
Using DDS middleware in distributed partitioned systems

Marisol García-Valls†, Jorge Domínguez-Poblete†, Imad Eddine Touahria†∗
†Universidad Carlos III de Madrid, Spain
∗University Ferhat Abbas Sétif1, Algeria

{mvalls,jdominguez}@it.uc3m.es , imad.touahria@univ-setif.dz

ABSTRACT
Communication middleware technologies are slowly being
integrated also into critical domains that are also progre-
sively transitioning to partitioned systems. Especially, avion-
ics systems have transitioned from federated architectures
to IMA (Integrated Modular Avionics) standard that tar-
gets partitioned systems to comply with the requirements
of cost, safety, and weight. In the future developments,
it is fully considered the integration of middleware to sup-
port data communication and application interoperability.
As specified in FACE (Future Airborne Capability Environ-
ment), middleware will be integrated into mixed criticality
systems to ease the development of portable components
that can interoperate effectively. Still nowadays, in real-
time environments, communication middleware is perceived
as a source of unpredictability; and still there are very few
contributions that present real applications of the integra-
tion of communication middleware into partitioned systems
to support distribution.

This paper describes the usage of a publish-subscribe
middleware (precisely, DDS –Data Distribution Service for
real-time systems–) into a fully distributed partitioned sys-
tem. We explain the design of a reliable communication set-
ting enabled by the middleware, and we exemplify it using
a distributed monitoring application for an emulated par-
titioned system with the goal of obtaining the middleware
communication overhead. Implementation results show sta-
ble communication times that can be integrated in the re-
source assignment to partitions.

1. INTRODUCTION
Communication middleware and virtualization technolo-

gies are two main contributions to the development and
maintainability of software systems as well as to machine
consolidation [6]. These were initially used in mainstream
applications, but are progressively entering into the critical
environments and complex systems, where their role is in-
creasingly important. In fact, in the avionics domain, the
combination of IMA [24] and FACE [21] require the usage of

c©Copyright is held by the author(s).

both virtualization technologies to develop partitioned sys-
tems and middleware to ease interoperability and portabil-
ity of components. This satisfies key requirement regarding
cost, space, weight, power consumption, and temperature.

On the one hand, middleware brings in the capacity to
abstract the low-level details of the networking protocols
and the associated specifics of the physical platforms (e.g.
endianness, frame structure, and packaging, among others).
Consequently, the productivity of systems development is
augmented by easing the programmability, maintanability,
and debugging.

On the other hand, the penetration of virtualization tech-
nology has opened the door to the integration of hetero-
geneous functions over the same physical platform. This
effect of virtualization technology has also arrived to the
real-time systems area. The design of mixed criticality sys-
tems (MCS) [3] is an important trend that supports the
execution of various applications and functions of different
criticality levels [28] in the same physical machine. The
term criticality refers to the levels of assurance over the sys-
tem execution in what concerns failures. For example, in
avionics systems, software design follows DO-178B that is a
de facto standard for software safety; software is guided by
DAL (Design Assurance Levels), and failure conditions are
categorized against their consequences: from catastrophic
(DAL A) to no effect (DAL E). Then, an MCS is one that
has, at least, two functions of different criticalities on the
same physical machines.

Over the past 30 years, middleware technology has been
applied in critical domains but in those subsystems of lower
criticality levels. This is the case of, e.g., CORBA applied to
combat systems [26] or, recently, DDS [18] applied to control
of interoperability of unmanned aircraft and air traffic man-
agement1, mainly for ground segment control. Still middle-
ware is mostly used directly on bare machine deployments;
yet it is not used in partitioned software systems.

This paper provides an initial design of a fully distributed
partitioned deployment that integrates DDS middleware.
We exemplify this concept on a data monitoring applica-
tion that has been developed to provide hands on the actual
technology, to analyze the temporal behavior of the over-
all distributed partitioned setting. The system is fully dis-
tributed across different physical machines to perform data

1http://www.atlantida-cenit.org



sampling and transmission that is later received, processed
and displayed at a remote node. The nodes of the monitor-
ing system emulate a mixed criticality system. The setting
replicates that of a partitioned system in a FACE compliant
architecture. We concentrate on the design of the software
stack and the analysis of the middleware performance over
an Ethernet network that emulates an AFDX (Avionics Full
DupleX) [1] compliant communication.

