
Contracting Challenges for System Design and Integration

Mischa Möstl
IDA - Institute of Computer and Network

Engineering
Technische Universität Braunschweig

moestl@ida.ing.tu-bs.de

Rolf Ernst
IDA - Institute of Computer and Network

Engineering
Technische Universität Braunschweig

ernst@ida.ing.tu-bs.de

ABSTRACT
In this paper we highlight challenges of the applicability
of contracting (based on assumptions and guarantees) for
cyber-physical systems design. We illustrate in an example
the limitations of an entirely composability-centered con-
tracting approach. An alternative approach is subsequently
proposed and applied to the presented example to illustrate
that it is capable of handling the limitations demonstrated
for the composable approach.

1. INTRODUCTION
Updatability and extending the functionality of devices

in the field has become an established feature for consumer
devices such as smartphones. Bringing this feature to com-
plex cyber-physical systems (CPSs) such as cars, however,
involves a number of challenges. Besides the obvious task of
securely deploying an update, changes to a CPS often have
safety implications. I.e. the whole CPS must be functionally
safe after the update has been deployed. Either because the
update added a safety critical functionality or since it was
already present in the CPS before the update. Functional
safety standards require for such applications that freedom
of interference between critical applications and the rest of
the system must exist [4, 7].

Similar to [4] we assume a V-model based development
flow. Even in a conventional lab-based approach for such an
update process several steps must be carried out to estab-
lish this. For in-field update abilities our research hypoth-
esis is that applications are developed independently from
the platform on the descending branch of the V, and the
platform alone decides on the integration and deployment
of updates. Assuming this, the system must automatically
handle some design steps as part of the integration tasks
on the ascending branch of the V, thus verifying a number
of quite heterogeneous requirements. In order to be able
to check requirements automatically they must be formally
tractable.

A recent approach to formally specifying requirements for
system compositions is contracting. The method assumes
that for each component that is part of an update a contract
is negotiated, such that all contracts for existing components
meet their requirements as well as those of the update. In
order to achieve this, contracts specify a set of assumptions,
i.e. preconditions, such that a set of guarantees, i.e. post-

Copyright retained by the authors.

conditions, is provided given that the assumptions are ful-
filled. The general understanding of this concept assumes
that a contract is a bilateral agreement between two com-
ponents on an interface and its specification, i.e. it suggests
that contracts are negotiated between all pairs of compo-
nents that share an interface. Further the concept favors
composability of components, i.e. that any property of a
component proven in isolation also holds in the integrated
system as long as assumptions and guarantees, i.e. pre and
postconditions, match at a service interface. Although this
works very well for functional service interfaces, e.g. data
types or value ranges, between components, it is a prob-
lem for non-functional aspects such as safety, timing, etc.,
which are typically global properties. One might argue, that
this can be overcome by choosing the right abstraction layer
with sufficient detail to model and tackle this effect. How-
ever, it remains that composability on higher layers cannot
be achieved, especially for global system properties. Most
prominent examples are systems with stateful shared re-
sources, such as switched networks or caches which exhibit
complex behaviors that are hard to abstract away and en-
capsulate in a component. Furthermore, this fact highlights
the second issue of what the appropriate granularity for a
component and its interfaces is. Section 2.1 illustrates this
with an example.

The reason why choosing the “right” abstraction and the
composability property are problematic are cross-layer ef-
fects, e.g. the dependence of execution times on the cache
behavior. The reason therefore is the fact that the cache
behavior is dependent on all the applications reading and
writing on it, i.e. also applications that are not party to the
respective (bilateral) contract. Cross-layer effects lead to
dependencies which become effective when components are
integrated and connected in a real system. These depen-
dencies in the overall system then undermine the properties
of a component, that where assumed static or verified when
it was assessed in isolation, e.g. executing or simulating a
component to estimate the execution time.

