
Deriving the Average-case Performance of Bandwidth-like
Interfaces for Tasksets with Infinite Minimum Inter-Arrival

Time, Equal Task Density, Uniformly Distributed Deadlines,
and Infinite Number of Tasks

Björn Andersson
Carnegie Mellon University

Hyoseung Kim
University of California,

Riverside

John Lehoczky
Carnegie Mellon University

Dionisio de Niz
Carnegie Mellon University

ABSTRACT
Many solutions for composability and compositionality rely
on specifying the interface for a component using bandwidth.
Some previous works specify period (P) and budget (Q) as
an interface for a component. Q/P provides us with a band-
width (the share of a processor that this component may re-
quest); P specifies the time granularity of the allocation of
this processing capacity. Other works add another parame-
ter, deadline, which can help to provide tighter bounds on
how this processing capacity is distributed. Yet other works
use the parameters α and ∆ where α is the bandwidth and
∆ specifies how smoothly this bandwidth is distributed. It
is known [4] that such bandwidth-like interfaces carry a cost:
there are tasksets that could be guaranteed to be schedulable
if tasks were scheduled directly on the processor, but with
bandwidth-like interfaces, it is impossible to guarantee the
taskset to be schedulable. It is known that this penalty can
be infinite, i.e., the use of bandwidth-like interfaces may re-
quire the use of a processor that has a speed that is k times
faster, and one can show this for any k. This brings the
following question: “What is the average-case performance
penalty of bandwidth-like interfaces?” A previous paper [5]
has partially answered this question by stating an expres-
sion on this penalty as a function of taskset parameters and
then randomly generated tasksets to obtain a probability
distribution of this penalty. In this paper, we answer this
question analytically for the case that the taskset has tasks
with infinite minimum inter-arrival time, equal task density,
uniformly distributed deadlines, and the number of tasks
approaches infinity. For this specific case, we derive an ex-
pression; if deadlines are uniformly distributed in [0,1], then
we find that the penalty is two. We also run experiments to
explore systems with these assumptions but for finite num-
ber of tasks. From these experiments, we conclude that

Copyright retained by the authors.

(i) the larger the number of tasks is, the larger the penalty
is, (ii) the larger the number of tasks is, the less skewed the
probability distribution is, and (iii) the larger the number of
tasks is, the smaller the variance of the penalty is. We are
currently working on the case where deadlines follow other
distributions.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems; G.4 [Mathematical
Software]: Algorithm design and analysis

General Terms
Algorithms, Performance, Theory

Keywords
Real-time, Composability, Compositionality

1. INTRODUCTION
Consider a taskset τ scheduled on a single processor with
Earliest-Deadline-First (EDF). Assume tasks are arbitrary-
deadline sporadic tasks, i.e., a task τi is characterized by
Ti, Di, and Ci, with the interpretation that τi generates a
sequence of jobs with at least Ti time units between two con-
secutive arrivals of jobs of τi and each job of τi has execution
time at most Ci and each job has a deadline Di time units
relative to its arrival. It is known [7] that if for all positive
t it holds that∑

τi∈τ max(b t−Di
Ti
c+ 1, 0)× Ci ≤ t (1)

then the taskset is schedulable. (A taskset is schedulable, if
for each jobset that it can generate, for each schedule that
EDF can generate for this jobset, it holds that all jobs meet
their deadlines; note that because we assume EDF with arbi-
trary tie-breaking, there may be more than one valid sched-
ule for a jobset scheduled by EDF.) The result above (in
Eq. 1) is well-known and allows software practitioners to ef-
ficiently verify, before run-time, that all timing requirements
will be met at run-time. This result works assuming that
(i) the entire taskset is known to a single person (or schedu-
lability analysis tool), (ii) the system does not undergo de-
sign changes without rerunning schedulability analysis, and

valya_000
Rectangle

valya_000
Typewritten Text
Copyright retained by the authors.

(iii) tasks do not use more resources than stated by their
parameters.

