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ABSTRACT
In order to increase the flexibility of design process, we con-
sider a component-based system in which some components
may be changed, repaired, or upgraded. We assume that
the worst-case execution time (WCET) of each task that is
implemented by a component is known. Our first goal is
to find the smallest set of periods that make the task set
schedulable by EDF or by RM. We call these periods safe
periods because then any period assignment which is larger
than the safe periods will be schedulable. Having safe pe-
riods, system designer will be able to use any optimization
criteria of his choice to assign periods of the tasks without
a need to incorporate the response time analysis techniques,
which are usually NP-Hard problems, into his optimization
constraints. Instead, the schedulability constraint will be
reduced to verifying that the assigned periods are larger
than the safe periods. Our solution for safe periods for the
RM, is based on finding the smallest set of harmonic peri-
ods with utilization 1. Here we use our recently developed
polynomial-time approximation algorithm with bounded er-
ror of 2 for finding these safe periods for RM.

As the second part of our contribution, we consider the ro-
bustness property. First we explain how to find safe periods
such that a certain level of robustness (based on potential
changes of each component) is guaranteed. Doing this, if one
of the components changes in the future, other components
can still run using their previous periods, and hence, we iso-
late the effect of future changes from parameters of the other
components. Finally, we obtain the robustness factor as a
function of the available spare capacity of the system, i.e.,
the unused utilization. We determine to what extend the
WCET of any of the components can be increased without
violating the safe periods.
Keywords: Robustness, Schedulability Guarantee, Param-
eter Assignment, EDF, RM

1. INTRODUCTION
With the increase in the computational power of under-

lying platforms, real-time systems tend to have more func-
tionalities than before. In order to reduce time and costs of
developing such large scale systems, component-based de-
sign has been widely adopted by the industries. It allows
a new system to reuse what has been developed in the pre-
vious projects or by other companies or third parties. In
the case of safety-critical system, reuse of previously cer-
tified components simplifies the re-certification process as
well. Eventually, it saves time and money in the design of a
new system.
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During the design of a large scale system, component’s
(or task’s) characteristics such as execution time, period, or
deadline may change. Even in some cases, new requirements
or tasks will be added to or removed from the system. As
a result, schedulability analysis method, which is the theo-
retical means to guarantee real-time requirements, must be
flexible towards changes of its input parameters. Moreover,
due to the fact that the system evolves, accurate informa-
tion about the parameters of the tasks might not be avail-
able during all design stages. In some cases, a task might
have a set of configurations that are not yet confirmed (fi-
nalized). The schedulability analysis method must also cope
with these situations as well.

In a system that consists of several components, assigning
the parameters of the components (or tasks) is a challeng-
ing step; some components may have certain restrictions for
their period or deadline. If there are a large number of com-
ponents and the initial parameter assignment does not pass
the schedulability test, then the designer must change the
parameters until he finds a feasible configuration for the sys-
tem. Moreover, some set of parameters may not satisfy other
design goals. For example, a schedulable set of parameters
may heavily under-utilize the system, or decreases quality
of service.

One potential solution for finding a configuration which
satisfies all design goals is to use design space exploration [12]
which provides the ability to operate on the space of design
configurations in order to evaluate and/or find feasible con-
figuration sets (or regions). This exploration needs a math-
ematical model of the system and its constraints. They are
usually integrated into one constrained optimization prob-
lem and are solved by numerical solvers. However, a large
system may have millions of possibilities, and hence, it might
not be feasible to enumerate every point in the design space.
Besides, it is hard (and probably expensive) to derive one big
mathematical model of a large system which can be fed to
the tool set. Another issue is that adding or removing com-
ponents may force the system to under-go another round of
design space exploration during which timing parameters of
some other tasks may change again.

Another important challenge in the design of component-
based systems is that components may be upgraded. Due
to these upgrades, their worst-case execution time (WCET)
may also change. Such a change may require redoing the
schedulability analysis of the system (in most cases), because
most of the schedulability tests are not robust against an in-
crease in the work-demand of a task [2]. It is worth noting
that traditional response-time analysis for rate monotonic
(RM) and demand bound analysis for EDF are sustainable
towards reductions in the WCET (or an increase in the pe-



riod) either at run-time or design-time. In other words, if the
new component has smaller WCET, system remains schedu-
lable [2]. However, they are not robust against the increase
in the WCET.

