end of class Cause for the association is
one. If yes, spec.scenario can be instantiated. Similarly, for role
expression spec.scenario.allInstances(), besides C2, SPIRIT also
ensures the multiplicity at the end of class Cause for the
association must be many.

Once a safety case pattern is confirmed to be instantiable, the
transformation feature of SPIRIT takes over, which consists of
two steps: 1) Java transformation, which utilizes a built-in Java
program to produce an ATL program; and 2) ATL transformation,
which executes the ATL program generated in the last step to
produce a safety case for the target infusion pump project.

The built-in Java program executes Java Transformation as
follows: it first identifies all nodes in the safety case pattern; then
for a root goal node in the safety case pattern, it creates a matched
rule, and for every other node in the safety case pattern it creates a
called rule; it then replaces each role with project-specific
elements based on the weaving model; and lastly it builds the
structure of safety case via binding statements within ATL rules.
In order to allow the built-in Java program to handle the input
safety case pattern automatically, the input pattern is edited by the
graphical GSN editor tool and formalized based on the GSN
metamodel proposed in [8]. Figure 5 illustrates part of the GSN
metamodel.

More specifically, a matched rule explicitly specifies, in its from
section, what type of elements in the source metamodel to be
matched. Thus, executing this rule generates the corresponding
elements in the target metamodel, if a matched element is found in
the source metamodel. A called rule, on the other hand, is
essentially a sequence of imperative statements to explicitly
generate the elements in the target metamodel.

Figure 6 lists the (pseudo) code to create a matched rule2. To
explain how it works, we execute it based on the safety case
pattern in Figure 2, the guidance metamodel in Figure 3, the
development process metamodel in Figure 4, and the weaving

2 We skip the pseudo code for generating called rules, as it is

similar to that for matched rules

model in Table 1. This execution results in the output ATL
program shown in Figure 8.

Line 2 in Figure 6 first creates an ATL module, where the GSN
metamodel in Figure 7 is declared as the output metamodel to
define the structure of the final safety case; and the development
process metamodel in Figure 4 is declared as the input
metamodel. The reason of using the output GSN metamodel in
Figure 7 is that it simplifies the generated ATL program. For
example, two GSN goals are simply connected by an association
according to Figure 7, as compared to Figure 5 depending on
metaclass AssertedRelationship to establish the connection
between two GSN goals.

Line 3 in Figure 6 then outputs a matched rule (statement 4 in
Figure 8) for the root goal node G1 in Figure 2; Line 4 then
outputs the from section of the matched rule (statements 5-6 in
Figure 8), where it uses the weaving model in Table 1 to get class
System in the development process metamodel; Line 5 similarly
outputs the to section of the rule to the output ATL program, i.e.,
statements 7-8 in Figure 8 which defines an instance g1 of class
GSN_Goal in Figure 7.

The next step is to generate the do section of the matched rule,
which consists of a sequence of binding statements to assign all
attributes of g1 with appropriate expressions. In particular, Line 7
in Figure 6 assigns the ID attribute of g1 as G1 (statement 11 in
Figure 8), where the string G1 comes from applying node.getID()
to node G1 of the safety case pattern; Line 8 produces the binding
statements 12-14 in Figure 8 to assign the Content attribute of g1.
Note that the content of a goal node in the final safety case can
include a literal string and a role expression. To handle this
situation, we follow Table 2 to assign the content of goal nodes.

To decide what sub-goal or strategy nodes should be generated to
support a root goal node, Line 9 in Figure 6 checks every
relationship that has the root goal node as the source node, and
Line 10 finds the target node of such a relationship. In order to do
so, Lines 9 and 10 utilizes the properties hasSource and hasTarget
in the metamodel in Figure 5 to find the source and target nodes
of each relationship.

Once the target node is found, Lines 11-13 in Figure 6 check its

Figure 7 The output GSN metamodel

type, and create a binding statement to link the source and target
nodes. For example, if the type of the target node is GSN_Goal,
then these two nodes are connected, since the output GSN
metamodel in Figure 7 indicates that two GSN_Goal classes are
connected by the self-association and one of them must has its
role name as subgoal. A binding statement is also generated for
the target node to assign the invocation of the called rule produced
for the target node to the subgoal feature of the root GSN_Goal
node. Situations where the type of the target node is
GSN_Justification, GSN_Assumption, or GSN_Strategy are
handled similarly.

How to invoke a called rule depends on the format of role
expressions. For example, there are three relationships in Figure 2,
connecting the root goal node G1 to two strategy nodes S1 and S2
and one goal node G2, respectively. Moreover, Lines 9-12 in
Figure 6 output three binding statements to invoke the called rules
produced for nodes G2, S1, and S2 (see statements 15-17 in
Figure 8).

