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Abstract—The increased number of systems consisting of
multiple interacting components imposes the evolution of timing
analyses towards methods able to estimate the timing behav-
ior of an entire system by aggregating timings bounds of its
components. In this paper we propose the first discussion on
the properties required by measurement-based timing analyses
to ensure such compositionality. We identify the properties of
reproducibility and representativity as necessary conditions to
ensure the convergence of any measurement protocol allowing a
compositional measurement-based timing analysis.

I. INTRODUCTION

Nowadays many real-time embedded systems consist of
different interacting components. These components have
functional characteristics while timing constraints should be
satisfied locally (at the level of each component) as well as
globally (by the entire system). While existing timing analyses
may be applied at the level of the components, providing guar-
antees for the global timing behavior of the system requires
either new methods, or compositionality properties such that
the timing guarantees obtained at the level of the components
may be combined into a global timing estimate.

The timing constraints may be ensured at different levels
including the estimation of the worst case execution time
(WCET) of programs on processors. Existing WCET esti-
mation solutions to such (complex) systems fall into several
orthogonal settings:

• the timing analyses may be based on deterministic or
probabilistic grounds;

• the analysis techniques could be of static or dynamic
nature;

• the system under analysis could be specified at high-level
or low-level (e.g., on the model design, without or with
limited architecture information or respectively on the
binary code with accurate architecture description) etc.

Before addressing the more general problem of compo-
sitionality, we enumerate several points of interest for a
compositional (deterministic or probabilistic) WCET analysis.

The nature of the system and its components could lead to
several decomposition criteria. For example:

- in a typical single-core system, as shown in Figure 2, one
possible decomposition is at the structural level, leading
to separate analysis for pipeline, instruction cache, data
cache;

- in a typical multicore system, as shown in Figure 3,
one possible partition is at the (high-) functional level,
having separate timing contributions for communication
and computation.

These different decomposition criteria indicate that the answer
to the question on how to decompose a system? is mandatory
for any WCET estimation method.

The existing analyses developed at the level of the com-
ponents should be re-integrated in a compositional way. For
instance, in a single-core system, the may- and must-analyses
for Least Recently Used (LRU) caches [1] are developed in
isolation and integrated in the WCET analysis tool chains. We
identify this integration concern as another mandatory property
answering to the question - how to transfer existing analyses
in a compositional setting?

Last but not least, the definition and the analysis of ef-
fects/interferences between the components is mandatory for a
WCET estimation method to be compositional. For instance, in
a multicore system the cache related preemption delay analysis
models a type of interference in a preemptive execution
environment. Thus, an answer to the question - how to take into
account inter-component interferences? should be provided by
any method for compositional WCET estimation.

These three questions, how to decompose a system, how to
transfer existing analyses in a compositional setting, and how
to take into account inter-component interferences, highlight
important aspects on the compositionality of the WCET anal-
ysis. In this paper we provide a discussion on the transfer of
existing analyses in a compositional setting for measurement-
based WCET approaches and more precisely on properties of
the WCET estimation method and the associated measurement
protocol. To our best knowledge this discussion is the first
proposed in this context and the purpose of this paper is to
formalize concepts often used in industry such as reproducibil-
ity and convergence.

Paper organization. The is organized as follows. We have
introduced in this section the context of our work. We motivate
our interest in probabilistic measurement-based approaches
by indicating the limitations of existing work in Section II.
In Section III we present main concepts and challenges of
static WCET estimation with respect to the compositionality
problem and in Section IV a similar investigation of the prob-
abilistic measurement-based WCET estimation methods. The
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concepts of reproducibility and representativity are defined
in Section V. In Section V we also discuss the impact of
these two concepts on both the compositionality of a WCET
estimation and the convergence of a measurement protocol.
We present our future work as open problems related to our
current contribution.

II. MOTIVATION OF OUR POSITION PAPER

The measurement-based approaches are widely used in the
real-time embedded systems industry where the concept of
high water mark (HWM) is considered as a safety mar-
gin added to the largest observed execution time. Lifting
its utilization to systems with different components requires
compositionality while two different components may have
different values for the HWM of a program executed on
those components. Moreover timing anomalies may prevent
the HWM of a program to be obtained by the combination of
the HWMs of the program on the components.