One way to provide robustness is through sensitivity anal-
ysis which determines to what extent any of the parameters
(or a combination of parameters) can be increased while the
schedulability is preserved [5]. However, the works that has
provided a means for the sensitivity analysis [3, 5] are com-
putationally expensive because they are based on building
and then solving a large set of equations from the current
system parameters. If the system has a large number of
tasks, the problem becomes intractable.

In this paper, we assume that the system consists of a
set of components that implement one or more real-time
tasks. Each task is introduced by its initial WCET. Also
we assume that these tasks are periodic or sporadic, have
implicit deadlines, and are scheduled upon one processor ei-
ther using RM or EDF scheduling algorithm which are the
two widely implemented scheduling algorithms in real-time
operating systems. The goal of our paper is to provide a
method for finding a safe set of periods such that any fi-
nal period Ti that is assigned to the task τi and is larger
than the safe period TSi , does not threaten the schedula-
bility of the whole system. In other words, periods can be
selected independently from each other as long as each pe-
riod is larger than TSi . This property provides freedom for
the system designer to decouple the schedulability analysis
from optimization criteria. Thus, it is a flexible solution be-
cause then the designer can use optimization methodologies
of his/her choice without a need to add separate conditions
for the schedulability guarantee within the optimization cri-
teria (apart from having Ti ≥ TSi ). Since the response time
analysis problem is known to be NP-Complete [9, 10], this
simplification can significantly help to reduce overall cost of
optimization process.

As our second contribution, we provide robustness guar-
antees for the system which is subject to changes (in the
future) provided that either the bounded amount of changes
per task, or overall amount of changes per all tasks is given.
In other words, we require that the designer gives us a list of
αi values per task τi that is the maximum potential change
that can happen for the WCET of that particular task. This
can happen because of a change in the implementation or
in the input parameter of the task. For example, an appli-
cation uses a camera to obtain video in VGA format with
image size 640x480, but it may happen that the next version
of the application uses image size 1024x768 which increases
the execution time of the video processing component by
10% (for instance). Meanwhile, the system designer wants
to be sure that the provided set of TSi values by our solution
are still valid even if such changes happen. The second con-
tribution makes it possible to provide TSi values with such
guarantees for the future changes. However, unlike the first
step, here our solution may under-utilize the system due to
the fact that it needs to leave some gap for the potential
future changes.

As our third contribution, we answer to the question that
”how much robustness can be guaranteed if the system has
a specified spare utilization?”. Here, for a task τi we provide
αi such that if the amount of changes in Ci (WCET of τi)
is smaller than αiCi, the provided TSj values remain valid
for all tasks. Another application of this contribution is to
help designers to know the potential effects of removing a
component from the system.

As the final contribution, we explain how to add more
tasks to the system while keeping all previous promises about
safe periods, i.e., TSi values. In this paper, we try to keep
the complexity of the solution polynomial-time. In the case
of safe period assignment for EDF, our complexity is linear
time and in the case of the RM is O(n2), where n is the
number of tasks.

The paper is organized as follows. We start by introducing
the system model and notations in Sect. 2 and introduce our
definitions and concepts in Sect. 3. In Sect. 4 our solution
is introduced and is evaluated in Sect. 5. In Sect. 6 related
work is discussed, and the paper is concluded in Sect. 7.

2. SYSTEM MODEL
We assume a uni-processor system with a set of inde-

pendent hard real-time preemptive tasks denoted by τ =
{τ1, τ2, . . . , τn} which are provided by a set of components
that may or may not be open source. However, we assume
that the initial WCET of each task in each component is
given, and is denoted by Ci for the task τi. Also we assume
that the tasks are either periodic with no release offset and
jitter, or they are sporadic. Moreover, we consider that the
tasks have implicit deadlines, i.e., deadlines are equal to pe-
riods. We denote the final period of a task by Ti. Also we
denote the utilization of a task by ui = Ci/Ti and utiliza-
tion of the system by U =

∑n
i=1 ui. Finally, we assume

tasks are sorted in a non-decreasing order of their WCET,
i.e., C1 ≤ C2 ≤ . . . ≤ Cn.