It can be argued that estimates on internal and compo-
nent interface parameters can be tailored to a true worst-
case design and contracts can be built accordingly it still
requires composability for any global property. While full-
scale worst-case design might be tolerable for high assurance
system, e.g. in avionics, it is in general not applicable for
a majority of CPS applications. Due to the overhead in-
troduced by overprovisioning, it is in general deemed to ex-
pensive and thus unnecessary for all applications. With the
only exception, if sufficient independence of implementation



R1 

S L 

P T O1 

O2 

Function F1 

sensor 
input  

control 
output 

Function F2 
R2 

Figure 1: Two driver assistance functions integrated
on a platform with two resources

between these and the critical functions can not be argued
otherwise.

2. CONTRACTING FOR CPSs
One motivation for contracting is that responsibilities in a

system scale development process can be clearly attributed
to component suppliers by Original Equiptment Manufac-
turers (OEMs) or from tier-1 to tier-2 suppliers. The idea for
a V-model based development process is that requirements
are formulated on the descending branch and contract adher-
ence is checked during integration on the ascending branch.
In this manner non contract-conformant components and
the responsible parties can easily be identified.

The other application of contracting is to support automa-
tion of integration. By enhancing e.g. software changes with
a contract, a managing entity can then integrate the changed
components based on the contracting information.

2.1 An Example
Contract-based composability is often favored for software

modules. Composable interfaces seem particularly suitable
for functional properties as for these all lower levels and esp.
hardware effects are removed by abstraction. However, as
already indicated, CPSs in general are not composable on
higher layers due to the lack of composability for global prop-
erties, since these are undefined. Cross-layer effects that lead
to dependencies once components are assembled in a system
can undermine the properties that composable interface con-
tracts try to provide.

Consider the example shown in Figure 1, which is a sim-
plified case study taken from a fully electric research vehicle
[5]. The solid blue boxes represent software components that
are mapped to a resource platform (here) consisting of two
resources R1 and R2. Multiple software components carry
out two distributed functions F1 and F2, where F1 is a park-
ing assistant (including parking spot detection), and F2 is
a lane detection assistant. Software components O1 and O2
carry out object recognition and object masking (only O2)
from camera and other sensor input on the resource R1. Re-
source R2 hosts the Trajectory calculation (T) and parking
maneuvering (P), which forms the parking assistant function
F1. Further R2 executes parts of the lane assist functional-
ity, that consists of the two components lane detection (L)
and steering parameter calculation (S) based on the object
recognition and masking component (O2). For the sake of
simplicity of this example, we consider the communication
(green arrows), i.e. data-flow, event driven. As common for
automotive systems, the resources are scheduled under fixed
priority scheduling such as in AUTOSAR [1].

2.2 A Composable Approach
Assume we want to integrate the two functions contract

based, i.e. provide a set of assumptions that if fulfilled give
certain guarantees in return.

For software modules contract-based composability is of-
ten favored, since it allows building systems that are correct
by construction. Composable interfaces seem to be particu-
larly suitable for functional properties as for these all lower
levels and esp. hardware are removed by abstraction. For in-
stance, the T component will compute trajectories of a given
accuracy and provide them in a fixed data format. The as-
sumptions for this to hold are that at its input object maps
of a given data format are available. For properties like this,
contracts in assume and guarantee fashion can easily be (for-
mally) formulated. Further, simple platform contracts can
be formulated: For instance software components O1 and
O2 are only available in a special binary format which is
only supported by R1 and thus they must be mapped there.

Both examples formulate a purely functional property that
can be checked bilaterally. I.e. this type of contracts works
in a composable manner and the integration task would only
have to check composability of contracts. However, this type
of contracts neglects so called non-functional properties such
as timing. Assume that the control algorithm implemented
in T requires that new object data must not exceed a cer-
tain data age, i.e. delay from the point in time where the
surrounding was sampled and processing the object map by
T. Further assume that new data must arrive in a certain
periodicity.