Lisper and al. [2] have studied the compositionality of
the probabilistic measurement-based approaches. Such ap-
proaches require an independence hypothesis between the
probability distributions in order to allow their combination
by convolution operations. The authors of [2] have presented
interesting results by indicating that the lack of independence
has a low impact on the combination of two sequentially
executed programs. Nevertheless the paper does not proceed
at statistical testing of the independence of the execution times
of the programs under study.

Why the independence tests are necessary in order to
conclude on a low impact of the independence on the compo-
sitionality?

In the absence of appropriate testing, the composition-
ality property showed by the authors may actually be
introduced by the measurement protocol producing the
execution times. As showed below, the independence of a
set of execution times may be obtained with an appropriate
measurement protocol even in the presence of dependent
programs. Before indicating how such measurement protocol
may be proposed, we provide first the (necessary) definitions
for independent programs, statistical independence, and prob-
abilistic independence.

Definition 1: We consider two programs Prog1 and Prog2
to be independent iff any execution of Prog1 may be done
before or after any execution of Prog2 without any impact on
their execution times.

Two programs, that are in any other situation than those
covered by the definition of independent programs given
previously, are dependent.

Consider for instance the program Progex1 described in
Table I and Progex2 described in Table II. These two programs
are kept simple in order to ease the understanding.

The two programs Progex1 and Progex2 are dependent as
Progex1 produces a (positive integer) value for the global
variable var global2 that is then used as an input by Progex2.
For instance each time var global1 = 1, then Progex1 has

TABLE I
BODY OF PROGRAM Progex1

Progex1 (var global1);
value = var global1; // execution time = 1 time unit
for i = 1 to var global1 // the loop cost is in the instr

value = value + 1; // execution time = 1 time unit
endfor
var global2 = 2* value; // execution time = 1 time unit

TABLE II
BODY OF PROGRAM Progex2

Progex2 (var global1, var global2);
value = var global2; // execution time = 1 time unit
for i=1 to var global2 // loop cost is in the instr

value = value + 1; // execution time = 1 time unit
endfor
avg global = value+var global1

2
; // execution time = 1 time unit

an execution time equal to 3 time units and Progex2 has an
execution time equal to 6 time units. For var global1 = 2,
then Progex1 has an execution time equal to 4 time units and
Progex2 has an execution time equal to 10 time units.

For these two programs we may obtain both statistical
dependent execution times or statistical independent execution
times.

Definition 2: Two probability distributions C1 and C2 are
independent iff

P ({C1 = c1} ∩ {C2 = c2}) = P (C1 = c1) · P (C2 = c2)

For instance the probability distributions of the execution
times pET (Progex1) and the probability distributions of the
execution times pET (Progex2) are probabilistically depen-
dent as there is a relation between the probability of appear-
ance of an execution time for Progex1 and the probability of
appearance of an execution time for Progex2. If one would
like to estimate the probability distributions of the execu-
tion times of these two programs executed sequentially then,
given their probabilistic dependence, a complex probabilistic
operation is necessary to take into account the conditional
probabilities.

Definition 3: A set A is statistically independent iff its
elements are generated in a random manner (i.e., the value
generated at one instant only depends on the generator and
not on the values generated before).

For instance Aex = {8, 18, 21, 24, 28, 30} is statistically
independent. We have generated Aex using an on-line random
generator1.

Statistically independent execution times for dependent
programs. We consider the independent set Aex as input to
obtain independent execution times for our two programs,
Progex1 and Progex2. If we consider var global1 to take the
values from Aex then the set of execution times of Progex1
is CProgex1

= {10, 20, 23, 26, 30, 32} which is statistically
independent.

1http://www.infowebmaster.fr/outils/generateur-nombre-aleatoire.php, (on-
line form), but the reader may use any other such generator.