The system will be scheduled by either RM or EDF sche-
duling algorithms and the preemption overheads is negligi-
ble. We assume that tasks do not share resources and do
not have self-suspension (these cases are left for the future
work).

3. DEFINITIONS AND CONCEPTS
The first goal of our work is to identify a set of safe period

values {TS1 , . . . , TSn } that simplify the schedulability condi-
tion to a bound-checking condition, i.e., instead of a schedu-
lability test, we just need to make sure that ∀i;Ti ≥ TSi
in order to guarantee the schedulability. Safe periods are
defined below. Note that here we did not mention the sche-
duling algorithm in the definitions, but later we will study
EDF and RM separately.

Definition 1. For a given set of WCET, a set of periods
{TS1 , . . . , TSn } is a safe period set if and only if every task in
the task set is schedulable as long as

∀i; Ti ≥ TSi . (1)

If the periods are assigned such that (1) is satisfied, then
the maximum possible utilization that can be produced by
the task set will be not larger than

∑n
i=1 Ci/T

S
i . A given

set of safe periods is called US−safe if US =
∑n
i=1 Ci/T

S
i .

Among different choices for TSi values, we are interested
in the smallest ones because then we maximize the number
of possible period values that can be used by the designer.
Based on this intuition, we define our optimality criteria as
follows.

Definition 2. A given set of {TS1 , . . . , TSn } is called op-
timal US−safe period if and only if it is US−safe and it



minimizes the following value

n∑
i=1

wiT
S
i (2)

where wi shows the importance of having Ti as close as pos-
sible to Ci and 0 < wi ≤ 1.

If we have ∀i;wi = 1, equation (2) will not prioritize one
task over another. Namely, the effect of weights is gone and
all tasks are treated the same way. However, if for example,
it is very important to have T1 as close as possible to C1,
but for the rest of the task it is not important, then we can
assign w1 = 1 and for the other tasks wi ≈ 0.

In order to formalize the robustness guarantee, we de-
fine a bounded guarantee for the robustness. We start with
αi−robust periods and then α−robust periods.

Definition 3. Given a set A = {α1, . . . , αn}, a period
assignment TS is called αi-robust if and only if ∀i; 1 ≤ i ≤ n;
it is possible to increase Ci upto αiCi without jeopardizing
schedulability of any other task τj (j 6= i) that has Tj ≥ TSj .

An αi−robust period assignment allows the designer to in-
crease the WCET of any arbitrary task such as τi up to αiCi
while guaranteeing the schedulability for the other tasks.
It means that if the implementation of one of the tasks is
changed, other tasks still can use their previous set of pa-
rameters provided that the total amount of the change is
smaller than αiCi for the task.

If for an αi−robust period assignment, all αi values in
a given set A = {α1, . . . , αn} are equal, then we call it
α−robust instead of αi−robust.

4. PERIOD ASSIGNMENT
In this section we explain how the set of TS is obtained

such that Definition 2 is satisfied for EDF and RM algo-
rithms. We also discuss how to provide robustness guaran-
tees and add new tasks to the system.

4.1 Optimal Safe Periods for EDF
The core technique which we use to find an optimal safe-

period assignment for EDF is based on the work of Cervin
et al., [8], where they calculate a period assignment T ∗ =
{T ∗1 , . . . , T ∗n} that minimizes (2) and satisfies

n∑
i=1

Ci
Ti
≤ 1. (3)

Lemma 1. (Section 3.5 from [8]): Let (T ∗1 , . . . , T
∗
n) be the

solution of ∑
1≤i≤n

wiT
∗
i ≤

∑
1≤i≤n

wiTi, (4)

for any period assignment (T1, . . . , Tn) which satisfies (3).
Then, T ∗i can be obtained by

T ∗i =

√
Ci
wi

∑
1≤l≤n

√
wlCl. (5)

Using T ∗ we show how to obtain the smallest period values
that minimize

∑
wiTi and are US-safe.