The real-time systems research community understood these
limitations of using Eq. 1 as a schedulability test and using
EDF at run-time. The research community understood that
it was necessary to monitor the execution of a task to see if
it executed more than it was expected to, and also to moni-
tor a task to see if it generated jobs more frequently than it
was expected to. In addition, the research community un-
derstood that in system integration, it is often advantageous
to describe a set of tasks with related functionality with a
simpler description. Therefore, the research community cre-
ated a large set of solutions to achieve this. Typically, these
solutions work as follows. A component (sometimes called a
server task and sometimes called a subsystem) is character-
ized by a bandwidth parameter and some other parameters.
One or more tasks are assigned to a component; each task is
assigned to exactly one component. Then, at each instant at
run-time, a root scheduler (sometimes called a global sched-
uler) selects a component and a local scheduler in this com-
ponent selects a task in this component. This selected task
executes on the processor. The bandwidth of a component
is characterized as a share of the processor (for example,
Component 1 should use at most 20% of the processor).

One could use a run-time mechanism that guarantees that
this bandwidth is allocated to each component in each time
interval (even “infinitely small” time intervals). But this
would require infinitely many context switches which would
make such a solution impractical. Therefore, the solutions
presented in the research literature use another parameter
as well: server period. Some solutions ensure that in a time
interval of duration at least as large as the server period,
a component is allocated processing time being at least as
large as its bandwidth (i.e., bandwidth multiplied by server
period). Many schemes in the literature suffer from a so-
called blackout; for such a scheme, the guaranteed allocation
is slightly less. Some schemes have a parameter, the server
deadline, which can be used to control the blackout duration.
Common to these schemes, however, is that before run-time,
a schedulability test is performed on the root scheduler; it
takes the bandwidth and potentially other parameters of
each component and determines if the root scheduler will be
able to allocate enough bandwidth to each component.

These bandwidth-like schemes have several advantages. First,
they achieve isolation. This is important because it is of-
ten very difficult to find the worst-case execution time of a
task. With these schemes, one can be sure that if the execu-
tion time of a job exceeds its estimated worst-case execution
time, then it does not jeopardize timing guarantees of jobs
in other components. Second, they allow hard and soft real-
time tasks to be executed on a single processor. Third, they
provide a simple interface for system integrators. In par-
ticular, the concept of bandwidth is easy to understand for
laypersons. (For example: Component 1 is assigned 10% of
the processor; Component 2 is assigned 70% of the proces-
sor; Component 3 is assigned 15% of the processor.) Fourth,
they allow different schedulers to be used in different compo-
nents (e.g., the local scheduler in Component 1 may be EDF
and the local scheduler in Component 2 may be RM and the
local scheduler in Component 3 may be FIFO.) Fifth, some

real-time operating systems support their run-time mecha-
nisms. Sixth, the run-time policing has low time and space
complexity. Given all these advantages, it may seem that
bandwidth-like schemes offer a good foundation for real-time
systems.

Unfortunately, bandwidth-like schemes can waste an infinite
amount of resources. It can be seen as follows: Consider a
taskset τ with n tasks, τ1, τ2, . . ., τn and these tasks have the
parameters Ti =∞, Di = i, Ci = 1. If these tasks are sched-
uled directly on the processor (i.e., without components), it
can be seen that the taskset is EDF-schedulable according
to Eq. 1. Let us now discuss their behavior in a system with
components and with a bandwidth-like scheme. Suppose
that there are n components and one task in each compo-
nent; specifically, task τi is assigned to component i. In
order for the root scheduler to be schedulable, it is required
that the sum of bandwidth of the components is at most
1. The bandwidth required by a component depends on the
actual scheme used (the blackout duration matters and the
predictability of the supply of processing time by the root
scheduler matters); but for all bandwidth-like schemes, it
holds that the required bandwidth of a component is at least
as large as the sum of the density of the tasks in the com-
ponent. This yields that component i requires at least the
bandwidth Ci/Di. Hence, component i requires at least the
bandwidth 1/i. Consequently, in order for the root sched-
uler to be schedulable, it must hold that

∑
i∈{1..n} 1/i ≤ 1.