In order to obtain, for Progex2, a set of statistically indepen-
dent execution times we consider the values of var global2
to take the values from (another) statistically independent set
Abis = {1, 45, 59, 75, 88, 90}. We obtain a set of statistically
independent execution times for Progex2 equal to CProgex2

=
{3, 47, 61, 77, 90, 92}. These two sets of execution times are
statistically independent, while the programs are dependent.

Statistically dependent execution times for dependent
programs. Moreover if we use a set of dependent elements
like B = {1, 2, 3, · · · , 8}, then we may obtain statistical
dependent sets for the execution times of Progex1 and
Progex2. In this case the execution times of Progex1 are
{3, 4, 5, 6, 7, 8, 9, 10} and the execution times of Progex2 are
{6, 10, 14, 18, 22, 26, 30, 34}. These two sets are statistically
dependent, while the programs are dependent.

In conclusion the measurement protocol has a direct
impact on the statistical independence of the execution
times while this independence is mandatory for the composi-
tionality of probabilistic WCET estimates (see Section IV for
a definition of a pWCET estimation). For two programs with
pWCET estimates we may proceed at a convolution (or other
composition) of their bounds [3]. Nevertheless, the existence
of this bound is not only requiring statistical independence
but also the convergence of the WCET measurement-based
estimation (see Section V for more details). We present first
some preliminary considerations on the static WCET and prob-
abilistic WCET estimations in order to ease the understanding
of Section V.

III. CONSIDERATIONS ON EXISTING STATIC WCET
ANALYSIS

One of the challenges of static WCET analysis is to ana-
lyze individual components and then to safely compose their
results. It becomes crucially important how to manipulate the
system state, at a structural level, in order to safely capture
the system functionality over time from the functionality
of sub-components. The implicit path enumeration technique
(IPET), which translates the timing analysis problem into
integer linear programming (ILP) solving, became the standard
for static WCET analysis, as in [4]. The WCET analysis
workflow, shown in Figure 1, consists of several distinct phases
(e.g., control-flow graph (CFG) reconstruction, control-flow
analysis, micro-architectural analysis, etc) and outputs safe
and (hopefully) tight WCET bounds of the given program on
the specified architecture. We elaborate next on the WCET
analysis workflow using IPET and how this is positioned w.r.t.
compositionality.

A. Software Representation - static WCET estimation

The program under analysis is considered at the binary
level and the first phase is to reconstruct its CFG from the
binary. The CFG reconstruction phase outputs a safe over-
approximation of the actual CFG, with some precision being
lost for indirect jump instructions. The CFG, whose nodes are
basic blocks, becomes the working structure for the program
semantics transfer.

Input Binary
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Analysis
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CFG
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Fig. 1. Typical workflow for static WCET analysis

The WCET analysis workflow considers several standard
program analyses: value analysis, loop bound analysis, and
control-flow analysis. Value analysis is a variant of interval
analysis and computes address ranges of load/store instruc-
tions. Loop bound analysis computes safe bounds for the
program loops while the control-flow analysis is specialized
in infeasible path detection (i.e., those program paths which
cannot be executed under any given input).

The method of choice is abstract interpretation (AI), a tech-
nique which soundly computes abstract properties of the pro-
gram [5]. It is difficult to compose abstractions in AI [6], the
main impediment consisting in how to handle the overlapping
functionalities of the components. A suitable decomposition
should exploit the key concept of a state configuration. The
state configuration is the set of all semantic entities which are
necessary to characterize the program execution. For example,
the state configuration of a binary program is given by the
general registers (i.e., integer and floating point) and special
registers (e.g., program counter, the stack pointer).

Strictly from a software representation point of view, the
WCET analysis based on IPET does not have compositionality
issues because each of the aforementioned analyses consider
the entire program semantics (and hence the complete state
configuration). The results of all three analyses are represented
on the program CFG. The compositionality becomes an issue
when the program is executed on a hardware model, which
has its own state configuration. We address this point next.

B. Hardware Representation - static WCET estimation

The WCET analysis workflow considers several static anal-
yses of architectural elements (e.g., instruction cache, data
cache, branch speculation, etc), grouped under the name of
processor behavior analysis. The results of each of these
analyses, i.e., how the architecture behaves, are projected on
the program CFG, at the node (i.e., basic block) level. Standard
examples of processor behavior analyses are may, must, and
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Fig. 3. Standard design of a multicore system where a timing anomaly could
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persistency analyses for Least Recently Used (LRU) caches,
surveyed in [1].