The called rules generated for each of the rest nodes in the safety
case pattern may or may not have parameters. Java
Transformation generated a parameter for a called rule only if the
corresponding node in the safety case pattern has a role
expression. For instance, the called rule called1() in Figure 8 is
generated for node G2 in Figure 2. Since G2 does not have any
role expression, no parameter is assigned to rule called1(). In
contrast, the called rule called39 generated for node S1 in Figure 2
has a parameter, since S1 has a role expression system.

Once produced, the ATL program can be executed to generate a
safety case for the target project. Executing the ATL program

starts with executing the matched rule(s) to produce a root node in
the output safety case; if any called rules are invoked during
executing the matched rules and the subsequent execution, these
called rules are executed to produce the rest nodes in the safety
case.

5. CASE STUDY ON THE GPCA PROJECT
The generic patient-controlled analgesia infusion pump project
(GPCA) [10] was an open-source project intending to demonstrate
the applicability of model-driven development techniques to
medical device (software) systems. Its development process is
consisted of two steps. The first step includes the activities related

Table 3 GPCA artifacts
GPCA development
process metamodel
elements

GPCA objects

System GPCA system

SafetyRequirement SR1.1, SR1.2, SR1.4, SR1.5, SR1.10, SR3.4.6,
SR6.1.3, SR6.1.4

Cause Flow rate does not match programmed rate
Programmed rate too low
Dose limit exceed due to too many bolus requests
Bolus volume/concentration too high

Hazard Underinfusion, Overinfusion

Property Flow rate sensor is equipped
Period is 15 minutes
Flow rate is less than 90% of the programmed
rate

Reference FDA standard
Expertise opinion
Previous knowledge

Figure 9 Safety case model of GPCA system

to safety requirements elicitation. Initially, a hazard analysis
report was produced to enumerate typical hazards and their causes
associated with this type of devices. Next, a set of generic safety
requirements were developed to establish the desired safety
properties for mitigating the enumerated hazards.

In parallel, a GPCA design model was developed using the
Simulink/Stateflow tool [11] to capture the typical use scenarios
and operation of patient-controlled analgesia pumps. The safety of
the GPCA design model was formally verified against the generic
safety requirements, and then the safety-assured design model was
translated into the final implementation executable on the target
hardware platform. Test cases derived from the safety-assured
GPCA design model were applied to the final implementation to
ensure that it did not deviate from the design model.

In our case study, we applied SPIRIT to generate a safety case for
the GPCA project (partial artifacts of which are shown in Table 3,
based on the safety case pattern shown in Figure 2. The GPCA
project contains one system type object with the ID of "GPCA
system". The two GPCA operational hazards considered in the
case study are "Overinfusion" and "Underinfusion". Table 3
includes these two hazards, four potential causes to these hazards
considered, as well as 8 safety requirements for mitigating these
hazards. Safety requirement properties considered in this example
include "Flow rate sensor is equipped", "Period (to trigger the
under infusion alarm) is 15mins", and "Flow rate is less than 90%
of the programmed rate setting". The references of the safety
requirement properties in this example are "FDA standard",
"Expertise opinion", and "Previous knowledge".

The complete safe case that SPIRIT generated for the GPCA
project can be found in [12], while part of it is shown in Figure 9.
In the generated safety case, all role expressions in the nodes in
Figure 2 were instantiated by the elements in the GPCA project.
For instance, the root goal node G1, which claims "the
Operational safety is verified in {system}", was instantiated by
"Operational safety is verified in GPCA system". Similarly, node
S1 was instantiated by "Argument over the satisfaction of specs
over GPCA system" and node S2 was instantiated by "Argument
over reliability in all suitable levels of GPCA system". Since
node G2 has no role expression, its content was copied to the
corresponding node in Figure 9. Due to space limit, we skip the
explanation of generating the rest nodes in the safety case.

A benefit of generating a safety case based on the input safety
case pattern is that SPIRIT is able to detect structural errors in the
generated safety case. This highlights the potential of SPIRIT in
facilitating the certification of an infusion pump project against
the guidance. In the case study, SPIRIT detected 39 errors in the
generated safety case. These errors were mostly missing links
from GSN_Strategy nodes to GSN_Goal nodes when a cause (to
certain hazard) is not related to any safety requirement. For
example, the GSN_Strategy node "S5 Argument over all specs
related to Pump programmed but 'start' not pressed” is not linked
to any instance of class GSN_Goal because the cause, "Pump
programmed but 'start' not pressed", is not related to any generic
GPCA safety requirement [13]. SPIRIT was able to detect such
errors because the GSN metamodel in Figure 7 specifies that a
GSN_Strategy node must have at least one GSN_Goal type
property.

6. RELATED WORK
Panesar-Walawege et al. proposed the application of a UML
profile to model a standard/guidance [9]. This UML profile is then
used as a template to guide how a safety critical system can be

developed and reviewed under the standard/guidance. However,
the UML profile enforces only one way to model the
standard/guidance based on the pre-defined stereotypes. Most
systems do not use these pre-defined stereotypes and cannot
therefore take advantage of the approach to facilitate the checking
of conformance to the standard/guidance. Our work builds upon
the notion of safety case patterns to support the development of
safety cases for infusion pumps that follow the same development
process.