It is easy to see that for n ≥ 2, this condition is false and
hence the system is not schedulable with a bandwidth-like
interface. Let the processor be k times faster. Then, in or-
der for the root scheduler to be schedulable, it must hold
that

∑
i∈{1..n} 1/i ≤ k. Letting n approach infinity yields

that
∑
i∈{1..n} 1/i is asympototic to lnn and hence it ap-

proaches infinity. Thus, even using a processor that is k
times faster cannot guarantee that the system is schedulable
with a bandwidth-like interface. We can do this reasoning
for any k and hence we obtain that bandwidth-like interfaces
can generate an infinite waste of resources.

This observation (that bandwidth-like interfaces can waste
an infinite amount of resources) is known in the literature
[3, 4]. There has also been a study [5] to determine how
well bandwidth-like schemes perform in an average case as
compared to a scheme that schedules tasks directly on the
processor (i.e., without interfaces). The study [5] generated
tasksets randomly, computed the penalty for the taskset,
and generated histograms of the performance penalty. But
less focus was given on understanding the result; no deriva-
tion of the results were performed.

Therefore, in this paper, we determine the average-case per-
formance penalty of bandwidth-like schemes by deriving it
analytically; we limit our scope, however, to only tasksets
with infinite minimum inter-arrival time, equal task den-
sity, uniformly distributed deadlines, and infinite number of
tasks.

The remainder of this paper is organized as follows. Sec-
tion 2 formulates the problem in general and also for the
special case where tasks have minimum inter-arrival times
being infinite. Section 3 derives the performance penalty for
a special case. Section 4 comments on the new results. Sec-

tion 5 conducts experiments on randomly generated tasksets
and compares with our derived bound. (This is needed be-
cause the random generation of tasksets used in our deriva-
tion is different from the generation used in the previous
study [5]). Section 6 presents related work. Section 7 gives
conclusions.

2. FORMULATING THE PROBLEM
2.1 In general
From Eq. 1 it can be seen that for a taskset τ scheduled with
EDF, a processor speed

maxt>0(
∑
τi∈τ max(b t−Di

Ti
c+ 1, 0)× Ci

t
) (2)

is sufficient to meet deadlines.

From the discussion in the previous section, it can be seen
that if each task is in its own component, then with a bandwidth-
like scheme, a processor speed∑

τi∈τ
Ci

min(Di,Ti)
(3)

is necessary to meet deadlines.

For a taskset τ , let spdf(τ) be defined as:

spdf(τ) =

∑
τi∈τ

Ci
min(Di,Ti)

maxt>0(
∑
τi∈τ

max(b t−Di
Ti
c+1,0)×Ci

t
)

(4)

Here spdf(τ) should be read as speed-up factor. Intuitively,
spdf(τ) indicates a lower bound on how much faster the
processor needs to be in order for a bandwidth-like scheme
to make the taskset τ schedulable.

Our goal is to compute spdf(τ) for a known probability dis-
tribution of taskset parameters.

2.2 Infinite minimum inter-arrival time
In this subsection, we consider the special case where for
each task τi in τ , it holds that Ti =∞.

For this case, spdf(τ) can be computed as:

spdf(τ) =

∑
τi∈τ

Ci
Di

maxt>0(
∑
τi∈τ

θ(t−Di)×
Ci
t

)
(5)

where θ is the step function (it returns 1 if its input is non-
negative and it returns 0 if its input is negative).