We see that the output timing is a function of the input
function (event model) and the resource timing. I.e. it is
neither a bilateral property between the software compo-
nent O1 and T nor a property between T and its executing
resource R2. This example already illustrates that CPS be-
havior, especially timing, is not composable on a higher layer
of abstraction. In conclusion, contract mechanisms that re-
quire composability are not useful for practical CPS design,
since effective CPS design on the one hand requires high-
level overview as well as on the other hand guarantees from
lower layers.

The example shows that especially cross-layer effects in-
troduce dependencies between elements on different levels
of abstraction, that make single-layer contract composabil-
ity an intractable approach. To further highlight this with
an example of a cross-layer effect: For instance, the thermal
environment of a CPS can have a significant influence on
the system behavior, e.g. the tolerable response time of a
system can be violated if the CPU a component is executing
on, is throttled at higher core temperatures. This is a pri-
mal example of the cross-layer nature of dependencies, since
the thermal regime of a resource is typically not part of the
timing model. In the example case it is rather the fact that
the timing model is dependent on the Worst-Case Execution
Time (WCET) estimation which in turn depends on other
models such as the thermal regime or cache behavior.

2.3 An Alternative Approach
As we have seen a contracting mechanism that solely de-

pends on composability of interface contracts cannot meet
the demands of the integration tasks for CPSs. Therefore,
the scope of contracting must be extended such that also
global system properties can be verified for a component
composition. Besides contracts that specify well defined in-



R1 

S L 

P T O1 

O2 

Function F1 

Function F2 
R2 

Timing Model Contracts 
- Event Model Interface 
- Computational Demand 

Resource Model Contracts 
- Demand to WCET 

Global 
Requirements 

sensor 
input  

control 
output 

Figure 2: The example system from Figure 1 ex-
tended by model contracts. The figure shows them
conceptually.

terfaces, contracts that specify models of a component are
added to the contracting-based integration mechanism. As
long as compatible models are chosen for different compo-
nents, the models can be composed and further the compo-
sition can be analyzed. The model contracts thus enable to
analyze global properties in a compositional analysis of the
delivered models.

Furthermore, a specific model given by a contract can at-
tach to other models that are provided by other contracts.
I.e. if certain parameters of a model cannot be directly spec-
ified for one model, since the parameter is not an indepen-
dent property of the component, it can be represented as a
function which is evaluated in another model or an analysis
thereof. In this way models can form a function-parameter
hierarchy which can be compositionally evaluated, i.e. one
model after the other until all global properties can be de-
termined.

Applying this to our example from Figure 1, it allows us to
specify a timing model for the two functions, i.e. for the in-
dividual components respectively. To demonstrate the idea,
assume that each software component can be represent by
an individual worker task. In conclusion each component
has a contract that represents it as a task that has prece-
dence constraints due to the dataflow on the components
interfaces. The trailing tasks of each function chain, i.e. for
O1 and O2, can be assigned event models as parameters that
describe their activation period.

Yet in order to compute a Worst-Case Response Time
(WCRT) on each chain, further information is necessary.
Timing analysis methods such as Real-Time Calculus (RTC),
Compositional Performance Analysis (CPA) or MAST there-
fore require a WCET parameter [8, 3, 2].

Since the WCET is not an independent property of a task
but rather the combination of task and at least the resource
it is executed on, we need an additional model that describes
the relation of the demand a task has and the capabilities of
the resource. A sufficient model interface for this can be pro-
vided by a model contract for the resources R1 and R2. This
form of setting models in context allows also to address the
previously introduced example considering thermal interfer-
ence. Since now, not all information must be squeezed into a
composable abstract interface contract, the WCET estima-
tion model can query an appropriate model. The function
parameter relation of the models then allows to evaluate the
end-to-end WCRT compositionally by querying the appro-
priate WCET parameter for an analysis.