There are two hardware platforms of interest, single-core
and multicore, which we briefly present next. The state config-
uration of each platform (that, we remind, is the set of seman-
tics entities to describe an execution on a particular platform)
consists of the state configuration to describe each component
of the platform. One challenge in WCET static analysis w.r.t.
compositionality is introduced by timing anomalies that appear
when, due to component interaction, the local (i.e., component
level) worst-case behavior does not produce the global (i.e.,
system level) worst-case.

Single-core. A typical single-core, depicted in Figure 2,
consists of several interacting components. One component ex-
ample is an in-order pipeline with 5-stages: fetch (IF), decode
(ID), execute (EX), memory access (MEM), and write-back
(WB). The pipeline interacts with the memory components
such as caches for instruction (IC) and data (DC) and the RAM
memory. Note that the pipeline has a prefetch buffer (PFB),
which could be polluted with wrongly speculated instructions
from the instruction cache and, in consequence, may produce
timing anomalies, as shown in [7].

Multicore. A multicore system, Figure 3, has as compo-
nents the processors (or processing units PUi), their local
memories (LMi), one or more bus/interconnect, and the mem-
ory banks (RAMi). If two processing units, say PU1 and PU2,
use overlapping resources (e.g., they access the same memory
bank, say RAM1, or they send requests on the bus in the same
time) the entire system is prone to have timing anomalies, as
noted in [8].

IV. PRELIMINARIES ON PROBABILISTIC WCET ANALYSIS

The measurement-based approaches, in general, and the
probabilistic measurement-based approaches, in particular,
propose WCET estimates using the execution times of the
program on the given platform (see Figure 4). More precisely

Execution
Conditions (1)

Execution
Conditions (2)

. . .

Execution
Conditions (n)

Measurement
protocol

A1

A2

. . .

An

A =⋃i=1
n Ai

Compositionality
of pWCET
estimation

pWCET =
n

OOO
i=1

pWCET (Ai)

Fig. 4. The protocol of a (p)WCET estimation from different scenarios of
execution conditions

let Ci
1, C

i
2, · · · , Ci

n be n consecutive executions of a program
on a processor starting from a given scenario of execution Si.
A scenario of execution for a program on a processor is defined
by a set of states corresponding to different execution time
variability factors. A scenario of execution could correspond
for instance to the pair (path of the program, state of the
cache) or any other information related to the execution of
the program.

For a scenario Si we may define a probabilistic execution
time Ci as an empirical probability distribution of the execution
time of that program for the given processor. For instance we
have Ci defined as follows:

Ci =
(

2 3 5 6 105
0.7 0.2 0.05 0.04 0.01

)
(1)

The probabilistic worst-case execution time (pWCET) C of
that program is an upper bound on all possible probabilis-
tic execution times Ci for all possible execution scenarios
Si,∀i ≥ 1. The relation � describes the relation between
the probabilistic execution times (pETs) of a program and its
probabilistic worst case execution time (pWCET), i.e., C � Ci,
∀i, defined as follows:

Definition 4: We say that C � Ci or C is worse than Ci if
its complementary cumulative distribution function (1-CDF)
has a higher or equal probability associated to each possible
value, i.e., P (C ≥ c) ≥ P (Ci ≥ c), ∀c.

For instance, the probability distribution defined in Figure 5
has its 1-CDF provided in Figure 6 (blue). Moreover, the
probability distribution defined in Figure 5 is upper bounded
by the probability distribution described by Figure 6 (in red).
Note, however, that there may exist two random variables that
are not comparable with respect to the relation �.

In the remainder of this paper we consider that the processor
is fixed in sense that we estimate the pWCET of a program
on a processor from the execution time measurements of the
program on that given processor.