Look at the denominator of Eq. 5. Note that this step func-
tion only changes for those t that are equal to aD parameter.
It can be seen that we only need to check those t that are
equal to a D parameter. Using this observation yields:

spdf(τ) =

∑
τi∈τ

Ci
Di

maxτj∈τ (
∑
τi∈τ

θ(Dj−Di)×
Ci
Dj

)
(6)

Look at the denominator of Eq. 5. Observe that we only
need to include the terms where Dj − Di ≥ 0; the other
ones are zero. With this observation, additional rewriting
yields:

spdf(τ) =

∑
τi∈τ

Ci
Di

maxτj∈τ (
∑
τi∈τ s.t. Di≤Dj

Ci
Dj

)
(7)

3. NEW RESULT: DERIVING THE PENALTY
Let us consider a taskset τ and let n denote the number
of tasks in τ . Assume that the taskset is a constrained-
deadline sporadic tasksets; i.e., for each task τi ∈ τ , it holds
that Di ≤ Ti. Let us sort the tasks in ascending order of
deadlines and let an index within parenthesis denote the
index after the sorting. Clearly, it holds that:

i ≤ j ⇒ D(i) ≤ D(j) (8)

Let {x..y} denote the set of integers that are at least as large
as x and at most y. With these notations, the right-hand
side of Eq. 7 can be rewritten as:

∑n
i=1

Ci
Di

maxj∈{1..n}(
∑
i∈{1..j}

C(i)
D(j)

)
(9)

We assume that all tasks have the same density. From this
assumption, it follows that there is a number X such that
for each task τi,

Ci
Di

=X. Using this on the above yields:

n

maxj∈{1..n}(
∑
i∈{1..j}

D(i)
D(j)

)
(10)

We will now discuss the expression
D(i)

D(j)
in the denomina-

tor. A cumulative distribution function for a single random
variable takes as input one parameter and outputs the prob-
ability that the random variable takes a value less than or
equal to the parameter. The inverse cumulative distribu-
tion function for a single random variable takes as input a
probability and outputs a value such that the cumulative
probability distribution of that value is equal to the proba-
bility. Let FD denote the cumulative distribution function of
deadlines and let F−1

D denote the inverse of the cumulative
distribution function of deadlines.

If we take n samples from a distribution and n approaches in-
finity, then the ordered values of these samples will be given
by the inverse cumulative distribution function. Specifically,
if we take n values of deadlines and n approaches infinity, it
holds that:

D(i) = F−1
D (i

n+1
) (11)

Applying Eq. 11 on Eq. 10 yields:

n

maxj∈{1..n}(
∑
i∈{1..j}

F
−1
D

(i
n+1

)

F
−1
D

(
j

n+1
)
)

(12)

Recall that Eq. 12 is only valid for the case that n approaches
infinity. We will now assume that deadlines are uniformly
distributed in [DMIN,DMAX], where DMIN and DMAX are
real numbers. Note that DMIN and DMAX are parameters
we use for generating tasksets; there is no guarantee that in
a given taskset, a task will have a deadline equal to these
values. Then, we obtain that: FD(x) = x−DMIN

DMAX−DMIN
and

F−1
D (y) = DMIN + y · (DMAX−DMIN). This yields:

F−1
D

(i
n+1

)

F−1
D

(j
n+1

)
=

DMIN+ i
n+1
·(DMAX−DMIN)

DMIN+ j
n+1
·(DMAX−DMIN)

(13)

Applying Eq. 13 on Eq. 12 yields:

n

maxj∈{1..n}(
∑
i∈{1..j}

DMIN+ i
n+1

·(DMAX−DMIN)

DMIN+
j

n+1
·(DMAX−DMIN)

)

(14)

It can be seen (from reasoning in Appendix) that the max
in the denominator occurs for j = n. This yields:

n∑
i∈{1..n}

DMIN+ i
n+1

·(DMAX−DMIN)

DMIN+ n
n+1

·(DMAX−DMIN)

(15)

We can rewrite the expression as follows:

n·(DMIN+ n
n+1
·(DMAX−DMIN))

n·DMIN+DMAX−DMIN
n+1

·(
∑
i∈{1..n} i)

(16)