The paper is structured as follows. Section 2 presents
the work background and a selected related contributions,
including concepts and technologies relative to partitioned
systems and distribution middleware technologies for critical
domains. Section 3 analyzes the most important character-
istics and properties of DDS for partitioned systems within
FACE. Section 4 presents the design of the distributed par-
titioned system, illustrated for a remote monitoring applica-
tion. Section 5 provides the implementation of the system
and presents the results obtained for the communication.
Section 6 draws some conclusions and describes future work.

2. BACKGROUND
IMA has been a very successful approach to transition

from the former federated architectures to a more efficient
design and final deployment into avionics systems. In this
context, different standards are proposed to facilitate com-
ponentization, portability and interoperability at different
levels of a system. In this way, ARINC 653 standard de-
couples the real-time operating system platform from the
application software. For this purpose, it defines an APEX
(APplication EXecutive) where each application software is
called a partition having its own memory space. Each par-
tition has dedicated time slots allocated through the APEX
API, so that each partition can have multi-tasking and its
own scheduling policy. Overall, the execution is embodied
in a hierarchical scheduling policy where the top level is a
cyclic schedule. Current work is to enhance ARINC 653 for
multi-core processor architectures. The underlying network
is AFDX that uses commercial technology with redundancy
to support safe transmission. The integration of networked
and distributed systems follows ARINC 429 that is the data
bus defining the characteristics of the data exchange across
connected subsystems. It defines the physical and electrical
interfaces and a data protocol for a local avionics network.

In other real-time systems, network scheduling typically
relies on either: network scheduling off-line network trans-
mission plan given the a-priori knowledge of the generated
traffic (e.g. [4]); architectures such as TTA (Time Triggered
Architecture) [16]; or distributed component models highly
related to the hardware on-chip design such as Genesis [17].

Nevertheless, in the last decade the trend in the devel-
opment of complex systems is to move to more productive
ways of designing the communication and interaction. The
avionics industry has developed FACE (Future Airborne Ca-
pability Environment) standard to facilitate the develop-
ment and easy integration of portable components. The
communication middleware is given a key role as an in-
teroperability enabler. Different technological choices can
be used in FACE such as CORBA, Web services, or DDS,
among others. The most popular technology at the mo-

ment is (probably) OMG’s DDS standard [18] that has been
applied in a number of domains such as remote systems con-
trol [9]. It provides an asynchronous interoperability via a
publish-subscribe (P/S) paradigm that is data-centric, and
the communication can be fine tuned through quality of ser-
vice (QoS) policies.

Most recent works on the literature provide improve-
ments to different aspects of the middleware such as service
times making it aware of the underlying execution hardware
[11] or improvement of the number of serviced clients [12].
On the performance side, there are some related works that
contribute a thorough performance study of DDS for desk-
top virtualization technologies [7] but was not dealing with
partioned systems; or the execution of DDS over a real-time
hypervisor [23] although the actual network stack processing
was not measured; or [5,15] for network level P/S evaluation,
and [25] for bare machine deployments. Overall, there is not
sufficient analysis on the actual execution characteristics of
specific middleware technologies in general partitioned envi-
ronments. Moreover, there are no practical design models of
partitioned systems that can comprehensively put forward
the required software levels integration and there actual per-
formance results. This paper contributes in this direction
with a practical design of a distributed partitioned enviro-
ment based on DDS, providing a study of the behavior of a
partitioned system that communicates using this technology.

3. MIDDLEWARE IN PARTITIONED SYS-
TEMS

3.1 Middleware in FACE Standard
FACE standard defines the software computing environ-

ment and interfaces designed to support the development
of portable components across the general-purpose, safety,
and security profiles required by the avionics domain. Its
goal is to define the interaction points between the differ-
ent technologies that ease systems integration. Actually,
FACE uses industry standards for distributed communica-
tions, programming languages, graphics, operating sytsems,
among other areas. Version 2.0 further promoted applica-
tion interoperability and portability, with enhanced require-
ments for exchanging data among FACE components; also,
v2.0 emphasizes on defining common language requirements
for the standard. Precisely, the operating system segment
of FACE defines different levels: the portable components
segment (the applications), the transport services segment
(where middleware technologies are employed for interoper-
ability), the platform specific services segment (for the com-
mon services of a given domain), and the I/O services seg-
ment (related to the low-level adapters and drivers to access
peripherals including the actual network).

At the transport services segment, many technological
choices can be employed (e.g. CORBA, Web services, DDS,
etc.). At the moment, the most widely accepted is DDS.