Figure 1: An example of 3 tasks with C1 = 1, C2 = 2,
C3 = 6, w1 = w2 = w3 = 1, and US = 0.8. According to
(5), we have T ∗i =

√
Ci(
√

1 +
√

2 +
√

6) and from (6) we
have TSi = 1.25T ∗i .

Theorem 1. Given a set of WCET and US, the follow-
ing period assignment is an optimal US−safe assignment for
EDF scheduling algorithm

TSi =
T ∗i
US

(6)

where T ∗i is obtained from (5).

Proof. If T ∗i follows (5), then U∗ = 1 because

U∗ =
∑

1≤i≤n

Ci
T ∗i

=
∑

1≤i≤n

Ci√
Ci
wi

∑
1≤l≤n

√
wlCl

=
1∑

1≤l≤n
√
wlCl

∑
1≤i≤n

√
wiCi = 1 (7)

Since Ti appears in the denominator of (3), assigning pe-
riod Ti ≥ T ∗i to task τi will only reduce the utilization of
τi, and hence, will not violate the schedulability condition
of EDF. Also according to Lemma 1, T ∗i is the minimum pe-
riod which can be assigned to τi to minimize (2). Knowing
that U∗ = 1 we have∑

1≤i≤n

Ci
1
US T

∗
i

= US
∑

1≤i≤n

Ci
T ∗i

= US × 1 = US

which shows that any period assignment Ti ≥ TS can only
have a utilization not greater than US . It concludes the
proof.

Fig. 1 shows the relation between T ∗i and TSi for an ex-
ample with 3 tasks.

4.2 Robustness Guarantees for EDF
As stated earlier, components may be upgraded, repaired,

or modified during the life time of a system. This modifi-
cation may increase the WCET of their tasks. To avoid re-
doing timing analysis of the system and to keep the promised
TSi values, in this section we show how to incorporate ro-
bustness requirements into TSi values such that we can keep



our promises even if the WCET of some components in the
system is increased.

Suppose that a set of A = {α1, . . . , αn} is given that repre-
sents the upper bound of potential changes that can happen
in the future for the WCETs. We try to answer the ques-
tion that ”if all αi values are given, what is the safe US such
that TS becomes αi−robust (while TS is still an optimal
US−safe set of periods)?”

Theorem 2. For a given set of {C1, . . . , Cn} and A =
{α1, . . . , αn}, the following formula obtains US that guaran-
tees an αi−robust optimal period assignment for EDF sche-
duling algorithm

US = min
{√

αi
}n
i=1
×
∑n
j=1

√
αjCjwj∑n

j=1

√
Cjwj

(8)

Proof. Since αi only modifies the WCET of the tasks,
we can still use Lemma 1 to find the optimal period assign-
ment for any modified WCET as follows

T ∗
′

i =

√
αiCi
wi

∑
1≤l≤n

√
wlαlCl (9)

Since we want to guarantee that for any possible change

(smaller than αiCi) in the WCET of the tasks, T ∗
′

i remains

smaller than TSi , we will have ∀i;T ∗
′

i ≤ TSi . Using (6) we

will have ∀i;T ∗
′

i ≤ (T ∗i /U
S), thus

US ≤ T ∗
′

i

T ∗i
⇒ US ≤

√
αiCi
wi

∑
1≤l≤n

√
wlαlCl√

Ci
wi

∑
1≤l≤n

√
wlCl

(10)

By finding the minimum value of (10) among the tasks,
we obtain (8).

If a task (or component) is removed from the system, or
if the system has positive slack, i.e., US < 1, it can tolerate
some increases in the WCETs. Now we try to answer the
question that if US is given, then to what extend the system
can be robust.

Theorem 3. For a given {C1, . . . , Cn}, {TS1 , . . . , TSn }, and
US, the following formula obtains the maximum value of α
that guarantees an α−robust optimal period assignment for
EDF scheduling algorithm

α ≤ 1

US
(11)

Proof. Since after increasing the WCET by αCi, the
new period must still be smaller than TSi , ∀i we have

T ∗
′

i ≤
T ∗i
US
⇒
√
αCi
wi

n∑
j=1

√
wjαCj ≤

T ∗i
US
⇒

α

√
Ci
wi

n∑
j=1

√
wjCj ≤

T ∗i
US
⇒ αT ∗i ≤

T ∗i
US

that can be simplified to (11).