We know that
∑
i∈{1..n} i is n · (n+ 1)/2. Applying this on

the above yields:

n·(DMIN+ n
n+1
·(DMAX−DMIN))

n·DMIN+DMAX−DMIN
n+1

·(n·(n+1)/2)
(17)

Simplifying yields:

DMIN+ n
n+1
·(DMAX−DMIN)

DMIN+DMAX−DMIN
2

(18)

Recall that the above expression was derived assuming that
n is infinite. Using this on the above yields:

DMIN+(DMAX−DMIN)

DMIN+DMAX−DMIN
2

(19)

Rewriting yields:

2·DMAX
DMIN+DMAX

(20)

4. NEW RESULT: OBSERVATIONS FROM
PREVIOUS SECTION

We will now make observations from the result of the previ-
ous section (Eq. 20).

Observation 1: If we set DMIN = 0 then we get spdf(τ) =
2. Hence, we can say that for this case, bandwidth-like in-
terfaces cause a loss of a factor of two.

Observation 2: If we set DMIN = DMAX then we get
spdf(τ) = 1. Hence, we can say that for this case, bandwidth-
like interfaces cause no loss.

Observation 3: Although we consider restrictions on taskset
generation, it is still possible to experience an infinite waste
(this did not happen during our experiments but it is pos-
sible). To see this consider a taskset with the following
Di = εn−i. Applying this on Eq. 10 and letting n approach
infinity and ε approach zero yields that the penalty is infi-
nite. Note that in this example, all deadlines are in [0,1].
Hence, we do not need infinite deadlines in order to experi-
ence this bad performance. Thus, we have seen that the bad
performance of bandwidth-like interfaces can occur even for
tasksets that are more restricted (tasks with equal density
and tasksets where all tasks have finite deadlines).

5. NEW RESULT: COMPARING THE DE-
RIVED PENALTY AGAINST RANDOMLY
GENERATED TASKSETS

In Section 3, we considered the case that the taskset has
infinite minimum inter-arrival time, equal density of tasks,
uniform deadline distribution, and infinite number of tasks.
For this case, we derived the penalty of a bandwidth-like

interface (Eq. 20). For the case that DMIN = 0, we saw that
spdf(τ) = 2. It is worthwhile to explore whether a similar
result can be obtained when some of these assumptions are
relaxed. We will do so in this section. We will explore the
case where the assumption of infinite number of tasks is
relaxed. And we will do so by generating tasksets randomly.
For each taskset τ , we will compute spdf(τ) using Eq. 7.
Finally, we will plot histograms. In these experiments, we
assume DMIN = 0 and DMAX = 1.

The results are shown in Figure 1. It can be seen (in Fig-
ure 1a) that for the case of two tasks, the penalty is in
[1,2]; the expected value of the penalty is approximately 1.4.
With larger number of tasks, the variance decreases and the
penalty increases too. One extreme can be seen for 100000
tasks (in Figure 1l) where the variance is very small and the
penalty is around two. In order to see this more clearly, we
generate the plots for 1000 tasks, 10000 tasks, and 100000
tasks with the x-axis in the range [1.80,2.20]. Results are
shown in Figure 2. This allows us to see more clearly the
behavior for large number of tasks.

Since our proven bound is two for an infinite number of
tasks, we would like to see histogram for spdf close to two
with higher resolution. For this reason, we take the same
data as before and plot them with the x-axis in the range
[1.98,2.02]. Results are shown in Figure 3. This allows us
to see even more clearly the behavior for large number of
tasks.

In general, from these experiments, we conclude that (i) the
larger the number of tasks is, the larger the penalty is,
(ii) the larger the number of tasks is, the less skewed the
probability distribution is, and (iii) the larger the number
of tasks is, the smaller the variance of the penalty is.