A. Software Representation - Probabilistic

From a probabilistic point of view, a program can be
represented as a generator of execution time profile sets
(ETPs). Combining all these ETPs we obtain an absolute
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domain of execution times. In practice, such a domain is hard
to impossible to determine through measurement for complex
programs running on non-deterministic hardware. Discovering
which ETP sets have a higher influence on the pWCET
estimation would allow us to concentrate on their analysis in
order to produce a reliable pWCET without knowing the entire
domain of execution time.

The key in highlighting the influential ETP sets stays in the
structure of the program and the representation of the input-
output relations. Every probabilistic analysis should start with
the definition of the domain of analysis and the decision of the
interval in which our program’s inputs appear. The choice of
this interval defines the number of ETPs we need to consider
for analysis. The program semantics is afterwards projected on
probabilities, each path and its weight are processed in order
to compute the ETP sets and its influence on the total domain
of execution times.

The method we may choose for maximizing the domain
coverage of the measurement protocol is path coverage testing
and variants of static analyses with probabilistic abstract
domains. In [9] authors propose an abstract interpretation
of probabilistic systems, in [10] a reasoning on probabilistic
execution times, and in [11] imprecise probabilities are used
to define a program input. [12] presents a tool support for
determining the compliance with probabilistic WCET analysis.

In the followings we assume having an ETP obtained with
a measurement protocol adequate for maximizing the domain
coverage (e.g., the above exemplified). Hence, we lift the
WCET analysis from the level of program/architecture and

we focus on the compositional features of the ETP processing
for obtaining pWCET.

V. REPRODUCIBILITY AND REPRESENTATIVITY OF
MEASUREMENT-BASED APPROACHES

In this section we identify and characterize the convergence–
a key feature for the compositionality of a measurement-based
WCET estimation process. Any measurement-based WCET
estimation process has two main parts: (i) the measurement
protocol and (ii) the WCET estimation method.

The convergence of a measurement-based WCET estimation
process for a program on a processor is defined by the
existence of a finite set of execution times provided by a
measurement protocol such that the associated measurement-
based WCET estimation method provides a unique WCET
estimation of that program on the given processor. A more
formal definition is provided in Definition 5.

Definition 5: Given A an absolute domain of execu-
tion times, a measurement-based WCET estimation pro-
cess pWCET is convergent if for any ascending chain
of subsets Ai⊂A (obtained using its measurement proto-
col) converging to A (i.e., Ai⊆Ai+1,∀i and limiAi=A)
the associated chain of WCET estimations (obtained us-
ing its WCET estimation method) is almost constant, equal
(or sufficiently close) to the WCET estimation of A (i.e.,
∃t≥0 ∀j≥t such that pWCET (Aj) ≈ pWCET (A)).

The convergence of a measurement-based WCET estimation
requires several properties to be satisfied. We identify in this
document a (non-exhaustive) list of these mandatory properties
(their order of presentation is not relevant):

• The reproducibility of the WCET estimation method
(defined Section V-A);

• The reproducibility of the measurement protocol (defined
Section V-B);

• The representativity of the measurement protocol (defined
Section V-C).

We present in Section V-D the relations between these three
properties and the convergence.

A. The reproducibility of the WCET estimation method

We may note that the measurement-based WCET estimation
method is used several times over subsets of ETPs, e.g., Ai

in Definition 5. If two different utilizations of the estimation
method on (exactly) the same subset A0 of execution times
provide different WCET estimates then the measurement-
based WCET estimation diverges and it cannot provide a
reliable result.

Definition 6: A measurement-based WCET estimation
method pWCET is reproducible iff for any two utilizations i
and j the estimates pWCET i(A0) and pWCET j(A0) (i 6= j)
are the same.

In Figure 7 we depict the notion of reproducibility of a
pWCET estimation. For example, the EVT-based pWCET
estimation method (introduced in [13]) is reproducible as long
as the order of the elements in A0 of the execution times is
not modified.
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B. The reproducibility of the measurement protocol

The measurement protocol is an essential step in the
measurement-based WCET estimation. We now focus on
characterizing this step w.r.t. the convergence property.

Definition 7: A measurement protocol P is reproducible
iff for two different utilizations Pm and Pn with the same
execution conditions (status of the processor, program and
external factors) the obtained set of execution times Am and
respectively An correspond to equal (or sufficiently close)
WCET estimates for the utilization of the same WCET estima-
tion method pWCET , i.e., pWCET (Am) ≈ pWCET (An).