If the whole slack-utilization (i.e., 1 − US) is going to be
given to one task such as τi, then we can use the following
equations for τi

T ∗
′

i ≤
T ∗i
US
⇒
√
αiCi
wi

(√
αiwiCi +

∑
1≤j≤n,j 6=i

√
wjCj

)
≤ T ∗i
US

⇒ αiCi +
√
αi

(√
Ci
wi

∑
1≤j≤n,j 6=i

√
wjCj

)
− T ∗i
US
≤ 0 (12)

The inequality (12) can be represented as a quadratic
equation and can be solved using the standard methods.
The positive root(s) will give a candidate value for αi. An-
other candidate value is obtained from the following condi-
tion that must hold for other remaining tasks in the system
(∀j, j 6= i):

T ∗
′

j ≤
T ∗j
US
⇒

√
Cj
wj

(√
αiwiCi +

∑
1≤l≤n,l 6=i

√
wlCl

)
≤
T ∗j
US

⇒
√
αi ×

√
wiCiCj
wj

+

(√
Cj
wj

∑
1≤l≤n,l 6=i

√
wlCl

)
≤
T ∗j
US
⇒

αi ≤

( T∗j
US −

(√
Cj

wj

∑
1≤l≤n,l 6=i

√
wlCl

)
√
wiCiCj/wj

)2

(13)

The final value of αi is the minimum between (12) and (13)
for all j; j 6= i.

4.3 Obtaining Safe Periods for RM
Unlike EDF, the RM may not be able to schedule a task

set up to U = 1. However, it is known that if tasks have
harmonic periods, i.e., each period is an integer multiple of
the smaller periods, then the RM becomes optimal, namely,
it can schedule any harmonic task set up to U = 1.

In a recent work [15], we have shown how to find harmonic
periods with U = 1 that reduce (2). We have provided two
different algorithms to construct a set of harmonic periods
THi that satisfy ∑n

i=1 wiT
H
i∑n

i=1 wiT
∗
i

≤ 2 (14)

In other words, these algorithms have a bounded cost (er-
ror) which is not larger than two times of the optimal cost.
Moreover, these algorithms have polynomial-time compu-
tational complexity. In this paper, we use DCT-based har-
monic period assignment (DCT-HPA) [15] (shown in Alg. 1).
Although still there is no proof that DCT-HPA provides the
optimal harmonic periods (that minimize (2)), the experi-
mental results show that it is as good as an optimal harmonic
period assignment that minimizes (2) (see [15]).

DCT-HPA starts from T ∗1 which is the first optimal yet
non-harmonic period obtained from (5), and then tries to
find closest harmonic periods that it can build for the next
tasks such that for each task, the new harmonic period T ′i
is not smaller than T ∗i (Lines 5 to 11). Then calculates the
utilization of this assignment in Line 12. Based on this uti-
lization, scales down all of the obtained new periods. Since
they are harmonic already, if they are multiplied by a value
they still remain harmonic. The scale-down process is done
through Lines 13 to 15. After performing this process, the
utilization of the task set becomes 1.

Since a harmonic assignment which starts from T ∗1 might
not necessarily be the one which leads to the minimum cost,
in the next round of the for-loop, DCT-HPA tries to do
the same with T ∗2 and create harmonic periods from the
other tasks. This process is repeated for all tasks and each
time the cost is updated (Lines 17 to 20) in order to find
an assignment with the smallest cost. The computational



Algorithm 1: DCT-Based Period Assignment from [15]

input : A WCET Ci and a weight wi for each task τi.
// Indexing is done such that Ci/wi ≤ Ci+1/wi+1,

1 ≤ i < n.

output: A set of harmonic periods THi , 1 ≤ i ≤ n.
1 begin
2 Obtain T ∗ values from (5);

3 σmin ← null;
4 for i← 1 to n do
5 T ′i ← T ∗i ;
6 for j ← i+ 1 to n do
7 T ′j ← dT ∗j /T ′j−1eT ′j−1;
8 end
9 for j ← i− 1 down to 1 do

10 T ′j ← T ′j+1/bT ′j+1/T
∗
j c;

11 end
// Scaling phase

12 u =
∑

1≤i≤n Ci/T
′
i ;

13 for i← 1 to n do
14 T ′i ← uT ′i ;
15 end
16 σ ←

∑
1≤j≤n wjT

′
j ;

17 if σ < σmin or σmin = null then
18 σmin ← σ;

19 TH ← T ′;
20 end
21 end
22 end

complexity of DCT-HPA is O(n2) because the total number
of operations in Lines 6 to 11 (or Lines 13 to 15) is n.