6. RELATED WORK
The literature on hierarchical scheduling, composability, and
compositionality is vast; here we only survey some of the
previous work. When Rate-Monotonic scheduling was devel-
oped as a comprehensive framework, it was recognized that
many systems have software whose resource consumption is
hard to characterize; e.g., it is hard to find its worst-case ex-
ecution time or minimum inter-arrival time. For this reason,
reservation-based frameworks were developed (see for exam-
ple [18]). The run-time behavior of such a framework is as
follows: A task may be associated with a server task and
this server task is scheduled as a normal task (for example
with an execution time, often called budget, and a period)
and if a task is associated with a server task then it is only
allowed to execute when the server task executes. In this
way, if a task τi is in a server task and if τi experiences an
execution overrun or arrives more often than expected then
its impact on other tasks is bounded and it is bounded by
the parameters of the server task. Later works created such
reservation for EDF; one example of that is the constant-
bandwidth server (CBS) [1] and presented a methodology
for dimensioning [20].

Researchers realized that reservation-based frameworks can
be used to form hierarchical scheduling; some work that did
so with EDF include [19, 11]. With the focus on hierar-
chical scheduling, Feng and Mok developed [14] a resource

(a) Tasksets with |τ |=2. (b) Tasksets with |τ |=3. (c) Tasksets with |τ |=4.

(d) Tasksets with |τ |=5. (e) Tasksets with |τ |=6. (f) Tasksets with |τ |=7.

(g) Tasksets with |τ |=8. (h) Tasksets with |τ |=9. (i) Tasksets with |τ |=100.

(j) Tasksets with |τ |=1000. (k) Tasksets with |τ |=10000. (l) Tasksets with |τ |=100000.

Figure 1: New experimental results: Histograms for spdf for randomly-generated tasksets for the case that T=∞.

(a) Tasksets with |τ |=1000. (b) Tasksets with |τ |=10000. (c) Tasksets with |τ |=100000.

Figure 2: New experimental results: Histograms for spdf for randomly-generated tasksets for the case that T=∞.

(a) Tasksets with |τ |=1000. (b) Tasksets with |τ |=10000. (c) Tasksets with |τ |=100000.

Figure 3: New experimental results: Histograms for spdf for randomly-generated tasksets for the case that T=∞.

model which states that a root scheduler supplies, in a time
interval of duration t, at least (t − ∆k) ∗ αk units of ex-
ecution to component k. (A similar formulation has been
used in real-time calculus [22].) Shin and Lee developed
[21] another model where a component k is characterized
by its period and execution time and with this, presented
a so-called supply-bound function; this work could be used
for components that use fixed-priority as a local scheduler or
components that use EDF as a local scheduler. Using an ex-
plicit deadline in the interface can help reducing the amount
of time for which the component is not supplied processing
time [13].

Later works have focused on resource sharing, specifically
the question, if a task τlock executes within a critical section
and its current budget has reached zero, what should the
scheduler do? There may be other tasks that will request
this critical section and these requests can be granted only if
the task that currently holds that critical section (τlock) has
released it. In order for the task (τlock) to release the critical
section, it must be able to execute and in order for this task
(τlock) to execute, it must have a current budget greater
than zero. Different solutions for this have been developed;
see for example [10, 9, 8]. Clearly, server parameters must
be selected in order to ensure schedulability; this has been
the focus of [2].

Recently, compositional scheduling theories have been im-
plemented in real-time virtualization [23, 16, 15], where a
two-level hierarchical scheduling structure is typically used.

In real-time virtualization, tasks are scheduled by the local
scheduler within a virtual machine, and the resource demand
of each virtual machine is presented to the root scheduler of
a hypervisor by an interface.

7. CONCLUSIONS
Bandwidth-like schemes can cause a performance penalty.
It was known that for certain tasksets, this performance
penalty is infinite and an average-case performance evalu-
ation had been performed on randomly-generated tasksets.
But no derivation of the average-case performance was avail-
able. Therefore, in this paper, we derived the average-case
performance for the case that the taskset has tasks with
infinite minimum inter-arrival time, equal task density, uni-
formly distributed deadlines, and the number of tasks ap-
proaches infinity.

