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ABSTRACT
Modern medical systems are intensive in the use of distribu-
tion technology in medical services. Communication among
professionals and patients is enabled to exchange patient in-
formation, and for on-line monitoring of health conditions.
A miriad of specialized middleware solutions that have ap-
peared in this domain, typically focus on providing more and
more patient-data processing services over basic communi-
cation backbones (e.g., from pure socket communication to
more sophisticated interaction models). Paradigms such as
service oriented architectures and decoupled communication
middleware support the development of emerging medical
systems based on the composition of existing (posibly re-
mote) services into a new application. This adjusts to the
phylosophy of systems of systems (SoS) development. In
a cyber-physical medical domain, service based applications
require support for this composition in a way that a new ap-
plication is created (or simply modified) in a timely fashion.
iLand middleware supports this phylosophy, enabling both
off-line and run-time reconfiguration of distributed service
based applications. It provides timely operation, controlled
communication delays, and a decoupled interaction model
for stateless services. iLand has been used in medical ap-
plications for remote patient monitoring and in surveillance
domains for remote real-time video transmission. This paper
presents the systems that iLand has enabled in the medical
domain, mainly based on remote patient monitoring. These
iLand-based systems have shown to be flexible and capable
of undergoing timely service reconfigurations.
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1. INTRODUCTION
Communication middleware is essential in current and

future medical systems. As a matter of fact, communication
middleware technologies are at the heart of almost every
single distributed application nowadays. They are charac-
terized by abstracting the low level details of the commu-
nication protocols and the hardware characteristics to pro-
grammers. This way, they can focus solely on the functional
aspects of the application, and increase their productivity
and the application maturity level.

The first middleware technologies provided mostly RPC
(remote procedure call) interaction schemes. With the years,
they evolved towards object-oriented programming such as
CORBA [24], or Java RMI [31], among others; and later
publish-subscribe data-centric paradigms such as DDS [26],
JMS [5], or AMQP [22]. Some of the available middleware
technologies provide different communication models such
as ZeroC Ice (Internet Communication Engine) that offers
both remote method invocations and asynchronous publish-
subscribe through its version Ice Storm.

Over the years, middleware technologies were fine tunned
to suit the specific needs of individual application domains,
such as stock market [23], transport [21], or health care [2].
Middleware technology is constant progress to suit the needs
of the emerging domains such as real-time cloud computing
[10, 11]. Middleware is important to healthcare systems for
a number of reasons; just a few of them are:

• It acts a an interoperability provider, allowing informa-
tion (patient records) to be communicated/transfered
and formated to the specific needs of physicians.

• It provides major flexibility across departments, as
they may be interested in different patient data, that
can be extracted as required from a global repository.

• Eases evolution to richer functionality in short time
such as hospitals and care centers in general, as new
functions can be developed as decoupled services.

• It allows the connection of mobile devices to the hos-
pital network cloud, making data available to profes-
sionals anytime anywhere.

• Patient engagement in their care could be increased as
middleware can display their historic records and cur-
rent monitored data in an understandable way so that



they can participate to their healing process. The en-
gagement of patients enabled by middleware requires
that the middleware provide them with anwers in an
efficient, timely, and robust manner.

The last characteristic is studied in this paper. Not
all middleware technologies are suitable as communication
backbones in health care systems. For instance, in a cen-
tralised patient monitoring system that receives and displays
the information about patients in their rooms/apartments,
a bad decision on the selection of a middleware technology
may yield to latencies of over tens of seconds; also, the wrong
selection may result in lack of support to flexible on-line ser-
vice integration. This limits the potential of systems that
monitors the health of severely ill/aged patients.

This paper presents the characteristics of the open source
middleware technology named iLAND [16], showing its ap-
plication in two different systems related to health care. For
the first application of iLand on remote monitoring of daily
activity of patients, reconfiguration of the system may take
place continously depending on the patient’s . For the ap-
plication of monitoring health conditions of elderly housing,
more strict temporal requirements are placed and iLand is
executed over a time-triggered communication protocol.