Using DCT-HPA we obtain harmonic period assignment
THi which is as close as possible to the optimal period as-
signment T ∗i from (5). Also the utilization of this harmonic
assignment is 1. To obtain TSi values, we can simply follow
the same steps as we did for EDF.

Theorem 4. Given a set of WCET and US, the following
period assignment is a US−safe assignment for RM sche-
duling algorithm

TSi =
THi
US

(15)

where THi is obtained from DCT-HPA.

Proof. If THi follows DCT-HPA, then UH = 1. Accord-
ing to Baruah et al., [2], RM is sustainable towards increase
in the period values. Han et al., [11], have shown that if a
task set has Ti ≥ THi where TH is a set of harmonic periods
with UH ≤ 1, then the task set is schedulable by RM. Con-
sequently, if TSi ← THi , the resulting set of periods is safe.
Moreover, since by multiplying each of the THi values by a
factor 1/US , still the periods remain harmonic, the resulting
assignment is US−safe with bounded utilization US .

It is important to note that our safe periods for RM are
not optimal according to Definition. 2, however, their error
is bounded to 2/US because the original error of the DCT-
HPA is ∑n

i=1 wiT
H
i∑n

i=1 wiT
∗
i

≤ 2

If we replace THi by the US−safe period THi /U
S (from (15))

we will have ∑n
i=1

wi

US T
H
i∑n

i=1 wiT
∗
i

≤ 2

US
(16)

In equation (16) if US is small, the difference between
US−safe periods for RM and EDF becomes large.

4.4 Robustness Guarantee for RM
Similar to Theorem 2, for the RM scheduling algorithm we

are able to obtain US based on a given set of αi values such
that the resulting TS becomes αi−robust. However, since
THi is obtained by our algorithm, it is hard to represent the
resulting US as a closed form formula like what we did for
EDF in (8). Instead, to obtain US , one can use αi values

to calculate T ∗
′

i (from (9)), and sends those T ∗
′

i values to

DCT-HPA and gets TH
′

i values back. Then the following
inequality gives the maximum value of US

US ≤ min
{TH′i
THi

}
1≤i≤n

(17)

4.5 Adding New Tasks
The spare utilization 1 − US can be used to add a set of

new tasks CN = {CN1 , . . . , CNm} to the task set. This process
can be as follows: first TN∗i must be obtained from (5) solely
based on the set of WCET of the new tasks, i.e., CN . The
resulting utilization will be 1. For the EDF scheduling algo-
rithm, we scale up all periods with the same factor 1 − US
as TSi ← TN∗i (1 − US). Although the resulting periods are
safe, we have used all spare utilization in the system. It is
still in the designer’s hand to decide how much of the spare
utilization is assigned to the new tasks.

For the RM, the solution is a bit more tricky because
TN∗i (1 − US) values may not necessary be harmonic with
the existing periods. An efficient solution is needed to in-
corporate them with the existing set of harmonic TS periods.
This part remains as one of our future work.

5. EXPERIMENTAL RESULTS
To evaluate our solutions, we perform two experiments;

one based on the number of tasks and the other based on
the range from which Ci values are selected. We compare
period assignment for EDF (using (5), RM using DCT-HPA,
and Alg. 1 from [15] which provides another set of harmonic
periods. Our performance measure is the relative error (RE)
of period assignment that is obtained by dividing cost of
period assignment of one algorithm to the optimal cost, i.e.,

RE =

∑
wiT

algorithm
i∑
wiT ∗i

(18)

where T algorithm
i is the period assigned by any of the algo-

rithms that we compare.
In the first experiment, we generate Ci with a log-uniform

distribution from [1, 500] and vary the number of tasks from
2 to 40. Fig. 2 shows the results of this experiment where for
each value of n, 1000 random sets of WCETs are generated.
As can be seen, the error of our RM solution in compari-
son with the optimal solution is smaller than 3%. It shows
that our approximation error in (14) is way too pessimistic
in comparison with the real performance of the algorithm.
Moreover, our solution is salable with the increase in n.
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Figure 2: Effect of n on the relative error of the
algorithms from (18).