3.2 Data Distribution Service for real-time sys-
tems

The Data Distribution Service (DDS) is an OMG stan-
dard that provides a publish-subscribe (P/S), i.e., a decou-



pled interaction model among remote components. DDS
relies on the concept of a global data space where entities
exchange messages based on their type and content. Such
entities are remote nodes or remote processes, although it
is also possible to communicate from within the same local
machine.

QoS policy Entity Description

Deadline (t) DR Max expected elapsed time be-
tween arriving data samples (un-
keyed data) or instances (keyed
data)

DW Max committed time to pulish
samples or instances

Resource
Limits (o)

DP Limit to the allocated memory
(message queues for history, etc.).
It limits the queue size for His-
tory when the Reliability protocol
is used.

History (o) DR,
DW

Stores sent or received data in
cache. It affects Reliability and
Durability (receive samples sent
prior to joining) QoS policies

Latency
Budget (t)

T, DR,
DR

Indication on how to handle data
that requires low latency. Pro-
vides a maximum acceptable delay
from the time the data is written
to the time it is received by the
subscribing applications.

Timed based
Filter (t)

DR Limits the number of data samples
sent for each instance per a give a
time period

Transport
priority (t)

DW Establishes a given priority for the
data sent by a writer. Underspeci-
fied: It is dependent on the actual
transport characteristics and also
supported by only some OSs.

Reliability
(o)

DR,
DW

Global policy that specifies
whether or not data will be deliv-
ered reliably. It can be configured
on a per DataWriter/DataReader
connection.

Table 1: Subset of QoS policies affecting overhead

Entities can take two roles; they can be publishers or
subscribers of a given data type. Types are based on the
concept of topics that are constructions supporting the ac-
tual data exchange. Topics are identified by a unique name,
a data type and a set of QoS policies; also, they can use keys
that enable the existance of different instances of a topic so
that the receiving entities can differentiate the data source.

Applications organize the communicating entities into
domains. Essentially, a domain defines an application range
where communication among related entities (an applica-
tion) can be established. A domain becomes alive when a
participant is created. A participant is an entity that owns a
set of resources such as memory and transport. If an applica-
tion has different transport needs, then two participants can
be created. A participant may contain the following child

entities: publishers, subscribers, data writers, data readers,
and topics. Publishers and subscribers are an abstraction
that manages the communication part, whereas the data
writers and data readers are the abstractions that actually
inject the data.

One of the most successful elements in DDS is the set
of quality of service parameters that it defines, namely QoS
policies. In fact, not all of them are related to the tempo-
ral behavior of the communication. Most QoS policies pro-
vide other guarantees over the data transmission. A short
summary of policies that influence the communication time
(marked as t) and others affecting the actual overhead of the
system (marked as o) are provided in table 1. The entities2

to which they apply are also indicated.

3.3 Communication in partitioned systems
The mainstream design of a critical partitioned system

consists of isolating the communications of a system into
one single partition that is selected as the communications
partition (see figure 1). Transmissions take place purely
during the time of the cycle assigned to the partition. When
any partition needs to transmit or receive data, it sends it
to the communication partition via a shared memory space.
When the kernel schedules the partition at its assigned time
slot, the transmission takes place.

Critical 
Application 

Monitoring 
Application 

Partition 
OS 

Partition 
OS 

Display 
Application 

Partition 
OS 

Comms 
Partition 

Partition 
OS 

Partition 
Middleware 

Other 
machines 

Figure 1: Typical design of a critical system where
communication is isolated in one partition

This design approach has not included middleware, but
has used direct implementation of network protocols for AR-
INC 429. So, standards such as DDS are progressively con-
sidered into the actual implementations of critical parti-
tioned environments in the context of FACE.

4. SYSTEM DESIGN

4.1 Software design and middleware commu-
nication

Figure 2 shows the major software blocks for the dis-
tributed monitoring application. The system has two dif-
ferentiated subsystems: System A that is a meteo proximity
server and System B that is the Global Monitor.

Two sensors (humidity and temperature) gather data
samples that are passed to System A that is able to per-
form an initial basic processing of the data to take basic
2PU: Publisher, SU: Subscriber; DR: Data Reader, DW:
Data Writer; T: Topic; DP: Domain Participant



System B System A 

Figure 2: Application software design

decisions on the sensors operation and detect faults. Sys-
tem A passes these data to System B that is able to perform
more complex analysis over the data, and also it is able to
make decisions on the configuration of the sensors and the
overall system operation. The proximity sensor can do an
initial processing of the samples and later, it sends the data
to the global monitor.