By also contracting the parameters of a model a high de-
gree of flexibility is achieved. The benefits, besides the flexi-

Table 1: Model Parameters for the system in Fig. 1

O1 O2 T P L S
Event
Model

Period=10,
Jitter=1

Period=100
Jitter=5

propagated

Priority1 1 2 1 2 3 4

WCET
(normal)

5 29 1 1 10 16

WCET
(throttled)

5 29 2 2 20 32

1 lower value indicates higher priority

normal throttled

0

50

100

150

200

7

93

9

183

W
C

R
T

o
f

ch
a
in

O1 → P O2 → S

Figure 3: WCRTs of the function chains of the ex-
ample system

bility, are that the compositional approach can be applied at
high levels of abstraction and is still formally tractable. The
models supplied by the contracts on higher abstraction levels
can be refined by the function-parameter hierarchy later on,
where values can be fixed by contracts on the appropriate
design levels.

We demonstrate this with the example system. Therefore,
we select a set of parameters for the system that we provide
in Table 1. Note that we assume that the WCET is not
part of the timing-model contract each (software) compo-
nent supplies, but an artifact of the combination of resource
and timing-model contract. This way the resource model
can supply different WCET values, depending on the ther-
mal conditions of the resource.

To analyze the resulting construct we apply the analysis
described in [6]. The results for the WCRT are displayed in
Figure 3. As an integration check these would have to fulfill
the requirements of a function contract, i.e. for the chain of
software components.

3. CONCLUSION
In order to apply the outlined compositional contract-

ing mechanism in a fully automated way, formalization of
model transformations and model interfaces are necessary.
I.e. how to automatically attach a WCET estimation model



to a timing analysis and software component models. Fur-
ther, if such interfaces also require transformations of the
used models a proof of correctness for these transformations
seems in order.

It has to be noted that the exemplified process adapts
neatly to established company processes since it splits re-
sponsibilities instead of aggregating them in one component
interface contract. In the compositional approach, informa-
tion is only obtained when necessary for an analysis, i.e. it is
obtained by function evaluation of a contract. Second, the
information is obtained directly from the respective source,
i.e. from the responsible model describing the property.

It is evident that for the integration task in complex CPSs
more global properties than timing are of interest. We be-
lieve that the model-contract approach allows to evaluate
the requirements of all the relevant viewpoints in appropri-
ate models and thus is able to perform equivalent require-
ments checks as in a manual V-model process.

Acknowledgements
The authors would like to thank the other members of the
DFG funded research unit Controlling Concurrent Change
(FOR1800) for their support.

4. REFERENCES

[1] AUTOSAR GbR. Requirements on Operating System,
Release 4.2.1 edition, July 2015.

[2] M. G. Harbour, J. J. G. Garcia, J. C. P. Gutierrez, and
J. M. D. Moyano. MAST: Modeling and analysis suite
for real time applications. In Real-Time Systems, 13th
Euromicro Conference on, 2001., pages 125–134, 2001.

[3] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter,
and R. Ernst. System Level Performance Analysis - the
SymTA/S Approach. In IEE Proceedings Computers
and Digital Techniques, 2005.

[4] International Organization for Standardization - ISO.
ISO 26262 - Road vehicles - Functional safety, 2
edition, April 2011.

[5] A. Reschka, M. Nolte, T. Stolte, J. Schlatow, R. Ernst,
and M. Maurer. Specifying a middleware for distributed
embedded vehicle control systems. In Vehicular
Electronics and Safety (ICVES’14), Dec. 2014.

[6] J. Schlatow and R. Ernst. Response-Time Analysis for
Task Chains in Communicating Threads. In 2016 IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 1–10, Apr. 2016.

[7] The International Electrotechnical Commission - IEC.
IEC 61508 - Functional safety of
electrical/electronic/programmable electronic
safety-related systems, 2 edition, April 2010.

[8] L. Thiele, S. Chakraborty, and M. Naedele. Real-time
calculus for scheduling hard real-time systems. In The
2000 IEEE International Symposium on Circuits and
Systems, 2000. Proceedings. ISCAS 2000 Geneva,
volume 4, pages 101–104 vol.4, 2000.