We believe this result is interesting because it follows the
spirit of research in the real-time systems research commu-
nity in two ways. First, the paper [17] offered a derivation
of the performance of Rate-Monotonic for random tasksets
(88%); in this paper, we perform a derivation of the per-
formance of bandwidth-like interfaces. Second, the paper
[12] identified “Dhall’s effect” showing that in global mul-
tiprocessor scheduling an infinite amount of resources can
be wasted; in this paper, we also study a system where an
infinite amount of resources can be wasted.

The results in this paper studied the case that task density

is uniformly distributed. We are currently investigating gen-
eralizations of our derivation to other distributions as well.

Acknowledgment
Copyright 2017 ACM. All Rights Reserved. This material
is based upon work funded and supported by the Depart-
ment of Defense under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research
and development center. DM17-0007

8. REFERENCES
[1] L. Abeni and G. Buttazzo. Integrating multimedia

applications in hard real-time systems. In RTSS, 1988.

[2] L. Almeida and P. Pedreiras. Scheduling within
temporal partitions: response-time analysis and server
design. In EMSOFT, 2004.

[3] B. Andersson. A pseudo-medium-wide 8-competitive
interface for two-level compositional real-time
scheduling of constrained-deadline sporadic tasks on a
uniprocessor. In CRTS, 2009.

[4] B. Andersson. A preliminary idea for an 8-competitive,
log2 DMAX + log2 log2 (1/U) asymptotic-space,
interface generation algorithm for two-level
hierarchical scheduling of constrained-deadline
sporadic tasks on a uniprocessor. In CRTS, 2010.

[5] B. Andersson. Evaluating the average-case
performance penalty of bandwidth-like interfaces. In
CRTS, 2015.

[6] B. Andersson, H. Kim, J. Lehoczky, and D. de Niz.
Deriving the average-case performance of
bandwidth-like interfaces for tasksets with infinite
minimum inter-arrival time, equal task density,
uniformly distributed deadlines, and infinite number
of tasks. In CRTS, 2016.

[7] S. K. Baruah, L. E. Rosier, and R. R. Howell.
Algorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one
processor. In Real-Time Systems, 1990.

[8] M. Behnam, T. Nolte, M. Asberg, and R. J. Bril.
Overrun and skipping in hierarchically scheduled
real-time systems. In RTCSA, 2009.

[9] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP:
a synchronization protocol for hierarchical resource
sharing in real-time open systems. In EMSOFT, 2007.

[10] R. I. Davis and A. Burns. Resource sharing in
hierarchical fixed priority pre-emptive systems. In
RTSS, 2006.

[11] Z. Deng and J. W.-S. Liu. Scheduling real-time
applications in an open environment. In RTSS, 1997.

[12] S. K. Dhall and C. L. Liu. On a real-time scheduling
problem. Operations Research, 26(1):127–140,
February 1978.

[13] A. Easwaran, M. Anand, and I. Lee. Compositional
analysis framework using EDP resource models. In
RTSS, 2007.

[14] X. Feng and A. K. Mok. A model of hierarchical
real-time virtual resources. In RTSS, 2002.

[15] H. Kim, S. Wang, and R. Rajkumar. vMPCP: A
synchronization framework for multi-core virtual
machines. In RTSS, 2014.

[16] J. Lee et al. Realizing compositional scheduling
through virtualization. In RTAS, 2012.

[17] J. P. Lehoczky, L. Sha, and Y. Ding. The rate
monotonic scheduling algorithm: Exact
characterization and average case behavior. In RTSS,
1989.

[18] J. P. Lehoczky, L. Sha, and J. K. Strosnider.
Enhanced aperiodic responsiveness in hard real-time
environments. In RTSS, 1987.

[19] G. Lipari and S. K. Baruah. A hierarchical extension
to the constant bandwidth server framework. In
RTAS, 2001.

[20] G. Lipari and E. Bini. Resource partitioning among
real-time applications. In ECRTS, 2003.

[21] I. Shin and I. Lee. Periodic resource model for
compositional real-time guarantees. In RTSS, 2003.