In Figure 8 we depict the reproducibility of a measurement
protocol. Note that a completely randomized measurement
protocol may not be reproducible with respect to the EVT-
based pWCET estimation method. For instance, given a ran-
domized cache replacement policy, if both the seed of the
random generator and the places in caches are randomly
picked, then the architecture execution times may not be
equivalent as different associated pWCET estimates may be
obtained with EVT-based pWCET estimation methods.

We also note that the randomization of only the input values
for a program is not a reproducible measurement protocol
either when considering an EVT-based pWCET estimation
method [14], [15]. This absence of the reproducibility is due
to the sensitivity of EVT-based pWCET estimation method to
the order of the execution times.

C. Representativity of a measurement protocol

We now present a second feature of the measurement pro-
tocol which contributes to ensuring the convergence property.

Definition 8: A measurement protocol is representative iff
there exists a number k of execution times for a measurement
protocol such that

pWCET (Ak′) ≈ pWCET (A),∀Ak′ :Ak⊆Ak′⊆A (2)
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Fig. 9. A representative measurement protocol provides equivalent subsets of
execution times

A0 A0 + α . . . A = A0 + n∗α

Fig. 10. The absence of the reproducibility of a measurement protocol may
prevent A0 to converge to A

for any Ak ⊆ A with |Ak| = k.
In Figure 9 we depict the representativity of a measurement

protocol, where we denote by A the ETP of the WCET esti-
mation, while Am and An denote some subsets of execution
times of cardinal k.

Using the notations of Figure 9, we may indicate that mea-
surements obtained using randomized replacement policies
(with the method provided in [16]) seem to present a rep-
resentativity of the HW-randomization measurement protocol
for m = 6 utilizations of the protocol for k = 1000. Note that
the original set has 500 execution times in the presence of
Mälardalen benchmarks [17]. Nevertheless there is currently
no proof that such representativity may be extended to other
classes of programs.

Note that the random picking of program inputs is not by
default a representative measurement protocol. However, such
protocol should define a representativity property with respect
to the pWCET estimation method.

To our best knowledge, there exists no proof for the repre-
sentativity of a measurement protocol for any given set A.

D. Relations between reproducibility, representativity and
convergence

We enumerate the relations between the concepts defined
previously:

• The reproducibility of the WCET estimation method
is a mandatory property for the reproducibility of the
measurement protocol. Indeed if the WCET estimation
method is not reproducible than for two same sets of
execution times provided by a measurement protocol, the
WCET estimates could be non-equal.

• The reproducibility of a WCET estimation process re-
quires both the reproducibility of the WCET estimation
method and the reproducibility of measurement proto-
col. Indeed if the WCET measurement protocol is not
reproducible, the WCET estimate will be modified for
each new measurement even in presence of a reproducible
WCET estimation method.
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• The reproducibility of the WCET estimation process
and the representativity of the measurement protocol are
mandatory properties for the convergence of a WCET es-
timation process. In Figure 10 we illustrate a convergence
principle by slowly increasing an initial set of execution
times by α elements. The absence of the reproducibility
of the measurement protocol makes the measurement-
based WCET estimation process unable to converge.
Namely, let X and Y with |X| = |Y | = α be two disjoint
input sets produced by the measurement protocol at step
n−1. If pWCET (A0+(n−1)α) produces two different
results (when adding to A0+(n−2)α either X or Y ) then
the set A = X∪Y ∪A0+(n−2)α diverges since pWCET
may produce two different WCET estimates.

In Figure 11 we illustrate a measurement-based WCET pro-
tocol with relations between the three properties. For instance
from execution conditions (1) the measurement reproducibility
ensures that an unique set of execution times A1 is obtained.

The relations described previously are stated in presence
of any WCET estimation method. If the WCET estimation
method is transitive, then a stronger relation between the
representativity and the reproducibility of a measurement
protocol may be established.

Theorem 1: If a measurement protocol is representative,
then the measurement protocol is reproducible for any set of
execution times with a cardinal larger or equal to k.