Ayoub et al. [14] proposed a safety case pattern for a system
developed using formal methods. The pattern considers the
consistency between a design model and its implementation. Our
safety case generation approach can complement their pattern as
these two approaches target at different phases of a software
development process.

Schaetz et al [15] proposed a pattern library that, similar to
SPIRIT, facilitates the definition and generation of a safety case
for a specific project. But, unlike SPIRIT, they failed to integrate
the generation of a safety case into a design model.
Hauge et al. [16] proposed a pattern-based method to facilitate
software design for safety critical systems. Under the pattern-
based method is a language that offers six different basic patterns
as well as operators for composing these patterns. One of the
important ramifications of this method is the generation of a
safety case, which is connected to the artifacts produced during a
development process.

Denney et al. [17] proposed a lightweight approach to
automatically create a safety case from a given set of artifacts. It
however can only handle development artifacts created in tabular
format, as compared to SPIRIT supporting artifacts in any kind of
format (as long as these artifacts are defined in the development
process metamodel).

7. CONCLUSION
We have presented a framework, SPIRIT, for automatically
constructing safety cases for infusion pump systems, with a focus
on arguing their conformance to the infusion pump guidance.
SPIRIT utilizes a weaving model to allow infusion pump
manufacturers to reuse successful safety case patterns in
constructing convincing safety cases for their own devices in an
efficient manner. This can not only reduce the cost of safety case
constructions, but also improve the communication between
various stakeholders.

8. ACKNOWLEDGMENTS
The authors would like to thank our FDA colleagues Mr. Paul
Jones and Dr. Yi Zhang for many constructive discussions
regarding the infusion pump guidance and the challenges facing
FDA regulators. These discussions have motivated our research
approach and the tool we present in this paper.

9. REFERENCES
[1] U. M. o. Defense, Defense Standard 00-56 Issue 4 (Part 1):

Safety Management Requirements for Defense Systems,
2007.

[2] FDA, Infusion Pumps Total Product Life Cycle-Guidance for
Industry and FDA Staff, 2014.

[3] T. Kelly and J. McDermid, "Safety Case Construction and
Reuse Using Patterns," in Safe Comp 97, Springer, 1997, pp.
55-69.

[4] R. France and B. Rumpe, "Model-driven development of
complex software: A research roadmap," in Future of
Software Engineering, 2007.

[5] Eclipse's ATL, Jan 2015. [Online]. Available:
http://eclipse.org/atl/.

[6] G. Committee, "GSN Community Standard Version 1,"
2011.

[7] Object Management Group (OMG), 2012. [Online].
Available: http://www.omg.org/spec/OCL/2.3.1/PDF/.

[8] R. Hawkins, I. Habli, D. Kolovos, R. Paige and T. Kelly,
"Weaving an Assurance Case from Design: A Model-Based
Approach," in IEEE 16th International Symposium on High
Assurance Systems Engineering (HASE) , 2015.

[9] R. K. Panesar-Walawege, M. Sabetzadeh and L. Briand,
"Supporting the verification of compliance to safety
standards via model-driven engineering: Approach, tool-
support and empirical validation," Information and Software
Technology, vol. 55, no. 5, pp. 836-864, 2013.

[10] B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones, Z. Yi, R.
Jetley and B. Kim, "Safety-Assured Development of the
GPCA Infusion Pump Software," in Proceedings of the ninth
ACM international conference on Embedded software, 2011.

[11] Mathworks, "Simulink Modeling and Simulation Toolsuite,"
[Online]. Available:
http://www.mathworks.com/products/simulink/.

[12] C.-L. Lin, March 2016. [Online]. Available:
http://homepages.wmich.edu/~ckt7398/.

[13] D. . E. Arney, R. Jetley, P. Jones, I. Lee, A. Ray, O.
Sokolsky and Y. Zhang, "Generic Infusion Pump Hazard
Analysis and Safety Requirements Version 1.0," Technical
Reports CIS-893, 2009.

[14] A. Ayoub, B. Kim, I. Lee and O. Sokolsky, "A safety case
pattern for model-based development approach," in NASA
Formal Methods, Springer, 2012, pp. 141-146.

[15] B. Schaetz, M. Khalil and S. Voss, "A Pattern-based
Approach towards Modular Safety Analysis and
Argumentation," in Embedded Real-Time and Software
Systems, 2014.

[16] A. A. Hauge and K. Stølen, "A pattern-based method for safe
control systems exemplified within nuclear power
production," in Computer Safety, Reliability, and Security,
LNCS Volume 7612, 2012.

[17] E. Denney and G. Pai, "A lightweight methodology for
safety case assembly," in Computer Safety, Reliability, and
Security, Springer, 2012, pp. 1-12.