[22] L. Thiele, S. Chakraborty, and M. Naedele. Real-time
calculus for scheduling hard real-time systems. In
ISCAS, 2000.

[23] S. Xi et al. RT-Xen: Towards real-time hypervisor
scheduling in Xen. In EMSOFT, 2011.

APPENDIX
Proving a result about the maximum index of a
sum
Consider

n

maxj∈{1..n}(
∑
i∈{1..j}

DMIN+ i
n+1

·(DMAX−DMIN)

DMIN+
j

n+1
·(DMAX−DMIN)

)

(21)

We will now prove that the max in the denominator occurs
for j = n. We will do so by proving that for each j ∈
{1..n− 1}, it holds that:∑

i∈{1..j+1}
DMIN+ i

n+1
·(DMAX−DMIN)

DMIN+ j+1
n+1
·(DMAX−DMIN)

≥∑
i∈{1..j}

DMIN+ i
n+1
·(DMAX−DMIN)

DMIN+ j
n+1
·(DMAX−DMIN)

(22)

The kth last term in the left-hand side of Eq. 22 is:

DMIN+
j+1+(1−k)

n+1
·(DMAX−DMIN)

DMIN+ j+1
n+1
·(DMAX−DMIN)

(23)

and the kth last term in the right-hand side of Eq. 22 is:

DMIN+ j+1−k
n+1

·(DMAX−DMIN)

DMIN+ j
n+1
·(DMAX−DMIN)

(24)

We would like to show that the kth last term in the left-hand
side of Eq. 22 is at least as large as the kth last term in the
left-hand side of Eq. 22. Hence, we would like to show that
for each k, Eq. 23 is at least as large as Eq. 24. That is, we
would like to show that:

DMIN+
j+1+(1−k)

n+1
·(DMAX−DMIN)

DMIN+ j+1
n+1
·(DMAX−DMIN)

≥
DMIN+

j+(1−k)
n+1

·(DMAX−DMIN)

DMIN+ j
n+1
·(DMAX−DMIN)

(25)
Equivalently, we would like to show that:

1 +
1−k
n+1
·(DMAX−DMIN)

DMIN+ j+1
n+1
·(DMAX−DMIN)

≥ 1 +
1−k
n+1
·(DMAX−DMIN)

DMIN+ j
n+1
·(DMAX−DMIN)

(26)

Equivalently, we would like to show that:

1−
k−1
n+1
·(DMAX−DMIN)

DMIN+ j+1
n+1
·(DMAX−DMIN)

≥ 1−
k−1
n+1
·(DMAX−DMIN)

DMIN+ j
n+1
·(DMAX−DMIN)

(27)
Equivalently, we would like to show that:

k−1
n+1
·(DMAX−DMIN)

DMIN+ j+1
n+1
·(DMAX−DMIN)

≤
k−1
n+1
·(DMAX−DMIN)

DMIN+ j
n+1
·(DMAX−DMIN)

(28)

Note that the left-hand side differs from the right-hand side
only in that in the left-hand side, in the denominator, there
is j+1 rather than j. Hence, the left-hand has larger denom-
inator than the right-hand side. Hence Eq. 28 is true. Since
we have equivalent expressions above, it follows that Eq. 25
is true. Thus, it holds that the kth last term in the left-hand
side of Eq. 22 is at least as large as the kth last term in the
left-hand side of Eq. 22. From this, it follows that the sum
of the j last terms in the left-hand side of Eq. 22 is at least
as large as the the sum of the j last terms in the right-hand
side of Eq. 22. Note that the left-hand side has one more
term and it is non-negative. From this, it follows that Eq. 22
is true. For this reason, it holds that for

n

maxj∈{1..n}(
∑
i∈{1..j}

DMIN+ i
n+1

·(DMAX−DMIN)

DMIN+
j

n+1
·(DMAX−DMIN)

)

(29)

that the max in the denominator occurs for j = n.