The paper is structured as follows. Section II provides
some related work in the area of medical systems. Section
III presents describes iLand middleare, its characteristics,
architecture and properties. Section IV presents the ap-
plication for remote daily monitoring of patients activity.
Section V describes the implementation of an elderly moni-
toring system. Section VI concludes the work discusing the
implementations and comparing them.

2. BACKGROUND
One of the most frequent uses of middleware in medical

systems is the automatic handling of patient records. Cur-
rent practice often uses health information systems (HIS)
and electronic health record (EHR) in an informal manner
with adhoc protocols and interoperability solutions in order
to develop clinical systems. Typically, attention in these
systems is paid at the pure application level where health-
care enterprise systems are put together to deliver specific
clinical solutions. Aspects as security and safety are essen-
tial in current solutions, specially when envisioning medical
cyber-physical systems as a number of subsystems will coex-
ist and interact through a safety/security framework. Such
a framework must provide trustworthy compositional tech-
niques to integrate devices, cooperating autonomously and
in a protected mode with health information systems. For
this purpose, new paradigms are appearing as MAP (medi-
cal application platforms) [19] that is a safety- and security-
critical real-time computing platform. Other architectural
solutions have appeared such as ICE (Integrated Clinical
Environment) [3, 30] led by CIMIT Medical Device Plug-
and-Play interoperability project and later standardized.

ICE approach defines important elements such as the
Protocol stack for medical device interoperability [3]. The
lower layer of this stack is DPWS in charge of service dis-
covery, interface description, messaging, event propagation,
and secure information transmission. On top of this pure
web service communication level, a streaming dual channel
transmission based on MDPWS is provided. ICE device
specific extensions are just on top with a BICEPS layer for

Basic integrated clinical environment Protocol Specification.
Below this DPWS there indication of a specific technol-

ogy, a part from the typical de facto usage of HTTP/TCP
or UDP. However, no reference to the basic communication
middleware technologies (e.g. DDS [25], ZeroC Ice [32], or
iLAND [14,16] middleware for service oriented real-time ap-
plications, etc.) are indicated. DPWS is bound to using
SOAP protocols with messages in XML, yielding to heavy
communication latencies and parsing/unparsing times that
may not be suitable to all domains.

Studing alternatives to a pure DPWS backbone is needed
as it yields to assessing the timely interaction between re-
mote nodes/devices that is more suitable for the inherent
temporal requirements of cyber-physical systems. Timeli-
ness is a critical issue for some subsystems of a larger CPS
that must be considered. Delays due to message parsing or
heavy XML message transmission may yield to delays in a
control loop that can destabilize the control over the physical
system. Specific alternative solutions for efficient transmis-
sions must be considered for the health domain based on the
specific temporal requirements of applications.

3. ILAND MIDDLEWARE
iLand [14] is an open source middleware that has been

applied in industrial prototypes, including medical systems.
It follows the classical principles of a layered design; though
its architecture is independent of the underlying communi-
cation network protocol, the reference implementation [16]
uses a DDS backbone. iLand includes a number of enhanced
functions to support dynamically reconfigurable applications
based on services: light-weight services in the real-time ver-
sion and web services in the soft and best effort version with
QoS guarantees. The basic characteristics are:

• Integration of time-deterministic reconfiguration tech-
niques [4, 7] and service-composition algorithms func-
tions [6, 17] that is integrated in the Core Function-
ality Layer (CFL). CFL components are the service
manager (SM) to define self contained stateless ser-
vices; application manager (AM) to define the struc-
ture of larger applications made of service sets (ser-
vice graph); and the composition logic (CL) containing
time-deterministic service composition and reconfigu-
ration algorithms;

• Adaptable to both real-time network protocols (e.g.,
time-triggered for full real-time schedulability analy-
sis) and Internet protocols based on TCP/IP or UD-
P/IP. This functionality is contained in the Commu-
nication Backbone and Resource Management Layer
(CBL). This layer enables easy porting to different off-
the-shelf middleware backbones such as DDS, ZeroC
Ice, Corba/RTCorba, Java RMI, JMS, AMQP, etc, by
the adaptation of a single bridge component [9,28] for
synchronous or asynchronous interaction models.