In the second experiment, we assume n = 20, and then
select Ci values from range [1, 10σ with log-uniform distri-
bution. The parameter of this experiment is σ that shows
how large is the range of Ci. As shown in Fig. 3, when
Ci is selected from a wider range of values, the difference
between Ci and Ci+1 increases, which eventually helps our
DCT-HPA solution to find a better harmonic period assign-
ment that has smaller error.

6. RELATED WORK
Traditionally, the schedulability analysis has been done

for task sets with fixed and known periods and worst-case
execution times [14]. Yet, there are works such as [6,7,13,18]
that consider varying period values due to the changes in the
environment or occurrence of an overload. Although in these
works, the robustness has been provided through run-time
techniques, they are based on the assumption that the over-
load situation or the mode change is transient. However, in
our case when the implementation of a component is modi-
fied, it will be permanent (in the sense that the system will
use the new component, not the old one).

As the system enlarges, finding a set of possible configura-
tions that guarantees all timing requirements becomes more
complicated. Many researches have tried to address this
problem through design space exploration [12] which pro-
vides the ability to operate on the space of design configura-
tions, and evaluates and/or finds feasible sets of parameters.
This exploration needs a mathematical model of the system
which is usually integrated into one constrained optimiza-
tion problem and is solved by numerical solvers. However,
usually the resulting problem becomes too big to be solved.
Moreover, in this approach it is not easy to add new com-
ponents or modify the existing ones without changing the
assigned parameters of the previous components, because
then at least, the mathematical model must be rebuilt and
resolved again. Besides, the space exploration tools usually
use the classic schedulability tests such as response time
analysis for RM or demand bound analysis for EDF. An
exact solution for these tests will have considerable com-
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Figure 3: Effect of σ on relative error of the algo-
rithms from (18). Note that Ci has been selected
from [1, 10σ] with a log-uniform distribution.

putational complexity since the problem of response time
analysis is NP-Hard [9,10].

In [11], two algorithms Sr and DCT are introduced to
build a set of harmonic periods which are smaller than their
counterpart non-harmonic periods given by the designer. If
the utilization of the harmonic period set is not larger than 1,
then the original task set is schedulable by RM. Our solution
approach in DCT-HPA algorithm is inspired from DCT, the
difference is that DCT finds a smaller harmonic period and
does not re-scale it afterwards, while we build a harmonic
period set which is larger than the given one, and then re-
scale it.

In our recent works [16, 17], we have introduced two op-
timal approaches with different computational complexity
for verifying the existence of a harmonic period assignment.
Though they can optimally solve the existence problem, they
cannot find an assignment with the utilization smaller than
1. In both papers, only a heuristic solution has been pro-
vided for the period assignment. In fact, we [15] have shown
that the problem of finding a harmonic period assignment
with the maximum feasible utilization from a given set of
ranges is at least NP-Hard.

Sustainability of the schedulability tests towards certain
parameters such as period, deadline, WCET, release jitter,
release phase, etc. has been analyzed in [2]. This analysis
tells us that the result of an schedulability test remains valid
or not if at run-time, the situation becomes ”better”, e.g.,
periods increase, WCET decrease, etc. However, the work
of Baruah et al., [2] does not include any analysis regarding
the robustness or parameter assignment in general.

The problem of finding the maximum robustness value (or
the maximum amount of execution time that can be added
to a task without jeopardizing the schedulability of the task
set) can be seen as an Increased Reward with Increased Ser-
vice (IRIS) model where each task has two execution parts:
mandatory and optional. In this model, executing the op-
tional part will give a reward to the system, e.g., the reward
can be a linear function of the execution of the optional part.