Systems A and B are two different physical machines that
are partitioned emulating an ARINC 653 deployment. They
are connected via an Ethernet link as compliant with AFDX.
All partitions can integrate the communication middleware,
so that any of them can send or receive data to and from
other either local or remote partitions as shown in figure 3.
In this way, communications may take place during the time
slots that the kernel assigns to each of the partitions.

Monitoring 
Application 

Partition 
OS 

Display 
Application 

Partition 
OS 

Partition 
Middleware 

Partition 
Middleware 

Data 
Analysis 

Application 

Partition 
OS 

Display 
Application 

Partition 
OS 

Partition 
Middleware 

Partition 
Middleware 

System B System A 
VA1 VA2 VB1 VB2 

Figure 3: Proposal architecture- Distributed monitoring
application design in a partitioned system

System A has two partitions: VA1 that monitors the sen-
sor reads and performs basic analysis, and VA2 that performs
data displays to the operators. System B has two partitions:
VB1 that receives the sensor reads and performs complex
analysis to guide the system operation, and VB2 that per-
forms data displays to the remote operators.

Partition VA1 receives the sampled data, and it sends
them to VB1 through the appropriate topics: temperature
and humidity, to send temperature and humidity values, re-
spectively. Also, a configuration topic is used by system B to
change the operation parameters of A such as the sampling
rate.

The topic based communication between System A and
B is shown in figure 2. Topics are associated to a data types
declared in a given programming language. The system de-
fines a dynamic topic so that it is possible to update the its
parameters (e.g. name or payload in this case). This favors

flexibility and portability. This class contains a method for
the creation and deletion of the topic. Code 1 shows the
topic template.

Code 1: Topic structure template

struct DataSampleType{
s t r i ng<TOPIC NAME> p r e f i x ;
long sampleId ;
sequence<octet , TOPIC MAX PAYLOAD SIZE>

payload ;
} ;

As the system handles sensor data samples, the needed
topic parameters are sequence number and payload.

The communication settings for this application must be
reliable. The subset of the QoS policies are shown:

• RELIABILITY is set to RELIABLE for guaranteed mes-
sage delivery, and it is set both for data reader and data
writer.

• HISTORY is set to KEEP ALL that guarantees that sam-
ples will be retained until the subscriber retrives them. It
is set for data reader.

Other properties as TRANSIENT need not be set as no
late joiners are allowed. All connections are configured at
the system start up time. Other parameters such as Avail-
ability, Durability, Durability Service, DataWriterProtocol,
DataReaderProtocol, etc., ensure aspects as the ordered de-
livery of items, cache storage, usage of ACK/NACK and
sending frequency. As our system is mapped to a UDP
transport protocol over Fast Ethernet, it is sufficient to use
the maximum allowed frame size as our application data
messages payload is of 1024KB. Also, IP routing is used as
compliant with AFDX in a switched Ethernet setting; this
is enabled by the wire protocol of DDS that is RTPS.

The Real-Time Publish-Subscribe [19] is the protocol
that enables interoperability across different implementa-
tions (vendors) of DDS. Its design requires, by default, the
usage of the Internet Protocol (IP) multicast (one-to-many
communication) and an unreliable, connection less transport
such as UDP (User Datagram Protocol).

Apart from the default best-effort, RTPS also provides
reliable communication for IP networks. RTPS offers dis-
tributed knowledge, preventing the centralised management
of the system; this is an inherent fault tolerance mechanism
which prevents the network from having a single point of
failure.

The general implementation of the reliability mechanism
for RTPS is the usage of acknowledgment messages (ACK).
They are similar to a heartbeat mechanism and ACKNACK.
Using a sequence number and a storage space (cache), it is
posible to know which messages have arrived to the sub-
scriber and which have not. Data writers have access to this
cache that per message stores the assigned sequence num-
ber, the history of the sent data values, and the history of
whether the sample has been delivered to the reader.



4.2 Temporal bounds of the communication
within the partitions’schedule

The hierarchical scheduling of partitions is related to the
temporal bounds of the middleware communication across
the partitions. In order to incorporate the transmission
times to the schedule, the temporal bounds on the com-
munication among the partitioned nodes are analyzed.