In iLand, a reconfiguration is the process of transition-
ing from the current state of the system to the target state.
A service oriented application (an application or a SOA) is
the set of services (each service is Si), that are currently
part of the system and that are active. A SOA is specified
as a graph. where each service Si has a number of possi-
ble implementations being si,k the kth implementation of
Si. A system state is the set of service implementations



Figure 1: iLand middleware architecture

(Si,j) that are active and running. In a reconfiguration, at
least one service implementation needs to be either stopped,
replaced by another one, or launched. A service imple-
mentation Si,j is specified by its functionality, its timing
parameters, and the list of dependencies in the following
way: {F,C, T,D, P,Q,∆} where F is the functionality, C
is the computation time or processor cycles it requires to
complete its function, T is the release period since in our
real-time computation model all tasks are approximated by
periodic (see [15]), D is the deadline to complete its func-
tion, P is the priority that indicates the relative importance
of the service implementations, Q is the output quality de-
livered by Si, and ∆ is the dependency list with respect to
other service implementations. iLand reconfiguration logic
(reconfiguration event detection, target configuration selec-
tion, and transition) is based on the efficient management
of the SOA graphs (precisely, of the service implementation
graphs) through a set of well defined steps to ensure timely
transition [6, 7].

4. REMOTE MONITORING OF PATIENT’S
ACTIVITY: A RECONFIGURABLE SER-
VICE BASED APPROACH

This application intensively utilizes sensors to detect ac-
tivity in the patients house to both, reconfigure the envi-
ronment to aid his/her everyday life living and to detect
missuse (or similar events) over potentially dangerous elec-
tric appliances. A reasoning engine fuses data and actuates
on the house environment to both help the patient (possibly
partially disabled) and to provide safety features (e.g., gas
or oven detectors indicate that the mechanism is on and the
patient has left the room or the apartment). Figure 4 shows
a prediction mechanism. The system detects the presence
and activity of the patient and turns the house environment
into a smart area that eases the patient’s daily activity.

The patient’s house is intensive in the use of sensors and
actuators. Sensors monitor the physical systems and the ac-
tivity performed by the patient. Actuators are devices that
change the state of physical spaces or appliances. Moreover,
there are a number of different possible interfaces and smart
objects for patient interaction (smartphones, tablet, inter-

Figure 2: Reconfiguration scenario enabled by iLand
in the activity monitoring application

active mirrors, etc.). There are two basic types of services
monitoring and controlling the sensors and devices that are
present in the house: actuator services and interface ser-
vices.

The system has four basic subsystems or parts, each hav-
ing a set of services:

• Daily activity detection that integrates the following
services: Location System, Domotic Controller, and
the Things Manager.

• Application logic and reasoning, containing a reason-
ing engine service that executes the logic to infer the
actuation actions.

• Actuation that has the Actuator Service that is local
to each subsystem in the house.

• Notification that is performed by the Interface Service
via opportunistic user interfaces depending on the lo-
cation of the patient.

Services of each part will make use of different subser-
vices in order to perform their associated activities. This is
shown in figure 3.

Figure 3: Subsystems and their constituent subser-
vice list

The daily activity detection services and reasoning engine
service are part of the service that is performing continuous
monitoring. The actuator service and interface service are



part of different subsystems that are launched when the rea-
soning engine triggers a reconfiguration event. A reconfigu-
ration event is launched when a modification of the system
services has to be undertaken; then, the appropriate service
implementations are selected depending on the patient ac-
tivity and contextual information gathered from the sensors.
The reasoning engine decides if it is necessary to launch a
new SOA (application graph) or if it is needed to simply
replace the current implementation of a given service by a
different implementation.

A single service may be implemented in different ways
that can yield to different output quality services (e.g., a
video display service). There are three main services regis-
tered in iLand, that have different possible implementations:

• Location Service (LS) that determines the patient loca-
tion by using different sensors deployed over the house
spaces.

• Domotic Controller (DC) that monitors and controls
the status and operation of different home appliances.