Proof: We prove the reproducibility of a measurement protocol
by contradiction. We suppose that the measurement protocol
is not reproducible for any set of execution times with a
cardinal larger or equal to k. This implies that there exist two
utilizations i 6= j of the measurement protocol Ai and Aj ,
with |Ai| ≥ k and |Aj | ≥ k, such that

pWCET (Ai) 6= pWCET (Aj) (3)

From the definition of the representativity we have that

pWCET (Ai) ≈ pWCET (A) (4)

and

pWCET (Aj) ≈ pWCET (A) (5)

From the transitivity of the relation ≈ and Equations (4)
and (5) we obtain

pWCET (Ai) ≈ pWCET (Aj) (6)

We obtain the contradiction between Equation (3) and Equa-
tion (6) indicating that our initial hypothesis is not correct, thus
we prove that the measurement protocol is reproducible.

VI. RELATED WORK

Compositionality together with abstraction are key princi-
ples in developing complex systems. A system consists of
interacting components and the behavior of each component is
captured by an input-output interface [18]. While much of the
existing work focuses on the functionality aspects, the real-
time embedded systems require reasoning about timing. Time
is then explicitly represented at the level of input-output in-
terfaces, as in [19], and conveniently enables compositionality
via a time-centric abstraction-refinement procedure, as in [20].

The static WCET analyses are surveyed in [4] and timing
compositionality in static WCET analysis is defined in [21].
One of the very few solutions based on static methods for
compositionality is proposed in [22], as MRTA - a framework
for response time analysis on multicores. MRTA considers the
response time calculation in the presence of interferences but
it does not focus on how interferences may be estimated.

Timing anomalies are a challenging issue for composition-
ality in static analysis. These are introduced in [23] where the
necessary conditions for timing anomalies to appear in dy-
namically scheduled processors are investigated. The presence
of timing anomalies is a culprit for non-scalability or even
unsoundness in WCET static analysis. For example, timing
anomalies exhibit, in a degenerate case, the so-called domino
effect which causes unboundedness in the underlying state
space. The domino effect is studied in [7] where the solution
proposed is a state-based time variation bound. This bound
is precomputed for each architecture and helps pruning the
next-state set at each step during the static analysis.

The first probabilistic approaches [24], [25], [26] for real-
time systems have been proposed in the late 90s to support
the soft real-time constraints satisfaction. Even if those ap-
proaches were using the commonly accepted hypothesis that
larger values of the execution times of a program have lower
probability of appearance, these first results concern average
timing behaviors. Indeed the real-time community considers
at that moment that the probabilistic approaches are only able
to ensure constraints that are defined using a ratio of non-
satisfied timing constraints within a given time interval (mainly
multimedia systems).

Few years later two seminal papers [13], [27] introduce
almost simultaneously two major concepts for the probabilistic
approaches. The first one is that the worst execution times of
a program are probably rare events, [13], and is related to
the first utilization of EVT [28] in the context of execution
times estimation. The second concept is that the probabilistic
analysis may cover worst case scenarios - the first probabilistic



worst case reasoning considers the program instances with the
(proved) largest response time to provide probabilistic upper
bounds on the response time of any instance.

The follow-up works of [16], [29], [30], [31], [32] enforce
the impact of the two concepts by underlining that the proba-
bilistic approaches may be used in different contexts of hard
real-time industries.

VII. CONCLUSION

In this paper we have provided the first intuitive mandatory
properties for the convergence of measurement-based WCET
estimation processes: reproducibility and representativity. The
reproducibility describes the stability of the result w.r.t. differ-
ent executions of the process. The representativity describes
the existence of a (small enough) number of input measures
that leads to the correct global result of the process. The
provided examples are described in the context of probabilistic
approaches but we expect these properties to remain true for
any measurement-based WCET estimation process.

We identify an important thread of future work in providing
proofs of compositionality for the existing measurement-based
methods following the framework we have introduced in this
paper. In particular, we would like to study methodologies
for proving and detecting convergence via reproducibility and
representativity of measurement-based WCET estimation.
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