In IMA systems, temporal partitioning is guaranteed
though partition windows. The operating system kernel ap-
plies a deterministic scheduling algorithm based on a static
configuration file that indicates the time windows that are
assigned to each partition. This is defined in different envi-
ronments such as VxWorks [22] like other ARINC 653 com-
pliant operating systems or the MultiPartes approach [27].

We undertake a local schedulability analysis for each sys-
tem and consider the middleware cost within the partitions
as follows. Let V be the set of n partitions of a system such
that V = {Vk}, ∀k = 1..n. The execution requirements of
each partition are expressed as follows. A partition Vk re-
quires to use the processor for C time units every period of
T time units: Vk = (Ck, Tk).

The execution life of a partitioned system follows a hi-
erarchical approach of two main levels. At the top level,
there is a sequence of equal duration time slots namely ma-
jor frames. Each major frame FM is divided into a number
(q) of time slots of equal duration called minor frames, Fm:

FM =
q∑
j=1

Fm. Each minor frame is divided into a number r

of time slots of different durations (Ck). Each of these time

slots is assigned to a specific partition Vk: Fm =
r∑
k=1

Ck.

During its assigned time slot, a partition has uninterrupted
access to common resources.

A part from the numbers provided by middleware ven-
dors, a middleware stability analysis is performed off-line.
The analysis considers the message size required by the spe-
cific application (1024KB in our case), the required load
conditions, and the specific hardware. In the case of the
used implementation, DDS RTI Connext, this yields effi-
cient values and a stable behaviour in different situations.
The maximum value of the middleware communication cost
(cmw) is associated to very exceptional situations (< 0.1),
although possible. Consequently, the maximum value cmw is
considered in the schedule as part of the corresponding par-
tition(s) Ck that make use of it. For a partition, cmw = 1

δ
Ck

where δ is the ratio between the overall partition time and
the middleware cost.

5. RESULTS
Experimental results are presented with the goal of as-

sessing the cost of using DDS in a partitioned context for
supporting remote communication across local and remote
partitions. We intend to validate the suitability of the pro-
posed system design; we analyze the system in terms of
the communication time from the side of the invoking node.
Even for an unreliable setting, we have measured a partition-
level reliable communication implementation, i.e., including
the client response reception. The goal is to show that the

chosen middleware provides communication bounds for this
distributed partitioned system. Also, results show the sta-
bility of the middleware in the partitioned system, that is
compared against the control group (a bare machine deploy-
ment in an unrealiable DDS configuration). Results of the
execution of the implemented system show its feasibility,
given the performance of the middleware in different sce-
narios over a sufficiently large number of trials to obtain
the maximum values of the communication enabled by the
middleware. The presented data is compiled from 1000 iter-
ations to provide meaningful information. The communica-
tion results show the overhead of the whole processing stack
of a partition [7].

The monitoring system is implemented with DDS RTI
Connext 5.2.0 over two networked machines connected by a
100Mbps Ethernet link. The hardware of the physical nodes
is a double core Intel E3400 at 2.6Ghz and with 2GB RAM.

Initially, a control group experiment was performed to
analyze the performance of the middleware on a favorable
situation, i.e., a distributed setting with a best effort con-
figuration set at the data writer and data reader entities of
the distributed partitions. This scenario was analysed on,

0
10
00

20
00

30
00

40
00

50
00

Bare communication time

Payload (Bytes)

Ti
m

e 
(m

ic
ro

se
co

nd
s)

1 1024 2048 4096

Min
Avg
Max
Std

0
20
00

40
00

60
00

80
00

Bare communication time

Load (%)
Ti

m
e 

(m
ic

ro
se

co
nd

s)
25 50 75 100

Min
Avg
Max
Std

Figure 4: Bare machine; reliable communication; varing load.

both, empty load conditions and with progressive load up
to 100%. The communication cost was increased by 7x in
the partitioned scenario. Nevertheless, it was shown that
the average case times ranged from 3x to 7x lower than the
worst case.

Figure 4 shows the results of a bare machine deployment
of the emulated scenario for the distributed monitoring ap-
plication. This scenario fully replicates the system and it
also provides a DDS reliable communication configuration.
The scenario of figure 4(a) (left side graph) is executed with
no additional load, whereas 4(b) (at the right side) presents
a progressive loaded system. Resulting times follow the ex-
pected pattern, and a similar phenomena as in the previous
scenario is observed. Average behavior for (a) are between
3.7x and 5.33x smaller than the maximum times. Again,
the communication proves to be very stable; dispersion is
around 50µs for all the cases except for the largest message
size that is 98.2µs. For the scenario (b) that shows progres-
sive load, the average times are between 11x and 4x smaller
that the worst case. Nevertheless, the system shows to be
stable, and the dispersion is between 47.2µs and 123.20µs.