• Things Manager (TM) that monitors the use of differ-
ent household objects, such as: chairs, bed, garbage
collector. These provide basic information to reason
about the activities performed by the patient. Changes
in the standard use of these objects may indicate a
change in the patient’s health conditions.

• Reasoning Engine (RE) that determines the actions
to be executed based on the information received from
the context services. So, it uses the information from
the location service (LS), the domotic controller (DC),
and the things manager (TM). The reasoning engine
service logic algorithms takes decisions on actuation
based on these data. The result may launch a recon-
figuration of the service architecture.

• Interface (Int) service has the goal of displaying use-
ful information to the user. Examples are, e.g., in-
dications of some appliances being on, or reminders
of medicine habits. Int will select specific interfaces
depending on the patient’s location and physical ha-
bilities.

• Actuator (Act) performs the basic actuation over the
devices and house electronic units.

Figure 4 shows the architecture of the application based
on services (SOA).

The reconfiguration of the current house service archi-
tecture is triggered at specific instants according to the pa-
tient daily activities. iLand middleware provides temporal
bounds on the duration of the reconfiguration that are ex-
pressed in the specification of the SOAs. The reconfiguration
protocol of iLand is time bounded and defines a sequence of
phases to guarantee timeliness [6,7]. Figure 5 shows the set
of steps.

All nodes are running iLand middleware in different con-
figurations. Embedded nodes controlling sensors run a re-
duced footprint version and the servers (present in a specific
location at the patient site); other embedded nodes run the
full fledged version with the reconfiguration logic capabilities
and the reasoning engine (RE) initiates the reconfigurations.
The reconfiguration is triggered from the iLand reconfigura-
tion logic (step 1) based on the information gathered from

Figure 4: Application services updated after a re-
configuration event

Figure 5: iLand reconfiguration sequence applied to
the daily monitoring system

RE (step 2). The reconfiguration actions take place by in-
forming the rest of services, including the domotic controller
(DC) to either display the right information to the patient
or actuate on the household electric appliances and devices.

5. ELDERLY HOUSE MONITORING
This section presents a monitoring system for an elderly

house based on iLand middleware. Patients may be in severe
physical conditions, therefore they need to be monitored in
real-time. They are located in a centralized building (elderly
house), each having an individual room specially configured
according to the patient’s health requirements. Figure 6
presents the general overview of the system. Patient’s indi-
vidual spaces are equiped with specialized medical systems
integrated in the room. Patient data are sampled by sen-
sors; then, they are processed, logged, and transmitted to
a control center in the building with continuos presence of
medical staff.

Each room has a service room manager and a set of med-
ical sensor that monitor the patient. The room manager is a
front-end monitoring and decision making system that per-
forms basic analysis of the patient. The medical equipment
subsystem is simulated, and the gathered data are synthet-
ically generated to test monitoring algorithms with a few
physical parameters analysis. The room manager is an em-



Figure 6: Elderly house real-time monitoring system

bedded system with a basic interface, integrated with the
room. The control center is equiped with iLand middleware
and a data base connection.

The underlying communication protocol has to be highly
reliable and timely; data cannot be lost nor suffer unbounded
delays. For this system, iLand middleware was adapted to
time-triggered communication, that enables real-time schedu-
lability analysis. Time-triggered protocol [20, 27] was anal-
ysed to ensure that it provides sufficient flexibility for asyn-
chronous event transmission over Ethernet, like alarms. The
usual approach is to fix periodic time slots for alarm events.
In this system, in order to reduce bandwidth usage, the pro-
tocol has to be adaptive.

Time requirements are specified in this system as there
are different criticality levels, some being highly critical. Pe-
riodicity of the medical patient monitoring samples range
from 1s to 1 min, according to the patient health condi-
tions. Data logs to the control center are stored in 1s pe-
riods. Alarms are sent by a room manager to the control
center withing time deadlines of 500ms to 1s periods.

Diffent reconfiguration scenarios are possible: arrival of
a new patient; room adaptation according to patient health
conditions; and alarm events as some basic patient health
threshold has been reached. Figure 7 presents the SOA (ser-
vice oriented architecture) for a reconfiguration.