In this case, the minimum guarantee-able reward for the jobs
of each task will show the robustness factor αi for that task,
and hence, a solution that maximizes the minimum reward
will be the maximal robustness. Aydin et al., [1] have con-
sidered IRIS model and they have shown that if the reward
function is linear with the execution of the optional part,
then there exists a solution that maximizes the average re-
ward of all jobs of each task [1]. However, they did not
discuss the case where the goal is to maximize the minimum
reward of each job. Thus, their solution cannot be used to
guarantee the robustness.

Seto et al. [19] have tried to find all RM-schedulable sets
of periods that are smaller than a given set of feasible peri-
ods. They first formulate the problem as an integer linear
programming problem, and then provided an algorithm to
find all those schedulable sets of periods. Both of these so-
lutions have significant computational complexity. Besides,
unlike our approach, they start with a feasible set of peri-
ods and limit the period space to that range, while we try
to maximize the designer’s choices by finding the smallest
schedulable set of periods. Later, Bini and Di Natale [4]
have extended the optimization problem in [19] to find the
optimal periods that maximize an application-related goal
function. They have provided an exact solution based on the
branch and bound that searches all possible choices for the
periods. Although using a goal function such as equation
(2) we can use their approach to find the smallest schedula-
ble periods for the RM, the computational complexity of the
solution is significantly large, and can become intractable if
the final priority ordering is not given (i.e., it will be n!).

Sensitivity analysis of fixed-priority scheduling and EDF
is done in several works [3,5]. For fixed-priority scheduling,
the sensitivity analysis determines to what extent any of
the parameters (or a combination of parameters) can be in-
creased while the schedulability is preserved or can be de-
creased to make the system schedulable [5]. It can also be
used to provide the range of feasible periods for which the
schedulability is preserved. Despite being more accurate and
providing solutions for much more cases (and situations)
than our paper, these approaches are computationally ex-
pensive because many equations must be built from the cur-
rent system parameters, and solved based on what the de-
signer wants to verify. If the system has a large number of
functionalities (or tasks), the problem becomes intractable.
Moreover, this approach is passive towards guaranteeing ro-
bustness, namely, it tells the designer how much space is
available for certain changes, but will not answer the re-
verse question which is ”how much spare capacity is needed
in order to accept certain amount of changes in the future
without modifying parameters of unchanged components”.
It does not tell the designer how to assign the parameters
cautiously such that certain levels of changes can be handled
without modifying the other parameters. Moreover, our ob-
jective function is different from [5], i.e., we try to find the
smallest set of periods that satisfy the schedulability. In this
sense, our approach can be used one step earlier in the de-
sign, when the designer has not yet decided the periods, or
there is nothing to begin with. Using the set of periods that
we provide, the designer is able to apply any optimization
criteria of his choice to optimize the period of the tasks while
having a simplified schedulability test which is ”any assigned
period must not be smaller than TSi ” rather than having a
response time analysis problem as a part of the optimization
constraints.

7. CONCLUSION
In this paper we have focused on the problem of assigning

periods to a set of given WCETs. In particular, our solution
decouples the schedulability analysis from the period assign-
ment by finding a set of safe periods. Our solution for EDF
is optimal, meaning that it finds the smallest set of periods
that are as close as possible to the given set of WCETs,
while our solution for RM is a polynomial-time approxima-
tion algorithm with bounded error 2. Moreover, we have
shown how to calculate the safe periods such that the task
set becomes αi−robust, meaning that the new WCET of a
modified component can be αi times larger than its initial
WCET. We have also derived the αi factor according to the
available slack in the system. In our experiments, the actual
performance of our solution for RM was much better than
its error bound, i.e., it was at most 0.03 times worse than
the optimal solution (instead of 2.0). Both of our solutions
for EDF and RM are polynomial-time, and they scale with
the increase in the given ranges of WCETs as well as the
number of tasks.

In the future, we will provide a tighter error bound for
our RM solution. Moreover, we will extend the results to
constrained deadline tasks, or a system that has already a set
of accepted tasks. Particularly for the RM, we will provide a
solution to assign harmonic periods that are consistent with
the existing safe set of harmonic periods.
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