In the last scenario, the full fledged deployment of the
system is shown. Figure 5 shows the reliable communication



setting on a distributed partitioned system deployment with
no additional load. Figure 6 shows the same scenario with
progressive load.

0
20
00

40
00

60
00

80
00

10
00
0

Communication time accross partitions

Payload (Bytes)

Ti
m

e 
(m

ic
ro

se
co

nd
s)

1 1024 2048 4096

Min
Avg
Max
Std

Figure 5: Partitioned system; reliable communication; no load.

0
50
00

10
00
0

15
00
0

20
00
0

Communication time accross partitions

Load (%)

Ti
m

e 
(m

ic
ro

se
co

nd
s)

25 50 75 100

Min
Avg
Max
Std

Figure 6: Partitioned system; reliable communication; varing
load.

Results show that the system is very stable as standard
deviation is consistently around the same magnitude and in
the order of 300µs for the empty scenario and between 212
and 1400µs for the progressive load. Moreover, the worst
case is, for the empty scenario, between 8x and 18x larger
than the average case. For the progressive load tests, the
average case is between 8x and 39x smaller than the worst
case. Also, it can be seen that the minimum and average
cases are very close. Results show that the fully distributed
partitioned envirornment yields a stable execution and the
communication overhead of the middleware follows the ex-
pected pattern.

6. CONCLUSION
The paper describes the design of a distributed parti-

tioned system that supports communication of remote par-
titions through DDS middleware. Topics are defined to sup-
port the data centric model and it is exemplified for a dis-
tributed monitoring application. The communication over-
head caused by the middleware and the partitioned setting
is analyzed for a sufficient number of trials. The novelty of
the paper is the exhaustive trials on the specific DDS tech-
nology and the measurements that provide the overhead of
the whole middleware processing stack. Results show that

the communication is stable even in presense of very high
loads. The average case times are significanly smaller that
the worst case (from 8x to 39x) and dispersion is 1.4ms for
the worst possible scenario. We show that the overhead can
be obtained for its integration in the partition resource as-
signment.

Acknowledgment
This work has been partly supported by the Spanish Min-
istry of Economy and Competitiveness through projects
REM4VSS (TIN 2011-28339) and M2C2 (TIN2014-56158-
C4-3-P).

7. REFERENCES
[1] Airbus Deutschland GmbH AFDX. Avionics Full

Duplex Switched Ethernet. http://www.afdx.com
(Accessed 2016)

[2] – ARINC Specification 653: Part 1, Avionics
Application Software Standard Interface, Required
Services. https://www.arinc.com/ (Access 2016)

[3] A. Burns, R. Davis. Mixed criticality systems – A
review. 8th edition. Report. Univesity of York. July
2016.

[4] R. Davis, A. Burns, R. J. Bril, J. J. Lukkien. Controller
Area Network (CAN) schedulability analysis: Refuted,
revisited and revised. Real-Time Systems, vol.35(3), pp.
239–272. April 2007.

[5] C. Esposito, D. Cotroneo, S. Russo. On reliability in
publish/subscribe services. Computer Networks, vol.
57(5), pp. 1318–1343. April 2013.

[6] M. Garćıa Valls, T. Cucinotta, C. Lu. Challenges in
real-time virtualization and predictable cloud computing.
Journal of Systems Architecture, vol.60(9), pp736–740.
October 2014.

[7] M. Garćıa-Valls, P. Basanta-Val. Analyzing
point-to-point DDS communication over desktop
virtualization software. Computer Standards &
Interfaces, vol. 49, pp. 11–21. January 2017.

[8] M. Garćıa-Valls. A Proposal for Cost-Effective Server
Usage in CPS in the Presence of Dynamic Client
Requests. 19th IEEE International Symposium on
Real-Time Distributed Computing (ISORC), pp. 19–26.
York , UK. May 2016.

[9] M. Garćıa-Valls, P. Basanta-Val. Usage of DDS
Data-Centric Middleware for Remote Monitoring and
Control Laboratories. IEEE Transactions on Industrial
Informatics vol. 9(1), pp. 567–574. 2013.