Two SOAs are instantiated for each room: (i) data anal-
ysis; and (ii) patient monitoring/supervision. Data analysis
SOA is made of the following services:

• data collection (see figure 8) gathers values sampled by
the sensors;

• data analysis, fuses the data and reasons about the
profile of the patient in order to determine the current
state of the patient, and commits the result to the local
storage;

• send logs, formats the sampled values and the state
value to be sent to the control center;

• collect logs retrieves the logs sent by the room man-
ager;

Measure 
data 1 

Measure 
data n 

Collect data 

Send logs 

Read new 
configuration 

Instantiate 
equipment 

Measure 
data 

Measure 
data 1 

Measure 
data n 

Collect data 

Send logs 

Reconfiguration 

Add new!
equipment!

Figure 7: Reconfiguration scenario

Figure 8: Data collection SOA

• store database for persistent data storage of monitored
information and patient’s data.

The list of services of the supervision SOA (see figure
9) are: (i) read database to retrieve stored logs from the
data base; (ii) supervision that analyses the logs (patient
data) on the control center to determine the patient health
conditions; and (iii) local supervision is run by the room
manager and performs on-site local results analysis.

An additional SOA performs log data display to medical
staff in the control center. The log data display SOA has
two services: read DB (for interfacing to the data base) and
display for handling data formatting and display.

This design allows to handle each room individually while
preserving continuous operation through a single end point
for control. As an example, upon arrival of a new patient,
it is possible to instantiate the two SOAs needed for data
collection and supervision/monitoring in this room to config-
ure them without affecting the rest of the system. Likewise,
reconfiguration only concerns the data collection SOA of a
single room and not the whole system. Figure 9 shows the
relation between the mentioned SOAs.

iLand middleware was ported to run a time-triggered
protocol with scheduled time-slots that guarantees real-time
asynchronous traffic transmission such as alarms. Measure-
ments over the actual system have been taken to show the
stable reconfiguration times provided by the middleware.
Figure 10 present the measurements.

Measurements correspond to different experiment with
varying elementary cicles (EC) [20] for the time-triggered
communication. Stability is evidenced in the reconfiguration
times, showing efficiency and real-time transmission dead-
line preservance for all cases.

6. CONCLUSION
Two different applications of iLand middleware in the

domain of medical systems have been presented. Both tar-
get cyber-physical medical areas as patients data is moni-
tored (from physical signals to activity indications) in order
to reason and react on the current situations, depending of
inferred needs. The interaction paradigm of iLand is a de-



coupled one, therefore supporting decoupled integration of
services that can be either local in the same node or dis-
tributed among different nodes and even in different net-
work segments. iLand middleware has a modular architec-
ture that supports easy porting to different underlying com-
munication middleware technologies, ranging from the most
conventional and de facto standards such as DDS or lower
level networking protocols operating at the medium access
layer such as time-triggered ones. The reconfiguration logic
of iLand is based on the one side on graph algorithms that
and search techniques that target timely decision making;
and on the other side it is based on a set of steps to guaran-
tee the reconfiguration of a whole system based on services.
Reconfigurations are supported in a timely way: the modi-
fication of a service (replacing a specific implementation) or
a SOA (replacement of the service graph) is achieved within
the specified deadline, as show the time measurements per-
formed to the elderly house case of figure 10; time measures
confirm the real-time operation of the system and the sta-
bility of the reconfiguration logic. Future research directions
include the improvement to the middleware design in order
to support varying numbers of clients and to better adjust to
the requirements of virtualized systems (using the baseline
work described in [18] and [12]).
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[12] M. Garćıa Valls, C. Calva-Urrego, A. Alonso, J. A. de
la Puente. Adjusting middleware knobs to assess
scalability limits of distributed cyber-physical systems.
Computer Standards & Interfaces. DOI:
10.1016/j.csi.2016.11.003 2017.
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Figure 9: Service deployment in the elderly house monitoring system

Figure 10: Experimental results over time triggered communication: Reconfiguration times