[10] M. Garćıa-Valls, L. Fernández Villar, I. Rodŕıguez
López. iLAND: An enhanced middleware for real-time
reconfiguration of service oriented distributed real-time
Systems. IEEE Transactions on Industrial Informatics,
vol. 9(1), pp. 228–236. February 2013.

[11] M. Garćıa-Valls, C. Calva-Urrego. Improving service
time with a multicore aware middleware. 32nd

ACM/SIGAPP Symposium on Applied Computing
(SAC). Marrakech, Morocco. April 2017.

[12] M. Garćıa-Valls, C. Calva-Urrego, J. A. de la Puente,
A. Alonso, Adjusting middleware knobs to assess



scalability limits of distributed cyber- physical systems.
Computer Standards & Interfaces, January 2017. DOI:
10.1016/j.csi.2016.11.003

[13] S. Groesbrink, S. Oberthr, D. Baldin. Architecture for
adaptive resource assignment to virtualized
mixed-criticality real-time systems. 4th Workshop on
Adaptive and Reconfigurable Embedded Systems
(APRES12), vol.10(1). ACM SIGBED Review, 2013.

[14] C. Gu, et al. Partitioned mixed-criticality scheduling
on multiprocessor platforms. In Proc. of IEEE Design,
Automation and Test in Europe Conference and
Exhibition (DATE), pp.1–6. 2014.

[15] A. Hakiri, P. Berthou, A. Gokhale, D. C. Schmidt, T.
Gayraud. Supporting end-to-end quality of service
properties in OMG data distribution service
publish/subscribe middleware over wide area networks.
Journal of Systems and Software, vol. 86(10), pp.
2574–2593. October 2013.

[16] H. Kopetz, G. Bauer. The time-triggered architecture.
Proceedings of the IEEE, vol 91(1), pp. 112–126. 2003.

[17] R. Obermaisser et al. Fundamental Design Principles
for Embedded Systems: The Architectural Style of the
Cross-Domain Architecture GENESYS. IEEE ISORC
2009, pp. 3-11. 2009.

[18] Object Management Group – OMG. A Data
Distribution Service for Real-time Systems Version 1.4.
http://www.omg.org/spec/DDS/1.4 2015.

[19] Object Management Groug (OMG). The Real-time
Publish-Subscribe Wire Protocol DDS Interoperability
Wire Protocol Specification, v2.2. September 2014.

[20] C. M. Otero Pérez, et al. QoS-Based Resource
Management for Ambient Intelligence. Chapter on
Ambient Intelligence: Impact on Embedded System
Design, pp. 159–182. Kluwer Academic Publishers.
2003.

[21] The Open Group. Future Airborne Capability
Environment – FACE.
http://www.opengroup.org/face (Accessed 2016)

[22] P. Parkinson, L. Kinnan. Safety-Critical Software
Development for Integrated Modular Avionics.
VxWorks. White Paper.www.windriver.com (Accessed
2016)

[23] H. Pérez, J. J. Gutiérrez, S. Peiró, A. Crespo.
Distributed architecture for developing mixed-criticality
systems in multi-core platforms. The Journal of
Systems and Software, vol.123, pp. 145–159. 2017.

[24] RTCA DO-297/ED-124. Integrated Modular Avionics
(IMA) Development Guidance and Certification
Considerations. www.rtca.org and www.eurocae.org

(Accessed July 2016)

[25] T. Rizano, L. Abeni, L. Palopoli. Experimental
evaluation of the real-time performance of
publish-subscribe middleware. In Proc. of 2nd
International Workshop on Real-Time and Distributed
Computing in Emerging Applications (REACTION
2013). Vancouver, Canada. December 2014.

[26] R. Schantz, et al. Towards adaptive and reflective
middleware for network-centric combat systems. Encyc.
of Software Engineering. Wiley& Sons. 2002.

[27] S. Trujillo, A. Crespo, A. Alonso, J. Perez.

MultiPARTES: Multi-core partitioning and
virtualization for easing the certification of
mixed-criticality systems. Microprocessors and
Microsystems, vol.38, pp.921–932. November 2014.

[28] S. Vestal. Preemptive scheduling of multi-criticality
systems with varying degrees of execution time
assurance. In Proc. of the IEEE Real-Time Systems
Symposium (RTSS), pp. 239–243. December 2007.


